vtk-m/vtkm/worklet/contourtree_augmented/ContourTree.h
Oliver Ruebel 66c96a983f Add BRACT for distributed contour tree computation
This merge request is Phase 1 of several to implement the distributed parallel
contour tree in VTKm. This merge requests adds the base outline for the
algorithm. The implementation of the details of the algorithm in the
BoundaryRestrictedAugmentedContourTree.h is currently still missing.
However, these will require a substantial (~3000) lines of additional code.
The goal is to stage the integration process across merge requests to make
the review process simpler.
2020-06-12 11:50:01 -06:00

416 lines
15 KiB
C++

//============================================================================
// Copyright (c) Kitware, Inc.
// All rights reserved.
// See LICENSE.txt for details.
//
// This software is distributed WITHOUT ANY WARRANTY; without even
// the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
// PURPOSE. See the above copyright notice for more information.
//============================================================================
// Copyright (c) 2018, The Regents of the University of California, through
// Lawrence Berkeley National Laboratory (subject to receipt of any required approvals
// from the U.S. Dept. of Energy). All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// (1) Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// (2) Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// (3) Neither the name of the University of California, Lawrence Berkeley National
// Laboratory, U.S. Dept. of Energy nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
// IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
// INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
// OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
// OF THE POSSIBILITY OF SUCH DAMAGE.
//
//=============================================================================
//
// This code is an extension of the algorithm presented in the paper:
// Parallel Peak Pruning for Scalable SMP Contour Tree Computation.
// Hamish Carr, Gunther Weber, Christopher Sewell, and James Ahrens.
// Proceedings of the IEEE Symposium on Large Data Analysis and Visualization
// (LDAV), October 2016, Baltimore, Maryland.
//
// The PPP2 algorithm and software were jointly developed by
// Hamish Carr (University of Leeds), Gunther H. Weber (LBNL), and
// Oliver Ruebel (LBNL)
//==============================================================================
#ifndef vtk_m_worklet_contourtree_augmented_contourtree_h
#define vtk_m_worklet_contourtree_augmented_contourtree_h
// global includes
#include <algorithm>
#include <iomanip>
#include <iostream>
#include <sstream>
#include <string>
// local includes
#include <vtkm/worklet/contourtree_augmented/PrintVectors.h>
#include <vtkm/worklet/contourtree_augmented/Types.h>
//VTKM includes
#include <vtkm/Pair.h>
#include <vtkm/Types.h>
#include <vtkm/cont/Algorithm.h>
#include <vtkm/cont/ArrayHandleConstant.h>
namespace vtkm
{
namespace worklet
{
namespace contourtree_augmented
{
constexpr int N_NODE_COLORS = 12;
constexpr const char* NODE_COLORS[N_NODE_COLORS] = { // nodeColors
"red", "red4", "green", "green4", "royalblue", "royalblue4",
"cyan", "cyan4", "magenta", "magenta4", "yellow", "yellow4"
}; // nodeColors
struct SaddlePeakSort
{
VTKM_EXEC_CONT
inline bool operator()(const vtkm::Pair<vtkm::Id, vtkm::Id>& a,
const vtkm::Pair<vtkm::Id, vtkm::Id>& b) const
{
if (a.first < b.first)
return true;
if (a.first > b.first)
return false;
if (a.second < b.second)
return true;
if (a.second > b.second)
return false;
return false;
}
};
class ContourTree
{ // class ContourTree
public:
// VECTORS INDEXED ON N = SIZE OF DATA
// the list of nodes is implicit - but for some purposes, it's useful to have them pre-sorted by superarc
IdArrayType Nodes;
// vector of (regular) arcs in the merge tree
IdArrayType Arcs;
// vector storing which superarc owns each node
IdArrayType Superparents;
// VECTORS INDEXED ON T = SIZE OF TREE
// vector storing the list of supernodes by ID
// WARNING: THESE ARE NOT SORTED BY INDEX
// Instead, they are sorted by hyperarc, secondarily on index
IdArrayType Supernodes;
// vector of superarcs in the merge tree
// stored as supernode indices
IdArrayType Superarcs;
// for boundary augmented contour tree (note: these use the same convention as supernodes/superarcs)
IdArrayType Augmentnodes;
IdArrayType Augmentarcs;
// vector of Hyperarcs to which each supernode/arc belongs
IdArrayType Hyperparents;
// vector tracking which superarc was transferred on which iteration
IdArrayType WhenTransferred;
// VECTORS INDEXED ON H = SIZE OF HYPERTREE
// vector of sort indices for the hypernodes
IdArrayType Hypernodes;
// vector of Hyperarcs in the merge tree
// NOTE: These are supernode IDs, not hypernode IDs
// because not all Hyperarcs lead to hypernodes
IdArrayType Hyperarcs;
// counter for the number of iterations it took to construct the tree
// this is also used for hypersweep computations
vtkm::Id NumIterations;
// vectors tracking the segments used in each iteration of the hypersweep
IdArrayType FirstSupernodePerIteration;
IdArrayType FirstHypernodePerIteration;
// ROUTINES
// initialises contour tree arrays - rest is done by another class
inline ContourTree();
// initialises contour tree arrays - rest is done by another class
inline void Init(vtkm::Id dataSize);
// debug routine
inline void DebugPrint(const char* message, const char* fileName, long lineNum) const;
// print contents
inline void PrintContent() const;
// print routines
inline void PrintDotSuperStructure() const;
inline std::string PrintHyperStructureStatistics(bool print = true) const;
}; // class ContourTree
ContourTree::ContourTree()
: Arcs()
, Superparents()
, Supernodes()
, Superarcs()
, Hyperparents()
, Hypernodes()
, Hyperarcs()
{ // ContourTree()
} // ContourTree()
// initialises contour tree arrays - rest is done by another class
void ContourTree::Init(vtkm::Id dataSize)
{ // Init()
vtkm::cont::ArrayHandleConstant<vtkm::Id> noSuchElementArray(
static_cast<vtkm::Id>(NO_SUCH_ELEMENT), dataSize);
vtkm::cont::Algorithm::Copy(noSuchElementArray, this->Arcs);
vtkm::cont::Algorithm::Copy(noSuchElementArray, this->Superparents);
} // Init()
inline void ContourTree::PrintContent() const
{
PrintHeader(this->Arcs.GetNumberOfValues());
PrintIndices("Arcs", this->Arcs);
PrintIndices("Superparents", this->Superparents);
std::cout << std::endl;
PrintHeader(this->Supernodes.GetNumberOfValues());
PrintIndices("Supernodes", this->Supernodes);
PrintIndices("Superarcs", this->Superarcs);
PrintIndices("Hyperparents", this->Hyperparents);
PrintIndices("When Xferred", this->WhenTransferred);
std::cout << std::endl;
PrintHeader(this->Hypernodes.GetNumberOfValues());
PrintIndices("Hypernodes", this->Hypernodes);
PrintIndices("Hyperarcs", this->Hyperarcs);
PrintHeader(Augmentnodes.GetNumberOfValues());
PrintIndices("Augmentnodes", Augmentnodes);
PrintIndices("Augmentarcs", this->Augmentarcs);
std::cout << std::endl;
std::cout << "NumIterations: " << this->NumIterations << std::endl;
PrintHeader(this->FirstSupernodePerIteration.GetNumberOfValues());
PrintIndices("First SN Per Iter", this->FirstSupernodePerIteration);
PrintIndices("First HN Per Iter", this->FirstHypernodePerIteration);
}
void ContourTree::DebugPrint(const char* message, const char* fileName, long lineNum) const
{ // DebugPrint()
#ifdef DEBUG_PRINT
std::cout << "---------------------------" << std::endl;
std::cout << std::setw(30) << std::left << fileName << ":" << std::right << std::setw(4)
<< lineNum << std::endl;
std::cout << std::left << std::string(message) << std::endl;
std::cout << "Contour Tree Contains: " << std::endl;
std::cout << "---------------------------" << std::endl;
std::cout << std::endl;
this->PrintContent();
#else
// Avoid unused parameter warnings
(void)message;
(void)fileName;
(void)lineNum;
#endif
} // DebugPrint()
void ContourTree::PrintDotSuperStructure() const
{ // PrintDotSuperStructure()
// print the header information
printf("digraph G\n\t{\n");
printf("\tsize=\"6.5, 9\"\n\tratio=\"fill\"\n");
auto whenTransferredPortal = this->WhenTransferred.ReadPortal();
auto supernodesPortal = this->Supernodes.ReadPortal();
auto superarcsPortal = this->Superarcs.ReadPortal();
auto hypernodesPortal = this->Hypernodes.ReadPortal();
auto hyperparentsPortal = this->Hyperparents.ReadPortal();
auto hyperarcsPortal = this->Hyperarcs.ReadPortal();
// colour the nodes by the iteration they transfer (mod # of colors) - paired iterations have similar colors RGBCMY
for (vtkm::Id supernode = 0; supernode < this->Supernodes.GetNumberOfValues(); supernode++)
{ // per supernode
vtkm::Id iteration = MaskedIndex(whenTransferredPortal.Get(supernode));
printf("\tnode s%lli [style=filled,fillcolor=%s]\n",
static_cast<vtkm::Int64>(supernodesPortal.Get(supernode)),
NODE_COLORS[iteration % N_NODE_COLORS]);
} // per supernode
// loop through supernodes
for (vtkm::Id supernode = 0; supernode < this->Supernodes.GetNumberOfValues(); supernode++)
{ // per supernode
// skip the global root
if (NoSuchElement(superarcsPortal.Get(supernode)))
continue;
if (IsAscending(superarcsPortal.Get(supernode)))
printf(
"\tedge s%lli -> s%lli[label=S%lli,dir=back]\n",
static_cast<vtkm::Int64>(supernodesPortal.Get(MaskedIndex(superarcsPortal.Get(supernode)))),
static_cast<vtkm::Int64>(supernodesPortal.Get(supernode)),
static_cast<vtkm::Int64>(supernode));
else
printf(
"\tedge s%lli -> s%lli[label=S%lli]\n",
static_cast<vtkm::Int64>(supernodesPortal.Get(supernode)),
static_cast<vtkm::Int64>(supernodesPortal.Get(MaskedIndex(superarcsPortal.Get(supernode)))),
static_cast<vtkm::Int64>(supernode));
} // per supernode
// now loop through hypernodes to show hyperarcs
for (vtkm::Id hypernode = 0; hypernode < this->Hypernodes.GetNumberOfValues(); hypernode++)
{ // per hypernode
// skip the global root
if (NoSuchElement(hyperarcsPortal.Get(hypernode)))
continue;
printf(
"\ts%lli -> s%lli [constraint=false][width=5.0][label=\"H%lli\\nW%lli\"]\n",
static_cast<vtkm::Int64>(supernodesPortal.Get(hypernodesPortal.Get(hypernode))),
static_cast<vtkm::Int64>(supernodesPortal.Get(MaskedIndex(hyperarcsPortal.Get(hypernode)))),
static_cast<vtkm::Int64>(hypernode),
static_cast<vtkm::Int64>(
MaskedIndex(whenTransferredPortal.Get(hypernodesPortal.Get(hypernode)))));
} // per hypernode
// now add the hyperparents
for (vtkm::Id supernode = 0; supernode < this->Supernodes.GetNumberOfValues(); supernode++)
{ // per supernode
printf("\ts%lli -> s%lli [constraint=false][style=dotted]\n",
static_cast<vtkm::Int64>(supernodesPortal.Get(supernode)),
static_cast<vtkm::Int64>(
supernodesPortal.Get(hypernodesPortal.Get(hyperparentsPortal.Get(supernode)))));
} // per supernode
// now use the hyperstructure to define subgraphs
for (vtkm::Id hypernode = 0; hypernode < this->Hypernodes.GetNumberOfValues(); hypernode++)
{ // per hypernode
vtkm::Id firstChild = hypernodesPortal.Get(hypernode);
vtkm::Id childSentinel = (hypernode == this->Hypernodes.GetNumberOfValues() - 1)
? this->Supernodes.GetNumberOfValues()
: hypernodesPortal.Get(hypernode + 1);
printf("\tsubgraph H%lli{ ", static_cast<vtkm::Int64>(hypernode));
for (vtkm::Id supernode = firstChild; supernode < childSentinel; supernode++)
{
printf("s%lli ", static_cast<vtkm::Int64>(supernodesPortal.Get(supernode)));
}
printf("}\n");
} // per hypernode
// print the footer information
printf("\t}\n");
} // PrintDotSuperStructure()
std::string ContourTree::PrintHyperStructureStatistics(bool print) const
{ // PrintHyperStructureStatistics()
// arrays for collecting statistics
std::vector<vtkm::Id> minPath;
std::vector<vtkm::Id> maxPath;
std::vector<vtkm::Id> supernodeCount;
std::vector<vtkm::Id> hypernodeCount;
auto whenTransferredPortal = this->WhenTransferred.ReadPortal();
auto hypernodesPortal = this->Hypernodes.ReadPortal();
// set an initial iteration number to negative to get it started
long whichIteration = -1;
// loop through the hypernodes
for (vtkm::Id hypernode = 0; hypernode < this->Hypernodes.GetNumberOfValues(); hypernode++)
{ // per hypernode
// retrieve corresponding supernode ID
vtkm::Id supernodeID = hypernodesPortal.Get(hypernode);
// and the iteration of transfer
vtkm::Id iterationNo = MaskedIndex(whenTransferredPortal.Get(supernodeID));
// if it doesn't match, we've hit a boundary
if (whichIteration != iterationNo)
{ // new iteration
// initialise the next iteration
// this one is larger than the maximum possible to force minimum
minPath.push_back(static_cast<vtkm::Id>(this->Supernodes.GetNumberOfValues() + 1));
maxPath.push_back(0);
supernodeCount.push_back(0);
hypernodeCount.push_back(0);
// and increment the iteration ID
whichIteration++;
} // new iteration
// now compute the new path length - default to off the end
vtkm::Id pathLength = static_cast<vtkm::Id>(this->Supernodes.GetNumberOfValues() - supernodeID);
// for all except the last, take the next one
if (hypernode != this->Hypernodes.GetNumberOfValues() - 1)
{
pathLength = hypernodesPortal.Get(hypernode + 1) - supernodeID;
}
// update the statistics
if (pathLength < minPath[static_cast<std::size_t>(whichIteration)])
{
minPath[static_cast<std::size_t>(whichIteration)] = pathLength;
}
if (pathLength > maxPath[static_cast<std::size_t>(whichIteration)])
{
maxPath[static_cast<std::size_t>(whichIteration)] = pathLength;
}
supernodeCount[static_cast<std::size_t>(whichIteration)] += pathLength;
hypernodeCount[static_cast<std::size_t>(whichIteration)]++;
} // per hypernode
// now print out the statistics
std::stringstream resultString;
for (std::size_t iteration = 0; iteration < minPath.size(); iteration++)
{ // per iteration
double averagePath = static_cast<double>(supernodeCount[iteration]) /
static_cast<double>(hypernodeCount[iteration]);
resultString << "Iteration: " << iteration << " Hyper: " << hypernodeCount[iteration]
<< " Super: " << supernodeCount[iteration] << " Min: " << minPath[iteration]
<< " Avg: " << averagePath << " Max: " << maxPath[iteration] << std::endl;
} // per iteration
resultString << "Total Hypernodes: " << this->Hypernodes.GetNumberOfValues()
<< " Supernodes: " << this->Supernodes.GetNumberOfValues() << std::endl;
if (print)
{
std::cout << resultString.str() << std::endl;
}
return resultString.str();
} // PrintHyperStructureStatistics()
} // namespace contourtree_augmented
} // worklet
} // vtkm
#endif