Go to file
Kenneth Moreland 7212469d04 Roll connectivity information into CellSet in control environment
Previously there was a Connectivity* structure for both the control
environment and the execution environment. This was necessary before
because the connectivity is explicit to the from and to topology
elements, so you would get this structure from the appropriate call to
CellSet*. However, the symantics are changed so that the type of
connectivity is selected in the worklet's dispatcher. Thus, it is now
much cleaner to manage the CellSet structure in the CellSet class itself
and just have a single set of Connectivity* classes in the execution
environment.
2015-08-02 15:59:44 -06:00
CMake Add git SHA to information reported in SystemInformation test 2015-07-31 12:10:52 -06:00
docs The Copyright statement now has all the periods in the correct location. 2015-05-21 10:30:11 -04:00
vtkm Roll connectivity information into CellSet in control environment 2015-08-02 15:59:44 -06:00
CMakeLists.txt Add git SHA to information reported in SystemInformation test 2015-07-31 12:10:52 -06:00
CONTRIBUTING.md Add a contributing guide to vtk-m. 2015-07-29 17:33:30 -04:00
CTestConfig.cmake The Copyright statement now has all the periods in the correct location. 2015-05-21 10:30:11 -04:00
LICENSE.txt Add TBB backend. 2015-06-01 13:57:37 -04:00
README.md Update ReadMe to reference gitlab. 2015-05-13 08:45:52 -04:00

VTK-m

One of the biggest recent changes in high-performance computing is the increasing use of accelerators. Accelerators contain processing cores that independently are inferior to a core in a typical CPU, but these cores are replicated and grouped such that their aggregate execution provides a very high computation rate at a much lower power. Current and future CPU processors also require much more explicit parallelism. Each successive version of the hardware packs more cores into each processor, and technologies like hyperthreading and vector operations require even more parallel processing to leverage each cores full potential.

VTK-m is a toolkit of scientific visualization algorithms for emerging processor architectures. VTK-m supports the fine-grained concurrency for data analysis and visualization algorithms required to drive extreme scale computing by providing abstract models for data and execution that can be applied to a variety of algorithms across many different processor architectures.

Getting VTK-m

The VTK-m repository is located at https://gitlab.kitware.com/vtk/vtk-m

VTK-m dependencies are:

git clone https://gitlab.kitware.com/vtk/vtk-m.git vtkm
mkdir vtkm-build
cd vtkm-build
cmake-gui ../vtkm

A detailed walk-through of installing and building VTK-m can be found on our Contributing page