vtk-m/vtkm/cont/testing/TestingDeviceAdapter.h
Robert Maynard 89ec4aae2f Reduction on CUDA handles different input and output types better
When reducing an input type that differs from the output type
you need to write a custom binary operator that also implements
how to do the unary transformation.
2019-04-10 14:44:44 -04:00

2522 lines
93 KiB
C++

//============================================================================
// Copyright (c) Kitware, Inc.
// All rights reserved.
// See LICENSE.txt for details.
// This software is distributed WITHOUT ANY WARRANTY; without even
// the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
// PURPOSE. See the above copyright notice for more information.
//
// Copyright 2014 National Technology & Engineering Solutions of Sandia, LLC (NTESS).
// Copyright 2014 UT-Battelle, LLC.
// Copyright 2014 Los Alamos National Security.
//
// Under the terms of Contract DE-NA0003525 with NTESS,
// the U.S. Government retains certain rights in this software.
//
// Under the terms of Contract DE-AC52-06NA25396 with Los Alamos National
// Laboratory (LANL), the U.S. Government retains certain rights in
// this software.
//============================================================================
#ifndef vtk_m_cont_testing_TestingDeviceAdapter_h
#define vtk_m_cont_testing_TestingDeviceAdapter_h
#include <vtkm/BinaryOperators.h>
#include <vtkm/BinaryPredicates.h>
#include <vtkm/TypeTraits.h>
#include <vtkm/cont/ArrayHandle.h>
#include <vtkm/cont/ArrayHandleConstant.h>
#include <vtkm/cont/ArrayHandleIndex.h>
#include <vtkm/cont/ArrayHandlePermutation.h>
#include <vtkm/cont/ArrayHandleZip.h>
#include <vtkm/cont/ArrayPortalToIterators.h>
#include <vtkm/cont/DeviceAdapterAlgorithm.h>
#include <vtkm/cont/ErrorBadAllocation.h>
#include <vtkm/cont/ErrorExecution.h>
#include <vtkm/cont/RuntimeDeviceInformation.h>
#include <vtkm/cont/StorageBasic.h>
#include <vtkm/cont/Timer.h>
#include <vtkm/cont/internal/DeviceAdapterError.h>
#include <vtkm/cont/internal/VirtualObjectTransfer.h>
#include <vtkm/cont/testing/Testing.h>
#include <vtkm/cont/AtomicArray.h>
#include <algorithm>
#include <chrono>
#include <cmath>
#include <ctime>
#include <random>
#include <thread>
#include <utility>
#include <vector>
#include <vtkm/internal/Windows.h>
namespace vtkm
{
namespace cont
{
namespace testing
{
#define ERROR_MESSAGE "Got an error."
#define ARRAY_SIZE 100000
#define OFFSET 1000
#define DIM_SIZE 128
/// This class has a single static member, Run, that tests the templated
/// DeviceAdapter for conformance.
///
template <class DeviceAdapterTag>
struct TestingDeviceAdapter
{
private:
using StorageTag = vtkm::cont::StorageTagBasic;
using IdArrayHandle = vtkm::cont::ArrayHandle<vtkm::Id, StorageTag>;
using IdComponentArrayHandle = vtkm::cont::ArrayHandle<vtkm::IdComponent, StorageTag>;
using ScalarArrayHandle = vtkm::cont::ArrayHandle<vtkm::FloatDefault, StorageTag>;
using IdArrayManagerExecution =
vtkm::cont::internal::ArrayManagerExecution<vtkm::Id, StorageTag, DeviceAdapterTag>;
using IdStorage = vtkm::cont::internal::Storage<vtkm::Id, StorageTag>;
using IdPortalType = typename IdArrayHandle::template ExecutionTypes<DeviceAdapterTag>::Portal;
using IdPortalConstType =
typename IdArrayHandle::template ExecutionTypes<DeviceAdapterTag>::PortalConst;
using Algorithm = vtkm::cont::DeviceAdapterAlgorithm<DeviceAdapterTag>;
public:
// Cuda kernels have to be public (in Cuda 4.0).
struct CopyArrayKernel
{
VTKM_CONT
CopyArrayKernel(const IdPortalConstType& input, const IdPortalType& output)
: InputArray(input)
, OutputArray(output)
{
}
VTKM_EXEC void operator()(vtkm::Id index, const vtkm::exec::internal::ErrorMessageBuffer&) const
{
this->OutputArray.Set(index, this->InputArray.Get(index));
}
VTKM_CONT void SetErrorMessageBuffer(const vtkm::exec::internal::ErrorMessageBuffer&) {}
IdPortalConstType InputArray;
IdPortalType OutputArray;
};
template <typename PortalType>
struct GenericClearArrayKernel
{
using ValueType = typename PortalType::ValueType;
VTKM_CONT
GenericClearArrayKernel(const PortalType& array,
const ValueType& fillValue = static_cast<ValueType>(OFFSET))
: Array(array)
, Dims()
, FillValue(fillValue)
{
}
VTKM_CONT
GenericClearArrayKernel(const PortalType& array,
const vtkm::Id3& dims,
const ValueType& fillValue = static_cast<ValueType>(OFFSET))
: Array(array)
, Dims(dims)
, FillValue(fillValue)
{
}
VTKM_EXEC void operator()(vtkm::Id index) const { this->Array.Set(index, this->FillValue); }
VTKM_EXEC void operator()(vtkm::Id3 index) const
{
//convert from id3 to id
vtkm::Id flatIndex = index[0] + this->Dims[0] * (index[1] + this->Dims[1] * index[2]);
this->operator()(flatIndex);
}
VTKM_CONT void SetErrorMessageBuffer(const vtkm::exec::internal::ErrorMessageBuffer&) {}
PortalType Array;
vtkm::Id3 Dims;
ValueType FillValue;
};
using ClearArrayKernel = GenericClearArrayKernel<IdPortalType>;
struct ClearArrayMapKernel //: public vtkm::exec::WorkletMapField
{
// using ControlSignature = void(Field(Out));
// using ExecutionSignature = void(_1);
template <typename T>
VTKM_EXEC void operator()(T& value) const
{
value = OFFSET;
}
};
struct AddArrayKernel
{
VTKM_CONT
AddArrayKernel(const IdPortalType& array)
: Array(array)
, Dims()
{
}
VTKM_CONT
AddArrayKernel(const IdPortalType& array, const vtkm::Id3& dims)
: Array(array)
, Dims(dims)
{
}
VTKM_EXEC void operator()(vtkm::Id index) const
{
this->Array.Set(index, this->Array.Get(index) + index);
}
VTKM_EXEC void operator()(vtkm::Id3 index) const
{
//convert from id3 to id
vtkm::Id flatIndex = index[0] + this->Dims[0] * (index[1] + this->Dims[1] * index[2]);
this->operator()(flatIndex);
}
VTKM_CONT void SetErrorMessageBuffer(const vtkm::exec::internal::ErrorMessageBuffer&) {}
IdPortalType Array;
vtkm::Id3 Dims;
};
// Checks that each instance is only visited once:
struct OverlapKernel
{
using ArrayType = ArrayHandle<bool>;
using PortalType = typename ArrayType::template ExecutionTypes<DeviceAdapterTag>::Portal;
PortalType TrackerPortal;
PortalType ValidPortal;
vtkm::Id3 Dims;
VTKM_CONT
OverlapKernel(const PortalType& trackerPortal,
const PortalType& validPortal,
const vtkm::Id3& dims)
: TrackerPortal(trackerPortal)
, ValidPortal(validPortal)
, Dims(dims)
{
}
VTKM_CONT
OverlapKernel(const PortalType& trackerPortal, const PortalType& validPortal)
: TrackerPortal(trackerPortal)
, ValidPortal(validPortal)
, Dims()
{
}
VTKM_EXEC void operator()(vtkm::Id index) const
{
if (this->TrackerPortal.Get(index))
{ // this index has already been visited, that's an error
this->ValidPortal.Set(index, false);
}
else
{
this->TrackerPortal.Set(index, true);
this->ValidPortal.Set(index, true);
}
}
VTKM_EXEC void operator()(vtkm::Id3 index) const
{
//convert from id3 to id
vtkm::Id flatIndex = index[0] + this->Dims[0] * (index[1] + this->Dims[1] * index[2]);
this->operator()(flatIndex);
}
VTKM_CONT void SetErrorMessageBuffer(const vtkm::exec::internal::ErrorMessageBuffer&) {}
};
struct OneErrorKernel
{
VTKM_EXEC void operator()(vtkm::Id index) const
{
if (index == ARRAY_SIZE / 2)
{
this->ErrorMessage.RaiseError(ERROR_MESSAGE);
}
}
VTKM_CONT void SetErrorMessageBuffer(
const vtkm::exec::internal::ErrorMessageBuffer& errorMessage)
{
this->ErrorMessage = errorMessage;
}
vtkm::exec::internal::ErrorMessageBuffer ErrorMessage;
};
struct AllErrorKernel
{
VTKM_EXEC void operator()(vtkm::Id vtkmNotUsed(index)) const
{
this->ErrorMessage.RaiseError(ERROR_MESSAGE);
}
VTKM_CONT void SetErrorMessageBuffer(
const vtkm::exec::internal::ErrorMessageBuffer& errorMessage)
{
this->ErrorMessage = errorMessage;
}
vtkm::exec::internal::ErrorMessageBuffer ErrorMessage;
};
struct OffsetPlusIndexKernel
{
VTKM_CONT
OffsetPlusIndexKernel(const IdPortalType& array)
: Array(array)
{
}
VTKM_EXEC void operator()(vtkm::Id index) const { this->Array.Set(index, OFFSET + index); }
VTKM_CONT void SetErrorMessageBuffer(const vtkm::exec::internal::ErrorMessageBuffer&) {}
IdPortalType Array;
};
struct MarkOddNumbersKernel
{
VTKM_CONT
MarkOddNumbersKernel(const IdPortalType& array)
: Array(array)
{
}
VTKM_EXEC void operator()(vtkm::Id index) const { this->Array.Set(index, index % 2); }
VTKM_CONT void SetErrorMessageBuffer(const vtkm::exec::internal::ErrorMessageBuffer&) {}
IdPortalType Array;
};
struct FuseAll
{
template <typename T>
VTKM_EXEC bool operator()(const T&, const T&) const
{
//binary predicates for unique return true if they are the same
return true;
}
};
template <typename T>
struct AtomicKernel
{
VTKM_CONT
AtomicKernel(const vtkm::cont::AtomicArray<T>& array)
: AArray(array.PrepareForExecution(DeviceAdapterTag()))
{
}
VTKM_EXEC void operator()(vtkm::Id index) const
{
T value = (T)index;
this->AArray.Add(0, value);
}
VTKM_CONT void SetErrorMessageBuffer(const vtkm::exec::internal::ErrorMessageBuffer&) {}
vtkm::exec::AtomicArrayExecutionObject<T, DeviceAdapterTag> AArray;
};
template <typename T>
struct AtomicCASKernel
{
VTKM_CONT
AtomicCASKernel(const vtkm::cont::AtomicArray<T>& array)
: AArray(array.PrepareForExecution(DeviceAdapterTag()))
{
}
VTKM_EXEC void operator()(vtkm::Id index) const
{
T value = (T)index;
//Get the old value from the array with a no-op
T oldValue = this->AArray.Add(0, T(0));
//This creates an atomic add using the CAS operatoin
T assumed = T(0);
do
{
assumed = oldValue;
oldValue = this->AArray.CompareAndSwap(0, (assumed + value), assumed);
} while (assumed != oldValue);
}
VTKM_CONT void SetErrorMessageBuffer(const vtkm::exec::internal::ErrorMessageBuffer&) {}
vtkm::exec::AtomicArrayExecutionObject<T, DeviceAdapterTag> AArray;
};
class VirtualObjectTransferKernel
{
public:
struct Interface : public vtkm::VirtualObjectBase
{
VTKM_EXEC virtual vtkm::Id Foo() const = 0;
};
struct Concrete : public Interface
{
VTKM_EXEC vtkm::Id Foo() const override { return this->Value; }
vtkm::Id Value = 0;
};
VirtualObjectTransferKernel(const Interface* vo, IdArrayHandle& result)
: Virtual(vo)
, Result(result.PrepareForInPlace(DeviceAdapterTag()))
{
}
VTKM_EXEC
void operator()(vtkm::Id) const { this->Result.Set(0, this->Virtual->Foo()); }
VTKM_CONT void SetErrorMessageBuffer(const vtkm::exec::internal::ErrorMessageBuffer&) {}
private:
const Interface* Virtual;
IdPortalType Result;
};
struct CustomPairOp
{
using ValueType = vtkm::Pair<vtkm::Id, vtkm::Float32>;
VTKM_EXEC
ValueType operator()(const vtkm::Id& a) const { return ValueType(a, 0.0f); }
VTKM_EXEC
ValueType operator()(const vtkm::Id& a, const vtkm::Id& b) const
{
return ValueType(vtkm::Max(a, b), 0.0f);
}
VTKM_EXEC
ValueType operator()(const ValueType& a, const ValueType& b) const
{
return ValueType(vtkm::Max(a.first, b.first), 0.0f);
}
VTKM_EXEC
ValueType operator()(const vtkm::Id& a, const ValueType& b) const
{
return ValueType(vtkm::Max(a, b.first), 0.0f);
}
VTKM_EXEC
ValueType operator()(const ValueType& a, const vtkm::Id& b) const
{
return ValueType(vtkm::Max(a.first, b), 0.0f);
}
};
struct CustomTForReduce
{
constexpr CustomTForReduce()
: Value(0.0f)
{
}
constexpr CustomTForReduce(float f)
: Value(f)
{
}
VTKM_EXEC_CONT
constexpr float value() const { return this->Value; }
float Value;
};
template <typename T>
struct CustomMinAndMax
{
VTKM_EXEC_CONT
vtkm::Vec<float, 2> operator()(const T& a) const
{
return vtkm::make_Vec(a.value(), a.value());
}
VTKM_EXEC_CONT
vtkm::Vec<float, 2> operator()(const T& a, const T& b) const
{
return vtkm::make_Vec(vtkm::Min(a.value(), b.value()), vtkm::Max(a.value(), b.value()));
}
VTKM_EXEC_CONT
vtkm::Vec<float, 2> operator()(const vtkm::Vec<float, 2>& a, const vtkm::Vec<float, 2>& b) const
{
return vtkm::make_Vec(vtkm::Min(a[0], b[0]), vtkm::Max(a[1], b[1]));
}
VTKM_EXEC_CONT
vtkm::Vec<float, 2> operator()(const T& a, const vtkm::Vec<float, 2>& b) const
{
return vtkm::make_Vec(vtkm::Min(a.value(), b[0]), vtkm::Max(a.value(), b[1]));
}
VTKM_EXEC_CONT
vtkm::Vec<float, 2> operator()(const vtkm::Vec<float, 2>& a, const T& b) const
{
return vtkm::make_Vec(vtkm::Min(a[0], b.value()), vtkm::Max(a[1], b.value()));
}
};
private:
static VTKM_CONT void TestDeviceAdapterTag()
{
std::cout << "-------------------------------------------" << std::endl;
std::cout << "Testing device adapter tag" << std::endl;
constexpr DeviceAdapterTag deviceTag;
constexpr vtkm::cont::DeviceAdapterTagError errorTag;
VTKM_TEST_ASSERT(deviceTag.GetValue() == deviceTag.GetValue(),
"Device adapter Id does not equal itself.");
VTKM_TEST_ASSERT(deviceTag.GetValue() != errorTag.GetValue(),
"Device adapter Id not distinguishable from others.");
using Traits = vtkm::cont::DeviceAdapterTraits<DeviceAdapterTag>;
using ErrorTraits = vtkm::cont::DeviceAdapterTraits<vtkm::cont::DeviceAdapterTagError>;
VTKM_TEST_ASSERT(Traits::GetName() == Traits::GetName(),
"Device adapter Name does not equal itself.");
VTKM_TEST_ASSERT(Traits::GetName() != ErrorTraits::GetName(),
"Device adapter Name not distinguishable from others.");
}
// Note: this test does not actually test to make sure the data is available
// in the execution environment. It tests to make sure data gets to the array
// and back, but it is possible that the data is not available in the
// execution environment.
static VTKM_CONT void TestArrayManagerExecution()
{
std::cout << "-------------------------------------------" << std::endl;
std::cout << "Testing ArrayManagerExecution" << std::endl;
using ArrayManagerExecution =
vtkm::cont::internal::ArrayManagerExecution<vtkm::Id, StorageTagBasic, DeviceAdapterTag>;
using StorageType = vtkm::cont::internal::Storage<vtkm::Id, StorageTagBasic>;
// Create original input array.
StorageType storage;
storage.Allocate(ARRAY_SIZE * 2);
StorageType::PortalType portal = storage.GetPortal();
VTKM_TEST_ASSERT(portal.GetNumberOfValues() == ARRAY_SIZE * 2,
"Storage portal has unexpected size.");
for (vtkm::Id index = 0; index < ARRAY_SIZE; index++)
{
portal.Set(index, TestValue(index, vtkm::Id()));
}
ArrayManagerExecution manager(&storage);
// Do an operation just so we know the values are placed in the execution
// environment and they change. We are only calling on half the array
// because we are about to shrink.
Algorithm::Schedule(AddArrayKernel(manager.PrepareForInPlace(true)), ARRAY_SIZE);
// Change size.
manager.Shrink(ARRAY_SIZE);
VTKM_TEST_ASSERT(manager.GetNumberOfValues() == ARRAY_SIZE,
"Shrink did not set size of array manager correctly.");
// Get the array back and check its values. We have to get it back into
// the same storage since some ArrayManagerExecution classes will expect
// that.
manager.RetrieveOutputData(&storage);
VTKM_TEST_ASSERT(storage.GetNumberOfValues() == ARRAY_SIZE,
"Storage has wrong number of values after execution "
"array shrink.");
// Check array.
StorageType::PortalConstType checkPortal = storage.GetPortalConst();
VTKM_TEST_ASSERT(checkPortal.GetNumberOfValues() == ARRAY_SIZE, "Storage portal wrong size.");
for (vtkm::Id index = 0; index < ARRAY_SIZE; index++)
{
VTKM_TEST_ASSERT(checkPortal.Get(index) == TestValue(index, vtkm::Id()) + index,
"Did not get correct values from array.");
}
}
static VTKM_CONT void TestOutOfMemory()
{
// Only test out of memory with 64 bit ids. If there are 32 bit ids on
// a 64 bit OS (common), it is simply too hard to get a reliable allocation
// that is too much memory.
#ifdef VTKM_USE_64BIT_IDS
std::cout << "-------------------------------------------" << std::endl;
std::cout << "Testing Out of Memory" << std::endl;
try
{
std::cout << "Do array allocation that should fail." << std::endl;
vtkm::cont::internal::Storage<vtkm::Vec<vtkm::Float32, 4>, StorageTagBasic> supportArray;
vtkm::cont::internal::ArrayManagerExecution<vtkm::Vec<vtkm::Float32, 4>,
StorageTagBasic,
DeviceAdapterTag>
bigManager(&supportArray);
const vtkm::Id bigSize = 0x7FFFFFFFFFFFFFFFLL;
bigManager.PrepareForOutput(bigSize);
// It does not seem reasonable to get here. The previous call should fail.
VTKM_TEST_FAIL("A ridiculously sized allocation succeeded. Either there "
"was a failure that was not reported but should have been "
"or the width of vtkm::Id is not large enough to express all "
"array sizes.");
}
catch (vtkm::cont::ErrorBadAllocation& error)
{
std::cout << "Got the expected error: " << error.GetMessage() << std::endl;
}
#else
std::cout << "--------- Skipping out of memory test" << std::endl;
#endif
}
VTKM_CONT
static void TestTimer()
{
auto tracker = vtkm::cont::GetRuntimeDeviceTracker();
if (tracker.CanRunOn(DeviceAdapterTag()))
{
std::cout << "-------------------------------------------" << std::endl;
std::cout << "Testing Timer" << std::endl;
vtkm::cont::Timer timer{ DeviceAdapterTag() };
timer.Start();
std::cout << "Timer started. Sleeping..." << std::endl;
#ifndef _WIN32
sleep(1);
#else
Sleep(1000);
#endif
std::cout << "Woke up. Check time." << std::endl;
timer.Stop();
vtkm::Float64 elapsedTime = timer.GetElapsedTime();
std::cout << "Elapsed time: " << elapsedTime << std::endl;
VTKM_TEST_ASSERT(elapsedTime > 0.999, "Timer did not capture full second wait.");
VTKM_TEST_ASSERT(elapsedTime < 2.0, "Timer counted too far or system really busy.");
}
}
VTKM_CONT
static void TestVirtualObjectTransfer()
{
std::cout << "-------------------------------------------" << std::endl;
std::cout << "Testing VirtualObjectTransfer" << std::endl;
using BaseType = typename VirtualObjectTransferKernel::Interface;
using TargetType = typename VirtualObjectTransferKernel::Concrete;
using Transfer = vtkm::cont::internal::VirtualObjectTransfer<TargetType, DeviceAdapterTag>;
IdArrayHandle result;
result.Allocate(1);
result.GetPortalControl().Set(0, 0);
TargetType target;
target.Value = 5;
Transfer transfer(&target);
const BaseType* base = static_cast<const BaseType*>(transfer.PrepareForExecution(false));
Algorithm::Schedule(VirtualObjectTransferKernel(base, result), 1);
VTKM_TEST_ASSERT(result.GetPortalConstControl().Get(0) == 5, "Did not get expected result");
target.Value = 10;
base = static_cast<const BaseType*>(transfer.PrepareForExecution(true));
Algorithm::Schedule(VirtualObjectTransferKernel(base, result), 1);
VTKM_TEST_ASSERT(result.GetPortalConstControl().Get(0) == 10, "Did not get expected result");
transfer.ReleaseResources();
}
static VTKM_CONT void TestAlgorithmSchedule()
{
std::cout << "-------------------------------------------" << std::endl;
std::cout << "Testing single value Scheduling with vtkm::Id" << std::endl;
{
std::cout << "Allocating execution array" << std::endl;
IdStorage storage;
IdArrayManagerExecution manager(&storage);
std::cout << "Running clear." << std::endl;
Algorithm::Schedule(ClearArrayKernel(manager.PrepareForOutput(1)), 1);
std::cout << "Running add." << std::endl;
Algorithm::Schedule(AddArrayKernel(manager.PrepareForInPlace(false)), 1);
std::cout << "Checking results." << std::endl;
manager.RetrieveOutputData(&storage);
for (vtkm::Id index = 0; index < 1; index++)
{
vtkm::Id value = storage.GetPortalConst().Get(index);
VTKM_TEST_ASSERT(value == index + OFFSET,
"Got bad value for single value scheduled kernel.");
}
} //release memory
std::cout << "-------------------------------------------" << std::endl;
std::cout << "Testing Schedule with vtkm::Id" << std::endl;
{
std::cout << "Allocating execution array" << std::endl;
IdStorage storage;
IdArrayManagerExecution manager(&storage);
std::cout << "Running clear." << std::endl;
Algorithm::Schedule(ClearArrayKernel(manager.PrepareForOutput(ARRAY_SIZE)), ARRAY_SIZE);
std::cout << "Running add." << std::endl;
Algorithm::Schedule(AddArrayKernel(manager.PrepareForInPlace(false)), ARRAY_SIZE);
std::cout << "Checking results." << std::endl;
manager.RetrieveOutputData(&storage);
for (vtkm::Id index = 0; index < ARRAY_SIZE; index++)
{
vtkm::Id value = storage.GetPortalConst().Get(index);
VTKM_TEST_ASSERT(value == index + OFFSET, "Got bad value for scheduled kernels.");
}
} //release memory
std::cout << "-------------------------------------------" << std::endl;
std::cout << "Testing Schedule with a vary large Id value" << std::endl;
{
std::cout << "Allocating execution array" << std::endl;
IdStorage storage;
IdArrayManagerExecution manager(&storage);
std::cout << "Running clear." << std::endl;
//size is selected to be larger than the CUDA backend can launch in a
//single invocation when compiled for SM_2 support
const vtkm::Id size = 8400000;
Algorithm::Schedule(ClearArrayKernel(manager.PrepareForOutput(size)), size);
std::cout << "Running add." << std::endl;
Algorithm::Schedule(AddArrayKernel(manager.PrepareForInPlace(false)), size);
std::cout << "Checking results." << std::endl;
manager.RetrieveOutputData(&storage);
//Rather than testing for correctness every value of a large array,
// we randomly test a subset of that array.
std::default_random_engine generator(static_cast<unsigned int>(std::time(nullptr)));
std::uniform_int_distribution<vtkm::Id> distribution(0, size - 1);
vtkm::Id numberOfSamples = size / 100;
for (vtkm::Id i = 0; i < numberOfSamples; ++i)
{
vtkm::Id randomIndex = distribution(generator);
vtkm::Id value = storage.GetPortalConst().Get(randomIndex);
VTKM_TEST_ASSERT(value == randomIndex + OFFSET, "Got bad value for scheduled kernels.");
}
} //release memory
//verify that the schedule call works with id3
std::cout << "-------------------------------------------" << std::endl;
std::cout << "Testing Schedule with vtkm::Id3" << std::endl;
{
std::cout << "Allocating execution array" << std::endl;
IdStorage storage;
IdArrayManagerExecution manager(&storage);
vtkm::Id3 maxRange(DIM_SIZE);
std::cout << "Running clear." << std::endl;
Algorithm::Schedule(
ClearArrayKernel(manager.PrepareForOutput(DIM_SIZE * DIM_SIZE * DIM_SIZE), maxRange),
maxRange);
std::cout << "Running add." << std::endl;
Algorithm::Schedule(AddArrayKernel(manager.PrepareForInPlace(false), maxRange), maxRange);
std::cout << "Checking results." << std::endl;
manager.RetrieveOutputData(&storage);
const vtkm::Id maxId = DIM_SIZE * DIM_SIZE * DIM_SIZE;
for (vtkm::Id index = 0; index < maxId; index++)
{
vtkm::Id value = storage.GetPortalConst().Get(index);
VTKM_TEST_ASSERT(value == index + OFFSET, "Got bad value for scheduled vtkm::Id3 kernels.");
}
} //release memory
// Ensure that each element is only visited once:
std::cout << "-------------------------------------------" << std::endl;
std::cout << "Testing Schedule for overlap" << std::endl;
{
using BoolArray = ArrayHandle<bool>;
using BoolPortal = typename BoolArray::template ExecutionTypes<DeviceAdapterTag>::Portal;
BoolArray tracker;
BoolArray valid;
// Initialize tracker with 'false' values
std::cout << "Allocating and initializing memory" << std::endl;
Algorithm::Schedule(GenericClearArrayKernel<BoolPortal>(
tracker.PrepareForOutput(ARRAY_SIZE, DeviceAdapterTag()), false),
ARRAY_SIZE);
Algorithm::Schedule(GenericClearArrayKernel<BoolPortal>(
valid.PrepareForOutput(ARRAY_SIZE, DeviceAdapterTag()), false),
ARRAY_SIZE);
std::cout << "Running Overlap kernel." << std::endl;
Algorithm::Schedule(OverlapKernel(tracker.PrepareForInPlace(DeviceAdapterTag()),
valid.PrepareForInPlace(DeviceAdapterTag())),
ARRAY_SIZE);
std::cout << "Checking results." << std::endl;
auto vPortal = valid.GetPortalConstControl();
for (vtkm::Id i = 0; i < ARRAY_SIZE; i++)
{
bool isValid = vPortal.Get(i);
VTKM_TEST_ASSERT(isValid, "Schedule executed some elements more than once.");
}
} // release memory
// Ensure that each element is only visited once:
std::cout << "-------------------------------------------" << std::endl;
std::cout << "Testing Schedule for overlap with vtkm::Id3" << std::endl;
{
static constexpr vtkm::Id numElems{ DIM_SIZE * DIM_SIZE * DIM_SIZE };
static const vtkm::Id3 dims{ DIM_SIZE, DIM_SIZE, DIM_SIZE };
using BoolArray = ArrayHandle<bool>;
using BoolPortal = typename BoolArray::template ExecutionTypes<DeviceAdapterTag>::Portal;
BoolArray tracker;
BoolArray valid;
// Initialize tracker with 'false' values
std::cout << "Allocating and initializing memory" << std::endl;
Algorithm::Schedule(GenericClearArrayKernel<BoolPortal>(
tracker.PrepareForOutput(numElems, DeviceAdapterTag()), dims, false),
numElems);
Algorithm::Schedule(GenericClearArrayKernel<BoolPortal>(
valid.PrepareForOutput(numElems, DeviceAdapterTag()), dims, false),
numElems);
std::cout << "Running Overlap kernel." << std::endl;
Algorithm::Schedule(OverlapKernel(tracker.PrepareForInPlace(DeviceAdapterTag()),
valid.PrepareForInPlace(DeviceAdapterTag()),
dims),
dims);
std::cout << "Checking results." << std::endl;
auto vPortal = valid.GetPortalConstControl();
for (vtkm::Id i = 0; i < numElems; i++)
{
bool isValid = vPortal.Get(i);
VTKM_TEST_ASSERT(isValid, "Id3 Schedule executed some elements more than once.");
}
} // release memory
}
static VTKM_CONT void TestCopyIf()
{
std::cout << "-------------------------------------------" << std::endl;
std::cout << "Testing CopyIf" << std::endl;
IdArrayHandle array;
IdArrayHandle stencil;
IdArrayHandle result;
std::cout << " Standard call" << std::endl;
//construct the index array
Algorithm::Schedule(
OffsetPlusIndexKernel(array.PrepareForOutput(ARRAY_SIZE, DeviceAdapterTag())), ARRAY_SIZE);
Algorithm::Schedule(
MarkOddNumbersKernel(stencil.PrepareForOutput(ARRAY_SIZE, DeviceAdapterTag())), ARRAY_SIZE);
Algorithm::CopyIf(array, stencil, result);
VTKM_TEST_ASSERT(result.GetNumberOfValues() == array.GetNumberOfValues() / 2,
"result of CopyIf has an incorrect size");
for (vtkm::Id index = 0; index < result.GetNumberOfValues(); index++)
{
const vtkm::Id value = result.GetPortalConstControl().Get(index);
VTKM_TEST_ASSERT(value == (OFFSET + (index * 2) + 1), "Incorrect value in CopyIf result.");
}
std::cout << " CopyIf on zero size arrays." << std::endl;
array.Shrink(0);
stencil.Shrink(0);
Algorithm::CopyIf(array, stencil, result);
VTKM_TEST_ASSERT(result.GetNumberOfValues() == 0, "result of CopyIf has an incorrect size");
}
static VTKM_CONT void TestOrderedUniqueValues()
{
std::cout << "-------------------------------------------------" << std::endl;
std::cout << "Testing Sort, Unique, LowerBounds and UpperBounds" << std::endl;
std::vector<vtkm::Id> testData(ARRAY_SIZE);
for (std::size_t i = 0; i < ARRAY_SIZE; ++i)
{
testData[i] = static_cast<vtkm::Id>(OFFSET + (i % 50));
}
IdArrayHandle input = vtkm::cont::make_ArrayHandle(&(*testData.begin()), ARRAY_SIZE);
//make a deep copy of input and place it into temp
IdArrayHandle temp;
Algorithm::Copy(input, temp);
Algorithm::Sort(temp);
Algorithm::Unique(temp);
IdArrayHandle handle;
IdArrayHandle handle1;
//verify lower and upper bounds work
Algorithm::LowerBounds(temp, input, handle);
Algorithm::UpperBounds(temp, input, handle1);
// Check to make sure that temp was resized correctly during Unique.
// (This was a discovered bug at one point.)
temp.GetPortalConstControl(); // Forces copy back to control.
temp.ReleaseResourcesExecution(); // Make sure not counting on execution.
VTKM_TEST_ASSERT(temp.GetNumberOfValues() == 50,
"Unique did not resize array (or size did not copy to control).");
for (vtkm::Id i = 0; i < ARRAY_SIZE; ++i)
{
vtkm::Id value = handle.GetPortalConstControl().Get(i);
vtkm::Id value1 = handle1.GetPortalConstControl().Get(i);
VTKM_TEST_ASSERT(value == i % 50, "Got bad value (LowerBounds)");
VTKM_TEST_ASSERT(value1 >= i % 50, "Got bad value (UpperBounds)");
}
std::cout << "Testing Sort, Unique, LowerBounds and UpperBounds with random values"
<< std::endl;
//now test it works when the id are not incrementing
const vtkm::Id RANDOMDATA_SIZE = 6;
vtkm::Id randomData[RANDOMDATA_SIZE];
randomData[0] = 500; // 2 (lower), 3 (upper)
randomData[1] = 955; // 3 (lower), 4 (upper)
randomData[2] = 955; // 3 (lower), 4 (upper)
randomData[3] = 120; // 0 (lower), 1 (upper)
randomData[4] = 320; // 1 (lower), 2 (upper)
randomData[5] = 955; // 3 (lower), 4 (upper)
//change the control structure under the handle
input = vtkm::cont::make_ArrayHandle(randomData, RANDOMDATA_SIZE);
Algorithm::Copy(input, handle);
VTKM_TEST_ASSERT(handle.GetNumberOfValues() == RANDOMDATA_SIZE,
"Handle incorrect size after setting new control data");
Algorithm::Copy(input, handle1);
VTKM_TEST_ASSERT(handle.GetNumberOfValues() == RANDOMDATA_SIZE,
"Handle incorrect size after setting new control data");
Algorithm::Copy(handle, temp);
VTKM_TEST_ASSERT(temp.GetNumberOfValues() == RANDOMDATA_SIZE, "Copy failed");
Algorithm::Sort(temp);
Algorithm::Unique(temp);
Algorithm::LowerBounds(temp, handle);
Algorithm::UpperBounds(temp, handle1);
VTKM_TEST_ASSERT(handle.GetNumberOfValues() == RANDOMDATA_SIZE,
"LowerBounds returned incorrect size");
std::copy(vtkm::cont::ArrayPortalToIteratorBegin(handle.GetPortalConstControl()),
vtkm::cont::ArrayPortalToIteratorEnd(handle.GetPortalConstControl()),
randomData);
VTKM_TEST_ASSERT(randomData[0] == 2, "Got bad value - LowerBounds");
VTKM_TEST_ASSERT(randomData[1] == 3, "Got bad value - LowerBounds");
VTKM_TEST_ASSERT(randomData[2] == 3, "Got bad value - LowerBounds");
VTKM_TEST_ASSERT(randomData[3] == 0, "Got bad value - LowerBounds");
VTKM_TEST_ASSERT(randomData[4] == 1, "Got bad value - LowerBounds");
VTKM_TEST_ASSERT(randomData[5] == 3, "Got bad value - LowerBounds");
VTKM_TEST_ASSERT(handle1.GetNumberOfValues() == RANDOMDATA_SIZE,
"UppererBounds returned incorrect size");
std::copy(vtkm::cont::ArrayPortalToIteratorBegin(handle1.GetPortalConstControl()),
vtkm::cont::ArrayPortalToIteratorEnd(handle1.GetPortalConstControl()),
randomData);
VTKM_TEST_ASSERT(randomData[0] == 3, "Got bad value - UpperBound");
VTKM_TEST_ASSERT(randomData[1] == 4, "Got bad value - UpperBound");
VTKM_TEST_ASSERT(randomData[2] == 4, "Got bad value - UpperBound");
VTKM_TEST_ASSERT(randomData[3] == 1, "Got bad value - UpperBound");
VTKM_TEST_ASSERT(randomData[4] == 2, "Got bad value - UpperBound");
VTKM_TEST_ASSERT(randomData[5] == 4, "Got bad value - UpperBound");
}
static VTKM_CONT void TestSort()
{
std::cout << "-------------------------------------------------" << std::endl;
std::cout << "Sort" << std::endl;
std::vector<vtkm::Id> testData(ARRAY_SIZE);
for (std::size_t i = 0; i < ARRAY_SIZE; ++i)
{
testData[i] = static_cast<vtkm::Id>(OFFSET + ((ARRAY_SIZE - i) % 50));
}
IdArrayHandle unsorted = vtkm::cont::make_ArrayHandle(testData);
IdArrayHandle sorted;
Algorithm::Copy(unsorted, sorted);
//Validate the standard inplace sort is correct
Algorithm::Sort(sorted);
for (vtkm::Id i = 0; i < ARRAY_SIZE - 1; ++i)
{
vtkm::Id sorted1 = sorted.GetPortalConstControl().Get(i);
vtkm::Id sorted2 = sorted.GetPortalConstControl().Get(i + 1);
VTKM_TEST_ASSERT(sorted1 <= sorted2, "Values not properly sorted.");
}
//Try zero sized array
sorted.Shrink(0);
Algorithm::Sort(sorted);
}
static VTKM_CONT void TestSortWithComparisonObject()
{
std::cout << "-------------------------------------------------" << std::endl;
std::cout << "Sort with comparison object" << std::endl;
std::vector<vtkm::Id> testData(ARRAY_SIZE);
for (std::size_t i = 0; i < ARRAY_SIZE; ++i)
{
testData[i] = static_cast<vtkm::Id>(OFFSET + ((ARRAY_SIZE - i) % 50));
}
//sort the users memory in-place
IdArrayHandle sorted = vtkm::cont::make_ArrayHandle(testData);
Algorithm::Sort(sorted);
//copy the sorted array into our own memory, if use the same user ptr
//we would also sort the 'sorted' handle
IdArrayHandle comp_sorted;
Algorithm::Copy(sorted, comp_sorted);
Algorithm::Sort(comp_sorted, vtkm::SortGreater());
//Validate that sorted and comp_sorted are sorted in the opposite directions
for (vtkm::Id i = 0; i < ARRAY_SIZE; ++i)
{
vtkm::Id sorted1 = sorted.GetPortalConstControl().Get(i);
vtkm::Id sorted2 = comp_sorted.GetPortalConstControl().Get(ARRAY_SIZE - (i + 1));
VTKM_TEST_ASSERT(sorted1 == sorted2, "Got bad sort values when using SortGreater");
}
//validate that sorted and comp_sorted are now equal
Algorithm::Sort(comp_sorted, vtkm::SortLess());
for (vtkm::Id i = 0; i < ARRAY_SIZE; ++i)
{
vtkm::Id sorted1 = sorted.GetPortalConstControl().Get(i);
vtkm::Id sorted2 = comp_sorted.GetPortalConstControl().Get(i);
VTKM_TEST_ASSERT(sorted1 == sorted2, "Got bad sort values when using SortLess");
}
}
static VTKM_CONT void TestSortWithFancyArrays()
{
std::cout << "-------------------------------------------------" << std::endl;
std::cout << "Sort of a ArrayHandleZip" << std::endl;
std::vector<vtkm::Id> testData(ARRAY_SIZE);
for (std::size_t i = 0; i < ARRAY_SIZE; ++i)
{
testData[i] = static_cast<vtkm::Id>(OFFSET + ((ARRAY_SIZE - i) % 50));
}
IdArrayHandle unsorted = vtkm::cont::make_ArrayHandle(testData);
IdArrayHandle sorted;
Algorithm::Copy(unsorted, sorted);
//verify that we can use ArrayHandleZip inplace
vtkm::cont::ArrayHandleZip<IdArrayHandle, IdArrayHandle> zipped(unsorted, sorted);
//verify we can use sort with zip handle
Algorithm::Sort(zipped, vtkm::SortGreater());
Algorithm::Sort(zipped);
for (vtkm::Id i = 0; i < ARRAY_SIZE; ++i)
{
vtkm::Pair<vtkm::Id, vtkm::Id> kv_sorted = zipped.GetPortalConstControl().Get(i);
VTKM_TEST_ASSERT((OFFSET + (i / (ARRAY_SIZE / 50))) == kv_sorted.first,
"ArrayZipHandle improperly sorted");
}
std::cout << "-------------------------------------------------" << std::endl;
std::cout << "Sort of a ArrayHandlePermutation" << std::endl;
//verify that we can use ArrayHandlePermutation inplace
vtkm::cont::ArrayHandleIndex index(ARRAY_SIZE);
vtkm::cont::ArrayHandlePermutation<vtkm::cont::ArrayHandleIndex, IdArrayHandle> perm(index,
sorted);
//verify we can use a custom operator sort with permutation handle
Algorithm::Sort(perm, vtkm::SortGreater());
for (vtkm::Id i = 0; i < ARRAY_SIZE; ++i)
{
vtkm::Id sorted_value = perm.GetPortalConstControl().Get(i);
VTKM_TEST_ASSERT((OFFSET + ((ARRAY_SIZE - (i + 1)) / (ARRAY_SIZE / 50))) == sorted_value,
"ArrayZipPermutation improperly sorted");
}
//verify we can use the default sort with permutation handle
Algorithm::Sort(perm);
for (vtkm::Id i = 0; i < ARRAY_SIZE; ++i)
{
vtkm::Id sorted_value = perm.GetPortalConstControl().Get(i);
VTKM_TEST_ASSERT((OFFSET + (i / (ARRAY_SIZE / 50))) == sorted_value,
"ArrayZipPermutation improperly sorted");
}
}
static VTKM_CONT void TestSortByKey()
{
std::cout << "-------------------------------------------------" << std::endl;
std::cout << "Sort by keys" << std::endl;
using Vec3 = vtkm::Vec<FloatDefault, 3>;
using Vec3ArrayHandle = vtkm::cont::ArrayHandle<vtkm::Vec<vtkm::FloatDefault, 3>, StorageTag>;
std::vector<vtkm::Id> testKeys(ARRAY_SIZE);
std::vector<Vec3> testValues(testKeys.size());
for (vtkm::Id i = 0; i < ARRAY_SIZE; ++i)
{
std::size_t index = static_cast<size_t>(i);
testKeys[index] = ARRAY_SIZE - i;
testValues[index] = TestValue(i, Vec3());
}
IdArrayHandle keys = vtkm::cont::make_ArrayHandle(testKeys);
Vec3ArrayHandle values = vtkm::cont::make_ArrayHandle(testValues);
Algorithm::SortByKey(keys, values);
for (vtkm::Id i = 0; i < ARRAY_SIZE; ++i)
{
//keys should be sorted from 1 to ARRAY_SIZE
//values should be sorted from (ARRAY_SIZE-1) to 0
Vec3 sorted_value = values.GetPortalConstControl().Get(i);
vtkm::Id sorted_key = keys.GetPortalConstControl().Get(i);
VTKM_TEST_ASSERT((sorted_key == (i + 1)), "Got bad SortByKeys key");
VTKM_TEST_ASSERT(test_equal(sorted_value, TestValue(ARRAY_SIZE - 1 - i, Vec3())),
"Got bad SortByKeys value");
}
// this will return everything back to what it was before sorting
Algorithm::SortByKey(keys, values, vtkm::SortGreater());
for (vtkm::Id i = 0; i < ARRAY_SIZE; ++i)
{
//keys should be sorted from ARRAY_SIZE to 1
//values should be sorted from 0 to (ARRAY_SIZE-1)
Vec3 sorted_value = values.GetPortalConstControl().Get(i);
vtkm::Id sorted_key = keys.GetPortalConstControl().Get(i);
VTKM_TEST_ASSERT((sorted_key == (ARRAY_SIZE - i)), "Got bad SortByKeys key");
VTKM_TEST_ASSERT(test_equal(sorted_value, TestValue(i, Vec3())), "Got bad SortByKeys value");
}
//this is here to verify we can sort by vtkm::Vec
Algorithm::SortByKey(values, keys);
for (vtkm::Id i = 0; i < ARRAY_SIZE; ++i)
{
//keys should be sorted from ARRAY_SIZE to 1
//values should be sorted from 0 to (ARRAY_SIZE-1)
Vec3 sorted_value = values.GetPortalConstControl().Get(i);
vtkm::Id sorted_key = keys.GetPortalConstControl().Get(i);
VTKM_TEST_ASSERT((sorted_key == (ARRAY_SIZE - i)), "Got bad SortByKeys key");
VTKM_TEST_ASSERT(test_equal(sorted_value, TestValue(i, Vec3())), "Got bad SortByKeys value");
}
}
static VTKM_CONT void TestLowerBoundsWithComparisonObject()
{
std::cout << "-------------------------------------------------" << std::endl;
std::cout << "Testing LowerBounds with comparison object" << std::endl;
std::vector<vtkm::Id> testData(ARRAY_SIZE);
for (std::size_t i = 0; i < ARRAY_SIZE; ++i)
{
testData[i] = static_cast<vtkm::Id>(OFFSET + (i % 50));
}
IdArrayHandle input = vtkm::cont::make_ArrayHandle(testData);
//make a deep copy of input and place it into temp
IdArrayHandle temp;
Algorithm::Copy(input, temp);
Algorithm::Sort(temp);
Algorithm::Unique(temp);
IdArrayHandle handle;
//verify lower bounds work
Algorithm::LowerBounds(temp, input, handle, vtkm::SortLess());
// Check to make sure that temp was resized correctly during Unique.
// (This was a discovered bug at one point.)
temp.GetPortalConstControl(); // Forces copy back to control.
temp.ReleaseResourcesExecution(); // Make sure not counting on execution.
VTKM_TEST_ASSERT(temp.GetNumberOfValues() == 50,
"Unique did not resize array (or size did not copy to control).");
for (vtkm::Id i = 0; i < ARRAY_SIZE; ++i)
{
vtkm::Id value = handle.GetPortalConstControl().Get(i);
VTKM_TEST_ASSERT(value == i % 50, "Got bad LowerBounds value with SortLess");
}
}
static VTKM_CONT void TestUpperBoundsWithComparisonObject()
{
std::cout << "-------------------------------------------------" << std::endl;
std::cout << "Testing UpperBounds with comparison object" << std::endl;
std::vector<vtkm::Id> testData(ARRAY_SIZE);
for (std::size_t i = 0; i < ARRAY_SIZE; ++i)
{
testData[i] = static_cast<vtkm::Id>(OFFSET + (i % 50));
}
IdArrayHandle input = vtkm::cont::make_ArrayHandle(testData);
//make a deep copy of input and place it into temp
IdArrayHandle temp;
Algorithm::Copy(input, temp);
Algorithm::Sort(temp);
Algorithm::Unique(temp);
IdArrayHandle handle;
//verify upper bounds work
Algorithm::UpperBounds(temp, input, handle, vtkm::SortLess());
// Check to make sure that temp was resized correctly during Unique.
// (This was a discovered bug at one point.)
temp.GetPortalConstControl(); // Forces copy back to control.
temp.ReleaseResourcesExecution(); // Make sure not counting on execution.
VTKM_TEST_ASSERT(temp.GetNumberOfValues() == 50,
"Unique did not resize array (or size did not copy to control).");
for (vtkm::Id i = 0; i < ARRAY_SIZE; ++i)
{
vtkm::Id value = handle.GetPortalConstControl().Get(i);
VTKM_TEST_ASSERT(value == (i % 50) + 1, "Got bad UpperBounds value with SortLess");
}
}
static VTKM_CONT void TestUniqueWithComparisonObject()
{
std::cout << "-------------------------------------------------" << std::endl;
std::cout << "Testing Unique with comparison object" << std::endl;
std::vector<vtkm::Id> testData(ARRAY_SIZE);
for (std::size_t i = 0; i < ARRAY_SIZE; ++i)
{
testData[i] = static_cast<vtkm::Id>(OFFSET + (i % 50));
}
IdArrayHandle input = vtkm::cont::make_ArrayHandle(testData);
Algorithm::Sort(input);
Algorithm::Unique(input, FuseAll());
// Check to make sure that input was resized correctly during Unique.
// (This was a discovered bug at one point.)
input.GetPortalConstControl(); // Forces copy back to control.
input.ReleaseResourcesExecution(); // Make sure not counting on execution.
VTKM_TEST_ASSERT(input.GetNumberOfValues() == 1,
"Unique did not resize array (or size did not copy to control).");
vtkm::Id value = input.GetPortalConstControl().Get(0);
VTKM_TEST_ASSERT(value == OFFSET, "Got bad unique value");
}
static VTKM_CONT void TestReduce()
{
std::cout << "-------------------------------------------" << std::endl;
std::cout << "Testing Reduce" << std::endl;
//construct the index array
IdArrayHandle array;
Algorithm::Schedule(ClearArrayKernel(array.PrepareForOutput(ARRAY_SIZE, DeviceAdapterTag())),
ARRAY_SIZE);
//the output of reduce and scan inclusive should be the same
std::cout << " Reduce with initial value of 0." << std::endl;
vtkm::Id reduce_sum = Algorithm::Reduce(array, vtkm::Id(0));
std::cout << " Reduce with initial value." << std::endl;
vtkm::Id reduce_sum_with_intial_value = Algorithm::Reduce(array, vtkm::Id(ARRAY_SIZE));
std::cout << " Inclusive scan to check" << std::endl;
vtkm::Id inclusive_sum = Algorithm::ScanInclusive(array, array);
std::cout << " Reduce with 1 value." << std::endl;
array.Shrink(1);
vtkm::Id reduce_sum_one_value = Algorithm::Reduce(array, vtkm::Id(0));
std::cout << " Reduce with 0 values." << std::endl;
array.Shrink(0);
vtkm::Id reduce_sum_no_values = Algorithm::Reduce(array, vtkm::Id(0));
VTKM_TEST_ASSERT(reduce_sum == OFFSET * ARRAY_SIZE, "Got bad sum from Reduce");
VTKM_TEST_ASSERT(reduce_sum_with_intial_value == reduce_sum + ARRAY_SIZE,
"Got bad sum from Reduce with initial value");
VTKM_TEST_ASSERT(reduce_sum_one_value == OFFSET, "Got bad single sum from Reduce");
VTKM_TEST_ASSERT(reduce_sum_no_values == 0, "Got bad empty sum from Reduce");
VTKM_TEST_ASSERT(reduce_sum == inclusive_sum,
"Got different sums from Reduce and ScanInclusive");
}
static VTKM_CONT void TestReduceWithComparisonObject()
{
std::cout << "-------------------------------------------" << std::endl;
std::cout << "Testing Reduce with comparison object " << std::endl;
std::cout << " Reduce vtkm::Id array with vtkm::MinAndMax to compute range." << std::endl;
//construct the index array. Assign an abnormally large value
//to the middle of the array, that should be what we see as our sum.
std::vector<vtkm::Id> testData(ARRAY_SIZE);
const vtkm::Id maxValue = ARRAY_SIZE * 2;
for (std::size_t i = 0; i < ARRAY_SIZE; ++i)
{
vtkm::Id index = static_cast<vtkm::Id>(i);
testData[i] = index;
}
testData[ARRAY_SIZE / 2] = maxValue;
IdArrayHandle input = vtkm::cont::make_ArrayHandle(testData);
vtkm::Vec<vtkm::Id, 2> range =
Algorithm::Reduce(input, vtkm::Vec<vtkm::Id, 2>(0, 0), vtkm::MinAndMax<vtkm::Id>());
VTKM_TEST_ASSERT(maxValue == range[1], "Got bad value from Reduce with comparison object");
VTKM_TEST_ASSERT(0 == range[0], "Got bad value from Reduce with comparison object");
std::cout << " Reduce vtkm::Id array with custom functor that returns vtkm::Pair<>."
<< std::endl;
auto pairInit = vtkm::Pair<vtkm::Id, vtkm::Float32>(0, 0.0f);
vtkm::Pair<vtkm::Id, vtkm::Float32> pairRange =
Algorithm::Reduce(input, pairInit, CustomPairOp());
VTKM_TEST_ASSERT(maxValue == pairRange.first,
"Got bad value from Reduce with pair comparison object");
VTKM_TEST_ASSERT(0.0f == pairRange.second,
"Got bad value from Reduce with pair comparison object");
std::cout << " Reduce bool array with vtkm::BitwiseAnd to see if all values are true."
<< std::endl;
//construct an array of bools and verify that they aren't all true
constexpr vtkm::Id inputLength = 60;
constexpr bool inputValues[inputLength] = {
true, true, true, true, true, true, false, true, true, true, true, true, true, true, true,
true, true, true, true, true, true, true, true, true, true, true, true, true, true, true,
true, true, true, true, true, true, true, true, true, true, true, true, true, true, true,
true, true, true, true, true, true, true, true, true, true, true, true, true, true, true
};
auto barray = vtkm::cont::make_ArrayHandle(inputValues, inputLength);
bool all_true = Algorithm::Reduce(barray, true, vtkm::BitwiseAnd());
VTKM_TEST_ASSERT(all_true == false, "reduction with vtkm::BitwiseAnd should return false");
std::cout << " Reduce with custom value type and custom comparison operator." << std::endl;
//test with a custom value type with the reduction value being a vtkm::Vec<float,2>
constexpr CustomTForReduce inputFValues[inputLength] = {
13.1f, -2.1f, -1.0f, 13.1f, -2.1f, -1.0f, 413.1f, -2.1f, -1.0f, 13.1f, -2.1f, -1.0f,
13.1f, -2.1f, -1.0f, 13.1f, -2.1f, -1.0f, 13.1f, -2.1f, -1.0f, 13.1f, -2.1f, -1.0f,
13.1f, -2.1f, -11.0f, 13.1f, -2.1f, -1.0f, 13.1f, -2.1f, -1.0f, 13.1f, -2.1f, -1.0f,
13.1f, -2.1f, -1.0f, 13.1f, -2.1f, -1.0f, 13.1f, -2.1f, -1.0f, 13.1f, -211.1f, -1.0f,
13.1f, -2.1f, -1.0f, 13.1f, -2.1f, -1.0f, 13.1f, -2.1f, -1.0f, 113.1f, -2.1f, -1.0f
};
auto farray = vtkm::cont::make_ArrayHandle(inputFValues, inputLength);
vtkm::Vec<vtkm::Float32, 2> frange = Algorithm::Reduce(
farray, vtkm::Vec<vtkm::Float32, 2>(0.0f, 0.0f), CustomMinAndMax<CustomTForReduce>());
VTKM_TEST_ASSERT(-211.1f == frange[0],
"Got bad float value from Reduce with comparison object");
VTKM_TEST_ASSERT(413.1f == frange[1], "Got bad float value from Reduce with comparison object");
}
static VTKM_CONT void TestReduceWithFancyArrays()
{
std::cout << "-------------------------------------------" << std::endl;
std::cout << "Testing Reduce with ArrayHandleZip" << std::endl;
{
IdArrayHandle keys, values;
Algorithm::Schedule(ClearArrayKernel(keys.PrepareForOutput(ARRAY_SIZE, DeviceAdapterTag())),
ARRAY_SIZE);
Algorithm::Schedule(ClearArrayKernel(values.PrepareForOutput(ARRAY_SIZE, DeviceAdapterTag())),
ARRAY_SIZE);
vtkm::cont::ArrayHandleZip<IdArrayHandle, IdArrayHandle> zipped(keys, values);
//the output of reduce and scan inclusive should be the same
using ResultType = vtkm::Pair<vtkm::Id, vtkm::Id>;
ResultType reduce_sum_with_intial_value =
Algorithm::Reduce(zipped, ResultType(ARRAY_SIZE, ARRAY_SIZE));
ResultType expectedResult(OFFSET * ARRAY_SIZE + ARRAY_SIZE, OFFSET * ARRAY_SIZE + ARRAY_SIZE);
VTKM_TEST_ASSERT((reduce_sum_with_intial_value == expectedResult),
"Got bad sum from Reduce with initial value");
}
std::cout << "-------------------------------------------" << std::endl;
std::cout << "Testing Reduce with ArrayHandlePermutation" << std::endl;
{
//lastly test with heterogeneous zip values ( vec3, and constant array handle),
//and a custom reduce binary functor
const vtkm::Id indexLength = 30;
const vtkm::Id valuesLength = 10;
using ValueType = vtkm::Float32;
vtkm::Id indexs[indexLength] = { 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4,
5, 5, 5, 1, 4, 9, 7, 7, 7, 8, 8, 8, 0, 1, 2 };
ValueType values[valuesLength] = {
1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f, -2.0f
};
const ValueType expectedSum = 125;
IdArrayHandle indexHandle = vtkm::cont::make_ArrayHandle(indexs, indexLength);
vtkm::cont::ArrayHandle<ValueType> valueHandle =
vtkm::cont::make_ArrayHandle(values, valuesLength);
vtkm::cont::ArrayHandlePermutation<IdArrayHandle, vtkm::cont::ArrayHandle<ValueType>> perm;
perm = vtkm::cont::make_ArrayHandlePermutation(indexHandle, valueHandle);
const ValueType sum = Algorithm::Reduce(perm, ValueType(0.0f));
std::cout << "sum: " << sum << std::endl;
VTKM_TEST_ASSERT((sum == expectedSum), "Got bad sum from Reduce with permutation handle");
}
}
static VTKM_CONT void TestReduceByKey()
{
std::cout << "-------------------------------------------" << std::endl;
std::cout << "Testing Reduce By Key" << std::endl;
//first test with very basic integer key / values
{
const vtkm::Id inputLength = 12;
const vtkm::Id expectedLength = 6;
vtkm::IdComponent inputKeys[inputLength] = { 0, 0, 0, 1, 1, 4, 0, 2, 2, 2, 2, -1 }; // in keys
vtkm::Id inputValues[inputLength] = { 13, -2, -1, 1, 1, 0, 3, 1, 2, 3, 4, -42 }; // in values
vtkm::IdComponent expectedKeys[expectedLength] = { 0, 1, 4, 0, 2, -1 };
vtkm::Id expectedValues[expectedLength] = { 10, 2, 0, 3, 10, -42 };
IdComponentArrayHandle keys = vtkm::cont::make_ArrayHandle(inputKeys, inputLength);
IdArrayHandle values = vtkm::cont::make_ArrayHandle(inputValues, inputLength);
IdComponentArrayHandle keysOut;
IdArrayHandle valuesOut;
Algorithm::ReduceByKey(keys, values, keysOut, valuesOut, vtkm::Add());
VTKM_TEST_ASSERT(keysOut.GetNumberOfValues() == expectedLength,
"Got wrong number of output keys");
VTKM_TEST_ASSERT(valuesOut.GetNumberOfValues() == expectedLength,
"Got wrong number of output values");
for (vtkm::Id i = 0; i < expectedLength; ++i)
{
const vtkm::Id k = keysOut.GetPortalConstControl().Get(i);
const vtkm::Id v = valuesOut.GetPortalConstControl().Get(i);
VTKM_TEST_ASSERT(expectedKeys[i] == k, "Incorrect reduced key");
VTKM_TEST_ASSERT(expectedValues[i] == v, "Incorrect reduced value");
}
}
//next test with a single key across the entire set, using vec3 as the
//value, using a custom reduce binary functor
{
const vtkm::Id inputLength = 3;
const vtkm::Id expectedLength = 1;
vtkm::Id inputKeys[inputLength] = { 0, 0, 0 }; // input keys
vtkm::Vec<vtkm::Float64, 3> inputValues[inputLength];
inputValues[0] = vtkm::make_Vec(13.1, 13.3, 13.5);
inputValues[1] = vtkm::make_Vec(-2.1, -2.3, -2.5);
inputValues[2] = vtkm::make_Vec(-1.0, -1.0, 1.0); // input keys
vtkm::Id expectedKeys[expectedLength] = { 0 };
vtkm::Vec<vtkm::Float64, 3> expectedValues[expectedLength];
expectedValues[0] = vtkm::make_Vec(27.51, 30.59, -33.75);
IdArrayHandle keys = vtkm::cont::make_ArrayHandle(inputKeys, inputLength);
vtkm::cont::ArrayHandle<vtkm::Vec<vtkm::Float64, 3>, StorageTag> values =
vtkm::cont::make_ArrayHandle(inputValues, inputLength);
IdArrayHandle keysOut;
vtkm::cont::ArrayHandle<vtkm::Vec<vtkm::Float64, 3>, StorageTag> valuesOut;
Algorithm::ReduceByKey(keys, values, keysOut, valuesOut, vtkm::Multiply());
VTKM_TEST_ASSERT(keysOut.GetNumberOfValues() == expectedLength,
"Got wrong number of output keys");
VTKM_TEST_ASSERT(valuesOut.GetNumberOfValues() == expectedLength,
"Got wrong number of output values");
for (vtkm::Id i = 0; i < expectedLength; ++i)
{
const vtkm::Id k = keysOut.GetPortalConstControl().Get(i);
const vtkm::Vec<vtkm::Float64, 3> v = valuesOut.GetPortalConstControl().Get(i);
VTKM_TEST_ASSERT(expectedKeys[i] == k, "Incorrect reduced key");
VTKM_TEST_ASSERT(expectedValues[i] == v, "Incorrect reduced vale");
}
}
}
static VTKM_CONT void TestReduceByKeyWithFancyArrays()
{
std::cout << "-------------------------------------------" << std::endl;
std::cout << "Testing Reduce By Key with Fancy Arrays" << std::endl;
//lastly test with heterogeneous zip values ( vec3, and constant array handle),
//and a custom reduce binary functor
const vtkm::Id inputLength = 30;
const vtkm::Id expectedLength = 10;
using ValueType = vtkm::Float32;
vtkm::Id inputKeys[inputLength] = { 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4,
5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9 }; // input keys
ValueType inputValues1[inputLength] = {
13.1f, -2.1f, -1.0f, 13.1f, -2.1f, -1.0f, 13.1f, -2.1f, -1.0f, 13.1f,
-2.1f, -1.0f, 13.1f, -2.1f, -1.0f, 13.1f, -2.1f, -1.0f, 13.1f, -2.1f,
-1.0f, 13.1f, -2.1f, -1.0f, 13.1f, -2.1f, -1.0f, 13.1f, -2.1f, -1.0f
}; // input values array1
vtkm::Id expectedKeys[expectedLength] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
ValueType expectedValues1[expectedLength] = { 10.f, 10.f, 10.f, 10.f, 10.f,
10.f, 10.f, 10.f, 10.f, 10.f }; // output values 1
ValueType expectedValues2[expectedLength] = {
3.f, 3.f, 3.f, 3.f, 3.f, 3.f, 3.f, 3.f, 3.f, 3.f
}; // output values 2
IdArrayHandle keys = vtkm::cont::make_ArrayHandle(inputKeys, inputLength);
using ValueArrayType = vtkm::cont::ArrayHandle<ValueType, StorageTag>;
ValueArrayType values1 = vtkm::cont::make_ArrayHandle(inputValues1, inputLength);
using ConstValueArrayType = vtkm::cont::ArrayHandleConstant<ValueType>;
ConstValueArrayType constOneArray(1.f, inputLength);
vtkm::cont::ArrayHandleZip<ValueArrayType, ConstValueArrayType> valuesZip;
valuesZip = make_ArrayHandleZip(values1, constOneArray); // values in zip
IdArrayHandle keysOut;
ValueArrayType valuesOut1;
ValueArrayType valuesOut2;
vtkm::cont::ArrayHandleZip<ValueArrayType, ValueArrayType> valuesOutZip(valuesOut1, valuesOut2);
Algorithm::ReduceByKey(keys, valuesZip, keysOut, valuesOutZip, vtkm::Add());
VTKM_TEST_ASSERT(keysOut.GetNumberOfValues() == expectedLength,
"Got wrong number of output keys");
VTKM_TEST_ASSERT(valuesOutZip.GetNumberOfValues() == expectedLength,
"Got wrong number of output values");
for (vtkm::Id i = 0; i < expectedLength; ++i)
{
const vtkm::Id k = keysOut.GetPortalConstControl().Get(i);
const vtkm::Pair<ValueType, ValueType> v = valuesOutZip.GetPortalConstControl().Get(i);
std::cout << "key=" << k << ","
<< "expectedValues1[i] = " << expectedValues1[i] << ","
<< "computed value1 = " << v.first << std::endl;
VTKM_TEST_ASSERT(expectedKeys[i] == k, "Incorrect reduced key");
VTKM_TEST_ASSERT(expectedValues1[i] == v.first, "Incorrect reduced value1");
VTKM_TEST_ASSERT(expectedValues2[i] == v.second, "Incorrect reduced value2");
}
}
static VTKM_CONT void TestScanInclusiveByKeyOne()
{
std::cout << "-------------------------------------------" << std::endl;
std::cout << "Testing Scan Inclusive By Key with 1 elements" << std::endl;
const vtkm::Id inputLength = 1;
vtkm::Id inputKeys[inputLength] = { 0 };
vtkm::Id inputValues[inputLength] = { 5 };
const vtkm::Id expectedLength = 1;
IdArrayHandle keys = vtkm::cont::make_ArrayHandle(inputKeys, inputLength);
IdArrayHandle values = vtkm::cont::make_ArrayHandle(inputValues, inputLength);
IdArrayHandle valuesOut;
Algorithm::ScanInclusiveByKey(keys, values, valuesOut, vtkm::Add());
VTKM_TEST_ASSERT(valuesOut.GetNumberOfValues() == expectedLength,
"Got wrong number of output values");
const vtkm::Id v = valuesOut.GetPortalConstControl().Get(0);
VTKM_TEST_ASSERT(5 == v, "Incorrect scanned value");
}
static VTKM_CONT void TestScanInclusiveByKeyTwo()
{
std::cout << "-------------------------------------------" << std::endl;
std::cout << "Testing Scan Exclusive By Key with 2 elements" << std::endl;
const vtkm::Id inputLength = 2;
vtkm::Id inputKeys[inputLength] = { 0, 1 };
vtkm::Id inputValues[inputLength] = { 1, 1 };
const vtkm::Id expectedLength = 2;
vtkm::Id expectedValues[expectedLength] = { 1, 1 };
IdArrayHandle keys = vtkm::cont::make_ArrayHandle(inputKeys, inputLength);
IdArrayHandle values = vtkm::cont::make_ArrayHandle(inputValues, inputLength);
IdArrayHandle valuesOut;
Algorithm::ScanInclusiveByKey(keys, values, valuesOut, vtkm::Add());
VTKM_TEST_ASSERT(valuesOut.GetNumberOfValues() == expectedLength,
"Got wrong number of output values");
for (vtkm::Id i = 0; i < expectedLength; i++)
{
const vtkm::Id v = valuesOut.GetPortalConstControl().Get(i);
VTKM_TEST_ASSERT(expectedValues[static_cast<std::size_t>(i)] == v, "Incorrect scanned value");
}
}
static VTKM_CONT void TestScanInclusiveByKeyLarge()
{
std::cout << "-------------------------------------------" << std::endl;
std::cout << "Testing Scan Inclusive By Key with " << ARRAY_SIZE << " elements" << std::endl;
const vtkm::Id inputLength = ARRAY_SIZE;
std::vector<vtkm::Id> inputKeys(inputLength);
for (vtkm::Id i = 0; i < ARRAY_SIZE; i++)
{
if (i % 100 < 98)
inputKeys[static_cast<std::size_t>(i)] = static_cast<vtkm::Id>(i / 100);
else
inputKeys[static_cast<std::size_t>(i)] = static_cast<vtkm::Id>(i);
}
std::vector<vtkm::Id> inputValues(inputLength, 1);
const vtkm::Id expectedLength = ARRAY_SIZE;
std::vector<vtkm::Id> expectedValues(expectedLength);
for (std::size_t i = 0; i < ARRAY_SIZE; i++)
{
if (i % 100 < 98)
expectedValues[i] = static_cast<vtkm::Id>(1 + i % 100);
else
expectedValues[i] = static_cast<vtkm::Id>(1);
}
IdArrayHandle keys = vtkm::cont::make_ArrayHandle(inputKeys);
IdArrayHandle values = vtkm::cont::make_ArrayHandle(inputValues);
IdArrayHandle valuesOut;
Algorithm::ScanInclusiveByKey(keys, values, valuesOut, vtkm::Add());
VTKM_TEST_ASSERT(valuesOut.GetNumberOfValues() == expectedLength,
"Got wrong number of output values");
for (auto i = 0; i < expectedLength; i++)
{
const vtkm::Id v = valuesOut.GetPortalConstControl().Get(i);
VTKM_TEST_ASSERT(expectedValues[static_cast<std::size_t>(i)] == v, "Incorrect scanned value");
}
}
static VTKM_CONT void TestScanInclusiveByKey()
{
std::cout << "-------------------------------------------" << std::endl;
std::cout << "Testing Scan Inclusive By Key" << std::endl;
const vtkm::Id inputLength = 10;
vtkm::IdComponent inputKeys[inputLength] = { 0, 0, 0, 1, 1, 2, 3, 3, 3, 3 };
vtkm::Id inputValues[inputLength] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 };
const vtkm::Id expectedLength = 10;
vtkm::Id expectedValues[expectedLength] = { 1, 2, 3, 1, 2, 1, 1, 2, 3, 4 };
IdComponentArrayHandle keys = vtkm::cont::make_ArrayHandle(inputKeys, inputLength);
IdArrayHandle values = vtkm::cont::make_ArrayHandle(inputValues, inputLength);
IdArrayHandle valuesOut;
Algorithm::ScanInclusiveByKey(keys, values, valuesOut);
VTKM_TEST_ASSERT(valuesOut.GetNumberOfValues() == expectedLength,
"Got wrong number of output values");
for (auto i = 0; i < expectedLength; i++)
{
const vtkm::Id v = valuesOut.GetPortalConstControl().Get(i);
VTKM_TEST_ASSERT(expectedValues[static_cast<std::size_t>(i)] == v, "Incorrect scanned value");
}
}
static VTKM_CONT void TestScanExclusiveByKeyOne()
{
std::cout << "-------------------------------------------" << std::endl;
std::cout << "Testing Scan Exclusive By Key with 1 elements" << std::endl;
const vtkm::Id inputLength = 1;
vtkm::Id inputKeys[inputLength] = { 0 };
vtkm::Id inputValues[inputLength] = { 0 };
vtkm::Id init = 5;
const vtkm::Id expectedLength = 1;
IdArrayHandle keys = vtkm::cont::make_ArrayHandle(inputKeys, inputLength);
IdArrayHandle values = vtkm::cont::make_ArrayHandle(inputValues, inputLength);
IdArrayHandle valuesOut;
Algorithm::ScanExclusiveByKey(keys, values, valuesOut, init, vtkm::Add());
VTKM_TEST_ASSERT(valuesOut.GetNumberOfValues() == expectedLength,
"Got wrong number of output values");
const vtkm::Id v = valuesOut.GetPortalConstControl().Get(0);
VTKM_TEST_ASSERT(init == v, "Incorrect scanned value");
}
static VTKM_CONT void TestScanExclusiveByKeyTwo()
{
std::cout << "-------------------------------------------" << std::endl;
std::cout << "Testing Scan Exclusive By Key with 2 elements" << std::endl;
const vtkm::Id inputLength = 2;
vtkm::Id inputKeys[inputLength] = { 0, 1 };
vtkm::Id inputValues[inputLength] = { 1, 1 };
vtkm::Id init = 5;
const vtkm::Id expectedLength = 2;
vtkm::Id expectedValues[expectedLength] = { 5, 5 };
IdArrayHandle keys = vtkm::cont::make_ArrayHandle(inputKeys, inputLength);
IdArrayHandle values = vtkm::cont::make_ArrayHandle(inputValues, inputLength);
IdArrayHandle valuesOut;
Algorithm::ScanExclusiveByKey(keys, values, valuesOut, init, vtkm::Add());
VTKM_TEST_ASSERT(valuesOut.GetNumberOfValues() == expectedLength,
"Got wrong number of output values");
for (auto i = 0; i < expectedLength; i++)
{
const vtkm::Id v = valuesOut.GetPortalConstControl().Get(i);
VTKM_TEST_ASSERT(expectedValues[i] == v, "Incorrect scanned value");
}
}
static VTKM_CONT void TestScanExclusiveByKeyLarge()
{
std::cout << "-------------------------------------------" << std::endl;
std::cout << "Testing Scan Exclusive By Key with " << ARRAY_SIZE << " elements" << std::endl;
const vtkm::Id inputLength = ARRAY_SIZE;
std::vector<vtkm::Id> inputKeys(inputLength);
for (std::size_t i = 0; i < ARRAY_SIZE; i++)
{
if (i % 100 < 98)
inputKeys[i] = static_cast<vtkm::Id>(i / 100);
else
inputKeys[i] = static_cast<vtkm::Id>(i);
}
std::vector<vtkm::Id> inputValues(inputLength, 1);
vtkm::Id init = 5;
const vtkm::Id expectedLength = ARRAY_SIZE;
std::vector<vtkm::Id> expectedValues(expectedLength);
for (vtkm::Id i = 0; i < ARRAY_SIZE; i++)
{
if (i % 100 < 98)
expectedValues[static_cast<std::size_t>(i)] = static_cast<vtkm::Id>(init + i % 100);
else
expectedValues[static_cast<std::size_t>(i)] = init;
}
IdArrayHandle keys = vtkm::cont::make_ArrayHandle(inputKeys);
IdArrayHandle values = vtkm::cont::make_ArrayHandle(inputValues);
IdArrayHandle valuesOut;
Algorithm::ScanExclusiveByKey(keys, values, valuesOut, init, vtkm::Add());
VTKM_TEST_ASSERT(valuesOut.GetNumberOfValues() == expectedLength,
"Got wrong number of output values");
for (vtkm::Id i = 0; i < expectedLength; i++)
{
const vtkm::Id v = valuesOut.GetPortalConstControl().Get(i);
VTKM_TEST_ASSERT(expectedValues[static_cast<std::size_t>(i)] == v, "Incorrect scanned value");
}
}
static VTKM_CONT void TestScanExclusiveByKey()
{
std::cout << "-------------------------------------------" << std::endl;
std::cout << "Testing Scan Exclusive By Key" << std::endl;
const vtkm::Id inputLength = 10;
vtkm::IdComponent inputKeys[inputLength] = { 0, 0, 0, 1, 1, 2, 3, 3, 3, 3 };
vtkm::Id inputValues[inputLength] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 };
vtkm::Id init = 5;
const vtkm::Id expectedLength = 10;
vtkm::Id expectedValues[expectedLength] = { 5, 6, 7, 5, 6, 5, 5, 6, 7, 8 };
IdComponentArrayHandle keys = vtkm::cont::make_ArrayHandle(inputKeys, inputLength);
IdArrayHandle values = vtkm::cont::make_ArrayHandle(inputValues, inputLength);
IdArrayHandle valuesOut;
Algorithm::ScanExclusiveByKey(keys, values, valuesOut, init, vtkm::Add());
VTKM_TEST_ASSERT(valuesOut.GetNumberOfValues() == expectedLength,
"Got wrong number of output values");
for (vtkm::Id i = 0; i < expectedLength; i++)
{
const vtkm::Id v = valuesOut.GetPortalConstControl().Get(i);
VTKM_TEST_ASSERT(expectedValues[static_cast<std::size_t>(i)] == v, "Incorrect scanned value");
}
}
static VTKM_CONT void TestScanInclusive()
{
std::cout << "-------------------------------------------" << std::endl;
std::cout << "Testing Inclusive Scan" << std::endl;
{
std::cout << " size " << ARRAY_SIZE << std::endl;
//construct the index array
IdArrayHandle array;
Algorithm::Schedule(ClearArrayKernel(array.PrepareForOutput(ARRAY_SIZE, DeviceAdapterTag())),
ARRAY_SIZE);
//we know have an array whose sum is equal to OFFSET * ARRAY_SIZE,
//let's validate that
vtkm::Id sum = Algorithm::ScanInclusive(array, array);
VTKM_TEST_ASSERT(sum == OFFSET * ARRAY_SIZE, "Got bad sum from Inclusive Scan");
for (vtkm::Id i = 0; i < ARRAY_SIZE; ++i)
{
const vtkm::Id value = array.GetPortalConstControl().Get(i);
VTKM_TEST_ASSERT(value == (i + 1) * OFFSET, "Incorrect partial sum");
}
std::cout << " size 1" << std::endl;
array.Shrink(1);
sum = Algorithm::ScanInclusive(array, array);
VTKM_TEST_ASSERT(sum == OFFSET, "Incorrect partial sum");
const vtkm::Id value = array.GetPortalConstControl().Get(0);
VTKM_TEST_ASSERT(value == OFFSET, "Incorrect partial sum");
std::cout << " size 0" << std::endl;
array.Shrink(0);
sum = Algorithm::ScanInclusive(array, array);
VTKM_TEST_ASSERT(sum == 0, "Incorrect partial sum");
}
std::cout << "-------------------------------------------" << std::endl;
std::cout << "Testing Inclusive Scan with multiplication operator" << std::endl;
{
std::vector<vtkm::Float64> inputValues(ARRAY_SIZE);
for (std::size_t i = 0; i < ARRAY_SIZE; ++i)
{
inputValues[i] = 1.01;
}
std::size_t mid = ARRAY_SIZE / 2;
inputValues[mid] = 0.0;
vtkm::cont::ArrayHandle<vtkm::Float64> array =
vtkm::cont::make_ArrayHandle(&inputValues[0], ARRAY_SIZE);
vtkm::Float64 product = Algorithm::ScanInclusive(array, array, vtkm::Multiply());
VTKM_TEST_ASSERT(product == 0.0f, "ScanInclusive product result not 0.0");
for (std::size_t i = 0; i < mid; ++i)
{
vtkm::Id index = static_cast<vtkm::Id>(i);
vtkm::Float64 expected = pow(1.01, static_cast<vtkm::Float64>(i + 1));
vtkm::Float64 got = array.GetPortalConstControl().Get(index);
VTKM_TEST_ASSERT(test_equal(got, expected), "Incorrect results for ScanInclusive");
}
for (std::size_t i = mid; i < ARRAY_SIZE; ++i)
{
vtkm::Id index = static_cast<vtkm::Id>(i);
VTKM_TEST_ASSERT(array.GetPortalConstControl().Get(index) == 0.0f,
"Incorrect results for ScanInclusive");
}
}
std::cout << "-------------------------------------------" << std::endl;
std::cout << "Testing Inclusive Scan with a vtkm::Vec" << std::endl;
{
using Vec3 = vtkm::Vec<Float64, 3>;
using Vec3ArrayHandle = vtkm::cont::ArrayHandle<vtkm::Vec<vtkm::Float64, 3>, StorageTag>;
std::vector<Vec3> testValues(ARRAY_SIZE);
for (std::size_t i = 0; i < ARRAY_SIZE; ++i)
{
testValues[i] = TestValue(1, Vec3());
}
Vec3ArrayHandle values = vtkm::cont::make_ArrayHandle(testValues);
Vec3 sum = Algorithm::ScanInclusive(values, values);
std::cout << "Sum that was returned " << sum << std::endl;
VTKM_TEST_ASSERT(test_equal(sum, TestValue(1, Vec3()) * ARRAY_SIZE),
"Got bad sum from Inclusive Scan");
}
}
static VTKM_CONT void TestScanInclusiveWithComparisonObject()
{
std::cout << "-------------------------------------------" << std::endl;
std::cout << "Testing Inclusive Scan with comparison object " << std::endl;
//construct the index array
IdArrayHandle array;
Algorithm::Schedule(ClearArrayKernel(array.PrepareForOutput(ARRAY_SIZE, DeviceAdapterTag())),
ARRAY_SIZE);
Algorithm::Schedule(AddArrayKernel(array.PrepareForOutput(ARRAY_SIZE, DeviceAdapterTag())),
ARRAY_SIZE);
//we know have an array whose sum is equal to OFFSET * ARRAY_SIZE,
//let's validate that
IdArrayHandle result;
vtkm::Id sum = Algorithm::ScanInclusive(array, result, vtkm::Maximum());
VTKM_TEST_ASSERT(sum == OFFSET + (ARRAY_SIZE - 1),
"Got bad sum from Inclusive Scan with comparison object");
for (vtkm::Id i = 0; i < ARRAY_SIZE; ++i)
{
const vtkm::Id input_value = array.GetPortalConstControl().Get(i);
const vtkm::Id result_value = result.GetPortalConstControl().Get(i);
VTKM_TEST_ASSERT(input_value == result_value, "Incorrect partial sum");
}
//now try it inline
sum = Algorithm::ScanInclusive(array, array, vtkm::Maximum());
VTKM_TEST_ASSERT(sum == OFFSET + (ARRAY_SIZE - 1),
"Got bad sum from Inclusive Scan with comparison object");
for (vtkm::Id i = 0; i < ARRAY_SIZE; ++i)
{
const vtkm::Id input_value = array.GetPortalConstControl().Get(i);
const vtkm::Id result_value = result.GetPortalConstControl().Get(i);
VTKM_TEST_ASSERT(input_value == result_value, "Incorrect partial sum");
}
}
static VTKM_CONT void TestScanExclusive()
{
std::cout << "-------------------------------------------" << std::endl;
std::cout << "Testing Exclusive Scan" << std::endl;
{
std::cout << " size " << ARRAY_SIZE << std::endl;
//construct the index array
IdArrayHandle array;
Algorithm::Schedule(ClearArrayKernel(array.PrepareForOutput(ARRAY_SIZE, DeviceAdapterTag())),
ARRAY_SIZE);
// we know have an array whose sum = (OFFSET * ARRAY_SIZE),
// let's validate that
vtkm::Id sum = Algorithm::ScanExclusive(array, array);
std::cout << " Sum that was returned " << sum << std::endl;
VTKM_TEST_ASSERT(sum == (OFFSET * ARRAY_SIZE), "Got bad sum from Exclusive Scan");
for (vtkm::Id i = 0; i < ARRAY_SIZE; ++i)
{
const vtkm::Id value = array.GetPortalConstControl().Get(i);
VTKM_TEST_ASSERT(value == i * OFFSET, "Incorrect partial sum");
}
std::cout << " size 1" << std::endl;
array.Shrink(1);
array.GetPortalControl().Set(0, OFFSET);
sum = Algorithm::ScanExclusive(array, array);
VTKM_TEST_ASSERT(sum == OFFSET, "Incorrect partial sum");
const vtkm::Id value = array.GetPortalConstControl().Get(0);
VTKM_TEST_ASSERT(value == 0, "Incorrect partial sum");
std::cout << " size 0" << std::endl;
array.Shrink(0);
sum = Algorithm::ScanExclusive(array, array);
VTKM_TEST_ASSERT(sum == 0, "Incorrect partial sum");
}
// Enable when Exclusive Scan with custom operator is implemented for all
// device adaptors
std::cout << "-------------------------------------------" << std::endl;
std::cout << "Testing Exclusive Scan with multiplication operator" << std::endl;
{
std::vector<vtkm::Float64> inputValues(ARRAY_SIZE);
for (std::size_t i = 0; i < ARRAY_SIZE; ++i)
{
inputValues[i] = 1.01;
}
std::size_t mid = ARRAY_SIZE / 2;
inputValues[mid] = 0.0;
vtkm::cont::ArrayHandle<vtkm::Float64> array = vtkm::cont::make_ArrayHandle(inputValues);
vtkm::Float64 initialValue = 2.00;
vtkm::Float64 product =
Algorithm::ScanExclusive(array, array, vtkm::Multiply(), initialValue);
VTKM_TEST_ASSERT(product == 0.0f, "ScanExclusive product result not 0.0");
VTKM_TEST_ASSERT(array.GetPortalConstControl().Get(0) == initialValue,
"ScanExclusive result's first value != initialValue");
for (std::size_t i = 1; i <= mid; ++i)
{
vtkm::Id index = static_cast<vtkm::Id>(i);
vtkm::Float64 expected = pow(1.01, static_cast<vtkm::Float64>(i)) * initialValue;
vtkm::Float64 got = array.GetPortalConstControl().Get(index);
VTKM_TEST_ASSERT(test_equal(got, expected), "Incorrect results for ScanExclusive");
}
for (std::size_t i = mid + 1; i < ARRAY_SIZE; ++i)
{
vtkm::Id index = static_cast<vtkm::Id>(i);
VTKM_TEST_ASSERT(array.GetPortalConstControl().Get(index) == 0.0f,
"Incorrect results for ScanExclusive");
}
}
std::cout << "-------------------------------------------" << std::endl;
std::cout << "Testing Exclusive Scan with a vtkm::Vec" << std::endl;
{
using Vec3 = vtkm::Vec<Float64, 3>;
using Vec3ArrayHandle = vtkm::cont::ArrayHandle<vtkm::Vec<vtkm::Float64, 3>, StorageTag>;
std::vector<Vec3> testValues(ARRAY_SIZE);
for (std::size_t i = 0; i < ARRAY_SIZE; ++i)
{
testValues[i] = TestValue(1, Vec3());
}
Vec3ArrayHandle values = vtkm::cont::make_ArrayHandle(testValues);
Vec3 sum = Algorithm::ScanExclusive(values, values);
std::cout << "Sum that was returned " << sum << std::endl;
VTKM_TEST_ASSERT(test_equal(sum, (TestValue(1, Vec3()) * ARRAY_SIZE)),
"Got bad sum from Exclusive Scan");
}
}
static VTKM_CONT void TestErrorExecution()
{
std::cout << "-------------------------------------------" << std::endl;
std::cout << "Testing Exceptions in Execution Environment" << std::endl;
std::cout << "Generating one error." << std::endl;
std::string message;
try
{
Algorithm::Schedule(OneErrorKernel(), ARRAY_SIZE);
Algorithm::Synchronize();
}
catch (vtkm::cont::ErrorExecution& error)
{
std::cout << "Got expected error: " << error.GetMessage() << std::endl;
message = error.GetMessage();
}
VTKM_TEST_ASSERT(message == ERROR_MESSAGE, "Did not get expected error message.");
std::cout << "Generating lots of errors." << std::endl;
message = "";
try
{
Algorithm::Schedule(AllErrorKernel(), ARRAY_SIZE);
Algorithm::Synchronize();
}
catch (vtkm::cont::ErrorExecution& error)
{
std::cout << "Got expected error: " << error.GetMessage() << std::endl;
message = error.GetMessage();
}
VTKM_TEST_ASSERT(message == ERROR_MESSAGE, "Did not get expected error message.");
// This is spcifically to test the cuda-backend but should pass for all backends
std::cout << "Testing if execution errors are eventually propagated to the host "
<< "without explicit synchronization\n";
message = "";
int nkernels = 0;
try
{
IdArrayHandle idArray;
idArray.Allocate(ARRAY_SIZE);
auto portal = idArray.PrepareForInPlace(DeviceAdapterTag{});
Algorithm::Schedule(OneErrorKernel(), ARRAY_SIZE);
for (; nkernels < 100; ++nkernels)
{
Algorithm::Schedule(AddArrayKernel(portal), ARRAY_SIZE);
std::this_thread::sleep_for(std::chrono::milliseconds(20));
}
Algorithm::Synchronize();
}
catch (vtkm::cont::ErrorExecution& error)
{
std::cout << "Got expected error: \"" << error.GetMessage() << "\" ";
if (nkernels < 100)
{
std::cout << "after " << nkernels << " invocations of other kernel" << std::endl;
}
else
{
std::cout << "only after explicit synchronization" << std::endl;
}
message = error.GetMessage();
}
std::cout << "\n";
VTKM_TEST_ASSERT(message == ERROR_MESSAGE, "Did not get expected error message.");
}
template <typename T, int N = 0>
struct TestCopy
{
};
template <typename T>
struct TestCopy<T>
{
static T get(vtkm::Id i) { return static_cast<T>(i); }
};
template <typename T, int N>
struct TestCopy<vtkm::Vec<T, N>>
{
static vtkm::Vec<T, N> get(vtkm::Id i)
{
vtkm::Vec<T, N> temp;
for (int j = 0; j < N; ++j)
{
temp[j] = static_cast<T>(OFFSET + (i % 50));
}
return temp;
}
};
template <typename T, typename U>
struct TestCopy<vtkm::Pair<T, U>>
{
static vtkm::Pair<T, U> get(vtkm::Id i)
{
return vtkm::make_Pair(TestCopy<T>::get(i), TestCopy<U>::get(i));
}
};
template <typename T>
static VTKM_CONT void TestCopyArrays()
{
#define COPY_ARRAY_SIZE 10000
std::vector<T> testData(COPY_ARRAY_SIZE);
std::default_random_engine generator(static_cast<unsigned int>(std::time(nullptr)));
vtkm::Id index = 0;
for (std::size_t i = 0; i < COPY_ARRAY_SIZE; ++i, ++index)
{
testData[i] = TestCopy<T>::get(index);
}
vtkm::cont::ArrayHandle<T> input = vtkm::cont::make_ArrayHandle(&testData[0], COPY_ARRAY_SIZE);
//make a deep copy of input and place it into temp
{
vtkm::cont::ArrayHandle<T> temp;
temp.Allocate(COPY_ARRAY_SIZE * 2);
Algorithm::Copy(input, temp);
VTKM_TEST_ASSERT(temp.GetNumberOfValues() == COPY_ARRAY_SIZE, "Copy Needs to Resize Array");
const auto& portal = temp.GetPortalConstControl();
std::uniform_int_distribution<vtkm::Id> distribution(0, COPY_ARRAY_SIZE - 1);
vtkm::Id numberOfSamples = COPY_ARRAY_SIZE / 50;
for (vtkm::Id i = 0; i < numberOfSamples; ++i)
{
vtkm::Id randomIndex = distribution(generator);
T value = portal.Get(randomIndex);
VTKM_TEST_ASSERT(value == testData[static_cast<size_t>(randomIndex)],
"Got bad value (Copy)");
}
}
//Verify copy of empty array works
{
vtkm::cont::ArrayHandle<T> tempIn;
vtkm::cont::ArrayHandle<T> tempOut;
tempOut.Allocate(COPY_ARRAY_SIZE);
Algorithm::Copy(tempIn, tempOut);
VTKM_TEST_ASSERT(tempIn.GetNumberOfValues() == tempOut.GetNumberOfValues(),
"Copy sized wrong");
// Actually allocate input array to 0 in case that makes a difference.
tempIn.Allocate(0);
tempOut.Allocate(COPY_ARRAY_SIZE);
Algorithm::Copy(tempIn, tempOut);
VTKM_TEST_ASSERT(tempIn.GetNumberOfValues() == tempOut.GetNumberOfValues(),
"Copy sized wrong");
}
//CopySubRange tests:
//1. Verify invalid input start position fails
{
vtkm::cont::ArrayHandle<T> output;
bool result = Algorithm::CopySubRange(input, COPY_ARRAY_SIZE * 4, 1, output);
VTKM_TEST_ASSERT(result == false, "CopySubRange when given bad input offset");
}
//2. Verify unallocated output gets allocated
{
vtkm::cont::ArrayHandle<T> output;
bool result = Algorithm::CopySubRange(input, 0, COPY_ARRAY_SIZE, output);
VTKM_TEST_ASSERT(result == true, "CopySubRange should succeed");
VTKM_TEST_ASSERT(output.GetNumberOfValues() == COPY_ARRAY_SIZE,
"CopySubRange needs to allocate output");
}
//3. Verify under allocated output gets resized properly
{
vtkm::cont::ArrayHandle<T> output;
output.Allocate(2);
bool result = Algorithm::CopySubRange(input, 0, COPY_ARRAY_SIZE, output);
VTKM_TEST_ASSERT(result == true, "CopySubRange should succeed");
VTKM_TEST_ASSERT(output.GetNumberOfValues() == COPY_ARRAY_SIZE,
"CopySubRange needs to re-allocate output");
}
//4. Verify invalid input length gets shortened
{
vtkm::cont::ArrayHandle<T> output;
bool result = Algorithm::CopySubRange(input, 100, COPY_ARRAY_SIZE, output);
VTKM_TEST_ASSERT(result == true, "CopySubRange needs to shorten input range");
VTKM_TEST_ASSERT(output.GetNumberOfValues() == (COPY_ARRAY_SIZE - 100),
"CopySubRange needs to shorten input range");
std::uniform_int_distribution<vtkm::Id> distribution(0, COPY_ARRAY_SIZE - 100 - 1);
vtkm::Id numberOfSamples = (COPY_ARRAY_SIZE - 100) / 100;
for (vtkm::Id i = 0; i < numberOfSamples; ++i)
{
vtkm::Id randomIndex = distribution(generator);
T value = output.GetPortalConstControl().Get(randomIndex);
VTKM_TEST_ASSERT(value == testData[static_cast<size_t>(randomIndex) + 100],
"Got bad value (CopySubRange 2)");
}
}
//5. Verify sub range copy works when copying into a larger output
{
vtkm::cont::ArrayHandle<T> output;
output.Allocate(COPY_ARRAY_SIZE * 2);
Algorithm::CopySubRange(input, 0, COPY_ARRAY_SIZE, output);
Algorithm::CopySubRange(input, 0, COPY_ARRAY_SIZE, output, COPY_ARRAY_SIZE);
VTKM_TEST_ASSERT(output.GetNumberOfValues() == (COPY_ARRAY_SIZE * 2),
"CopySubRange needs to not resize array");
std::uniform_int_distribution<vtkm::Id> distribution(0, COPY_ARRAY_SIZE - 1);
vtkm::Id numberOfSamples = COPY_ARRAY_SIZE / 50;
for (vtkm::Id i = 0; i < numberOfSamples; ++i)
{
vtkm::Id randomIndex = distribution(generator);
T value = output.GetPortalConstControl().Get(randomIndex);
VTKM_TEST_ASSERT(value == testData[static_cast<size_t>(randomIndex)],
"Got bad value (CopySubRange 5)");
value = output.GetPortalConstControl().Get(COPY_ARRAY_SIZE + randomIndex);
VTKM_TEST_ASSERT(value == testData[static_cast<size_t>(randomIndex)],
"Got bad value (CopySubRange 5)");
}
}
//6. Verify that whey sub range needs to reallocate the output it
// properly copies the original data instead of clearing it
{
vtkm::cont::ArrayHandle<T> output;
output.Allocate(COPY_ARRAY_SIZE);
Algorithm::CopySubRange(input, 0, COPY_ARRAY_SIZE, output);
Algorithm::CopySubRange(input, 0, COPY_ARRAY_SIZE, output, COPY_ARRAY_SIZE);
VTKM_TEST_ASSERT(output.GetNumberOfValues() == (COPY_ARRAY_SIZE * 2),
"CopySubRange needs too resize Array");
std::uniform_int_distribution<vtkm::Id> distribution(0, COPY_ARRAY_SIZE - 1);
vtkm::Id numberOfSamples = COPY_ARRAY_SIZE / 50;
for (vtkm::Id i = 0; i < numberOfSamples; ++i)
{
vtkm::Id randomIndex = distribution(generator);
T value = output.GetPortalConstControl().Get(randomIndex);
VTKM_TEST_ASSERT(value == testData[static_cast<size_t>(randomIndex)],
"Got bad value (CopySubRange 6)");
value = output.GetPortalConstControl().Get(COPY_ARRAY_SIZE + randomIndex);
VTKM_TEST_ASSERT(value == testData[static_cast<size_t>(randomIndex)],
"Got bad value (CopySubRange 6)");
}
}
// 7. Test that overlapping ranges trigger a failure:
// 7.1 output starts inside input range:
{
const vtkm::Id inBegin = 100;
const vtkm::Id inEnd = 200;
const vtkm::Id outBegin = 150;
const vtkm::Id numVals = inEnd - inBegin;
bool result = Algorithm::CopySubRange(input, inBegin, numVals, input, outBegin);
VTKM_TEST_ASSERT(result == false, "Overlapping subrange did not fail.");
}
// 7.2 input starts inside output range
{
const vtkm::Id inBegin = 100;
const vtkm::Id inEnd = 200;
const vtkm::Id outBegin = 50;
const vtkm::Id numVals = inEnd - inBegin;
bool result = Algorithm::CopySubRange(input, inBegin, numVals, input, outBegin);
VTKM_TEST_ASSERT(result == false, "Overlapping subrange did not fail.");
}
{
vtkm::cont::ArrayHandle<T> output;
//7. Verify negative input index returns false
bool result = Algorithm::CopySubRange(input, -1, COPY_ARRAY_SIZE, output);
VTKM_TEST_ASSERT(result == false, "CopySubRange negative index should fail");
//8. Verify negative input numberOfElementsToCopy returns false
result = Algorithm::CopySubRange(input, 0, -COPY_ARRAY_SIZE, output);
VTKM_TEST_ASSERT(result == false, "CopySubRange negative number elements should fail");
//9. Verify negative output index return false
result = Algorithm::CopySubRange(input, 0, COPY_ARRAY_SIZE, output, -2);
VTKM_TEST_ASSERT(result == false, "CopySubRange negative output index should fail");
}
#undef COPY_ARRAY_SIZE
}
static VTKM_CONT void TestCopyArraysMany()
{
std::cout << "-------------------------------------------------" << std::endl;
std::cout << "Testing Copy to same array type" << std::endl;
TestCopyArrays<vtkm::Vec<vtkm::Float32, 3>>();
TestCopyArrays<vtkm::Vec<vtkm::UInt8, 4>>();
//
TestCopyArrays<vtkm::Pair<vtkm::Id, vtkm::Float32>>();
TestCopyArrays<vtkm::Pair<vtkm::Id, vtkm::Vec<vtkm::Float32, 3>>>();
//
TestCopyArrays<vtkm::Float32>();
TestCopyArrays<vtkm::Float64>();
//
TestCopyArrays<vtkm::Int32>();
TestCopyArrays<vtkm::Int64>();
//
TestCopyArrays<vtkm::UInt8>();
TestCopyArrays<vtkm::UInt16>();
TestCopyArrays<vtkm::UInt32>();
TestCopyArrays<vtkm::UInt64>();
}
static VTKM_CONT void TestCopyArraysInDiffTypes()
{
std::cout << "-------------------------------------------------" << std::endl;
std::cout << "Testing Copy to a different array type" << std::endl;
std::vector<vtkm::Id> testData(ARRAY_SIZE);
for (std::size_t i = 0; i < ARRAY_SIZE; ++i)
{
testData[i] = static_cast<vtkm::Id>(OFFSET + (i % 50));
}
IdArrayHandle input = vtkm::cont::make_ArrayHandle(testData);
//make a deep copy of input and place it into temp
vtkm::cont::ArrayHandle<vtkm::Float64> temp;
Algorithm::Copy(input, temp);
std::vector<vtkm::Id>::const_iterator c = testData.begin();
for (vtkm::Id i = 0; i < ARRAY_SIZE; ++i, ++c)
{
vtkm::Float64 value = temp.GetPortalConstControl().Get(i);
VTKM_TEST_ASSERT(value == static_cast<vtkm::Float64>(*c), "Got bad value (Copy)");
}
}
static VTKM_CONT void TestAtomicArray()
{
//we can't use ARRAY_SIZE as that would cause a overflow
vtkm::Int32 SHORT_ARRAY_SIZE = 10000;
vtkm::Int32 atomicCount = 0;
for (vtkm::Int32 i = 0; i < SHORT_ARRAY_SIZE; i++)
atomicCount += i;
std::cout << "-------------------------------------------" << std::endl;
// To test the atomics, SHORT_ARRAY_SIZE number of threads will all increment
// a single atomic value.
std::cout << "Testing Atomic Add with vtkm::Int32" << std::endl;
{
std::vector<vtkm::Int32> singleElement;
singleElement.push_back(0);
vtkm::cont::ArrayHandle<vtkm::Int32> atomicElement =
vtkm::cont::make_ArrayHandle(singleElement);
vtkm::cont::AtomicArray<vtkm::Int32> atomic(atomicElement);
Algorithm::Schedule(AtomicKernel<vtkm::Int32>(atomic), SHORT_ARRAY_SIZE);
vtkm::Int32 expected = vtkm::Int32(atomicCount);
vtkm::Int32 actual = atomicElement.GetPortalControl().Get(0);
VTKM_TEST_ASSERT(expected == actual, "Did not get expected value: Atomic add Int32");
}
std::cout << "Testing Atomic Add with vtkm::Int64" << std::endl;
{
std::vector<vtkm::Int64> singleElement;
singleElement.push_back(0);
vtkm::cont::ArrayHandle<vtkm::Int64> atomicElement =
vtkm::cont::make_ArrayHandle(singleElement);
vtkm::cont::AtomicArray<vtkm::Int64> atomic(atomicElement);
Algorithm::Schedule(AtomicKernel<vtkm::Int64>(atomic), SHORT_ARRAY_SIZE);
vtkm::Int64 expected = vtkm::Int64(atomicCount);
vtkm::Int64 actual = atomicElement.GetPortalControl().Get(0);
VTKM_TEST_ASSERT(expected == actual, "Did not get expected value: Atomic add Int64");
}
std::cout << "Testing Atomic CAS with vtkm::Int32" << std::endl;
{
std::vector<vtkm::Int32> singleElement;
singleElement.push_back(0);
vtkm::cont::ArrayHandle<vtkm::Int32> atomicElement =
vtkm::cont::make_ArrayHandle(singleElement);
vtkm::cont::AtomicArray<vtkm::Int32> atomic(atomicElement);
Algorithm::Schedule(AtomicCASKernel<vtkm::Int32>(atomic), SHORT_ARRAY_SIZE);
vtkm::Int32 expected = vtkm::Int32(atomicCount);
vtkm::Int32 actual = atomicElement.GetPortalControl().Get(0);
VTKM_TEST_ASSERT(expected == actual, "Did not get expected value: Atomic CAS Int32");
}
std::cout << "Testing Atomic CAS with vtkm::Int64" << std::endl;
{
std::vector<vtkm::Int64> singleElement;
singleElement.push_back(0);
vtkm::cont::ArrayHandle<vtkm::Int64> atomicElement =
vtkm::cont::make_ArrayHandle(singleElement);
vtkm::cont::AtomicArray<vtkm::Int64> atomic(atomicElement);
Algorithm::Schedule(AtomicCASKernel<vtkm::Int64>(atomic), SHORT_ARRAY_SIZE);
vtkm::Int64 expected = vtkm::Int64(atomicCount);
vtkm::Int64 actual = atomicElement.GetPortalControl().Get(0);
VTKM_TEST_ASSERT(expected == actual, "Did not get expected value: Atomic CAS Int64");
}
}
struct TestAll
{
VTKM_CONT void operator()() const
{
std::cout << "Doing DeviceAdapter tests" << std::endl;
TestArrayManagerExecution();
TestOutOfMemory();
TestTimer();
TestVirtualObjectTransfer();
TestAlgorithmSchedule();
TestErrorExecution();
TestReduce();
TestReduceWithComparisonObject();
TestReduceWithFancyArrays();
TestReduceByKey();
TestReduceByKeyWithFancyArrays();
TestScanExclusive();
TestScanInclusive();
TestScanInclusiveWithComparisonObject();
TestScanInclusiveByKeyOne();
TestScanInclusiveByKeyTwo();
TestScanInclusiveByKeyLarge();
TestScanInclusiveByKey();
TestScanExclusiveByKeyOne();
TestScanExclusiveByKeyTwo();
TestScanExclusiveByKeyLarge();
TestScanExclusiveByKey();
TestSort();
TestSortWithComparisonObject();
TestSortWithFancyArrays();
TestSortByKey();
TestLowerBoundsWithComparisonObject();
TestUpperBoundsWithComparisonObject();
TestUniqueWithComparisonObject();
TestOrderedUniqueValues(); //tests Copy, LowerBounds, Sort, Unique
TestCopyIf();
TestCopyArraysMany();
TestCopyArraysInDiffTypes();
TestAtomicArray();
}
};
public:
/// Run a suite of tests to check to see if a DeviceAdapter properly supports
/// all members and classes required for driving vtkm algorithms. Returns an
/// error code that can be returned from the main function of a test.
///
static VTKM_CONT int Run(int argc, char* argv[])
{
return vtkm::cont::testing::Testing::Run(TestAll(), argc, argv);
}
};
#undef ERROR_MESSAGE
#undef ARRAY_SIZE
#undef OFFSET
#undef DIM
}
}
} // namespace vtkm::cont::testing
#endif //vtk_m_cont_testing_TestingDeviceAdapter_h