vtk-m/vtkm/ImplicitFunction.h
Kenneth Moreland cb3bb43ff9 Completely deprecate virtual methods
Deprecate `VirtualObjectHandle` and all other classes that are used to
implement objects with virtual methods in the execution environment.

Additionally, the code is updated so that if the
`VTKm_NO_DEPRECATED_VIRTUAL` flag is set none of the code is compiled at
all. This opens us up to opportunities that do not work with virtual
methods such as backends that do not support virtual methods and dynamic
libraries for CUDA.
2021-04-28 07:28:32 -06:00

892 lines
26 KiB
C++

//============================================================================
// Copyright (c) Kitware, Inc.
// All rights reserved.
// See LICENSE.txt for details.
//
// This software is distributed WITHOUT ANY WARRANTY; without even
// the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
// PURPOSE. See the above copyright notice for more information.
//============================================================================
#ifndef vtk_m_ImplicitFunction_h
#define vtk_m_ImplicitFunction_h
#include <vtkm/Bounds.h>
#include <vtkm/Deprecated.h>
#include <vtkm/Math.h>
#include <vtkm/VectorAnalysis.h>
#include <vtkm/exec/internal/Variant.h>
// For interface class only.
#include <vtkm/cont/ExecutionAndControlObjectBase.h>
#ifndef VTKM_NO_DEPRECATED_VIRTUAL
#include <vtkm/VirtualObjectBase.h>
#endif // VTKM_NO_DEPRECATED_VIRTUAL
namespace vtkm
{
//============================================================================
#ifndef VTKM_NO_DEPRECATED_VIRTUAL
VTKM_DEPRECATED_SUPPRESS_BEGIN
class VTKM_DEPRECATED(1.6, "ImplicitFunction with virtual methods no longer supported.")
VTKM_ALWAYS_EXPORT ImplicitFunction : public vtkm::VirtualObjectBase
{
public:
using Scalar = vtkm::FloatDefault;
using Vector = vtkm::Vec<Scalar, 3>;
VTKM_EXEC_CONT virtual Scalar Value(const Vector& point) const = 0;
VTKM_EXEC_CONT virtual Vector Gradient(const Vector& point) const = 0;
VTKM_EXEC_CONT Scalar Value(Scalar x, Scalar y, Scalar z) const
{
return this->Value(Vector(x, y, z));
}
VTKM_EXEC_CONT Vector Gradient(Scalar x, Scalar y, Scalar z) const
{
return this->Gradient(Vector(x, y, z));
}
};
VTKM_DEPRECATED_SUPPRESS_END
#endif // VTKM_NO_DEPRECATED_VIRTUAL
//============================================================================
namespace internal
{
/// \brief Base class for all `ImplicitFunction` classes.
///
/// `ImplicitFunctionBase` uses the curiously recurring template pattern (CRTP). Subclasses
/// must provide their own type for the template parameter. Subclasses must implement
/// `Value` and `Gradient` methods.
///
/// Also, all subclasses must be trivially copiable. This is so they can be copied among
/// host and devices.
///
template <typename Derived>
class ImplicitFunctionBase : public vtkm::cont::ExecutionAndControlObjectBase
{
public:
using Scalar = vtkm::FloatDefault;
using Vector = vtkm::Vec<Scalar, 3>;
VTKM_EXEC_CONT Scalar Value(Scalar x, Scalar y, Scalar z) const
{
return reinterpret_cast<const Derived*>(this)->Value(Vector(x, y, z));
}
VTKM_EXEC_CONT Vector Gradient(Scalar x, Scalar y, Scalar z) const
{
return reinterpret_cast<const Derived*>(this)->Gradient(Vector(x, y, z));
}
VTKM_CONT Derived PrepareForExecution(vtkm::cont::DeviceAdapterId, vtkm::cont::Token&) const
{
return *reinterpret_cast<const Derived*>(this);
}
VTKM_CONT Derived PrepareForControl() const { return *reinterpret_cast<const Derived*>(this); }
};
} // namespace vtkm::internal
//============================================================================
#ifndef VTKM_NO_DEPRECATED_VIRTUAL
VTKM_DEPRECATED_SUPPRESS_BEGIN
/// A helpful functor that calls the (virtual) value method of a given ImplicitFunction. Can be
/// passed to things that expect a functor instead of an ImplictFunction class (like an array
/// transform).
///
class VTKM_DEPRECATED(1.6,
"Use ImplicitFunctionValueFunctor.") VTKM_ALWAYS_EXPORT ImplicitFunctionValue
{
public:
using Scalar = vtkm::ImplicitFunction::Scalar;
using Vector = vtkm::ImplicitFunction::Vector;
VTKM_EXEC_CONT ImplicitFunctionValue()
: Function(nullptr)
{
}
VTKM_EXEC_CONT ImplicitFunctionValue(const ImplicitFunction* function)
: Function(function)
{
}
VTKM_EXEC_CONT Scalar operator()(const Vector& point) const
{
return this->Function->Value(point);
}
private:
const vtkm::ImplicitFunction* Function;
};
/// A helpful functor that calls the (virtual) gradient method of a given ImplicitFunction. Can be
/// passed to things that expect a functor instead of an ImplictFunction class (like an array
/// transform).
///
class VTKM_DEPRECATED(1.6, "Use ImplicitFunctionGradientFunctor.")
VTKM_ALWAYS_EXPORT ImplicitFunctionGradient
{
public:
using Scalar = vtkm::ImplicitFunction::Scalar;
using Vector = vtkm::ImplicitFunction::Vector;
VTKM_EXEC_CONT ImplicitFunctionGradient()
: Function(nullptr)
{
}
VTKM_EXEC_CONT ImplicitFunctionGradient(const ImplicitFunction* function)
: Function(function)
{
}
VTKM_EXEC_CONT Vector operator()(const Vector& point) const
{
return this->Function->Gradient(point);
}
private:
const vtkm::ImplicitFunction* Function;
};
VTKM_DEPRECATED_SUPPRESS_END
#endif // VTKM_NO_DEPRECATED_VIRTUAL
//============================================================================
/// A helpful functor that calls the value method of a given `ImplicitFunction`. Can be
/// passed to things that expect a functor instead of an `ImplictFunction` class (like an array
/// transform).
///
template <typename FunctionType>
class ImplicitFunctionValueFunctor
{
public:
using Scalar = typename FunctionType::Scalar;
using Vector = typename FunctionType::Vector;
ImplicitFunctionValueFunctor() = default;
VTKM_EXEC_CONT ImplicitFunctionValueFunctor(
const vtkm::internal::ImplicitFunctionBase<FunctionType>& function)
: Function(reinterpret_cast<const FunctionType&>(function))
{
}
VTKM_EXEC_CONT ImplicitFunctionValueFunctor(const FunctionType& function)
: Function(function)
{
}
VTKM_EXEC_CONT Scalar operator()(const Vector& point) const
{
return this->Function.Value(point);
}
private:
FunctionType Function;
};
/// A helpful functor that calls the gradient method of a given `ImplicitFunction`. Can be
/// passed to things that expect a functor instead of an `ImplictFunction` class (like an array
/// transform).
///
template <typename FunctionType>
class ImplicitFunctionGradientFunctor
{
public:
using Scalar = typename FunctionType::Scalar;
using Vector = typename FunctionType::Vector;
ImplicitFunctionGradientFunctor() = default;
VTKM_EXEC_CONT ImplicitFunctionGradientFunctor(
const vtkm::internal::ImplicitFunctionBase<FunctionType>& function)
: Function(reinterpret_cast<const FunctionType&>(function))
{
}
VTKM_EXEC_CONT ImplicitFunctionGradientFunctor(const FunctionType& function)
: Function(function)
{
}
VTKM_EXEC_CONT Vector operator()(const Vector& point) const
{
return this->Function->Gradient(point);
}
private:
FunctionType Function;
};
//============================================================================
/// \brief Implicit function for a box
///
/// \c Box computes the implicit function and/or gradient for a axis-aligned
/// bounding box. Each side of the box is orthogonal to all other sides
/// meeting along shared edges and all faces are orthogonal to the x-y-z
/// coordinate axes.
class VTKM_ALWAYS_EXPORT Box : public internal::ImplicitFunctionBase<Box>
{
public:
/// \brief Construct box with center at (0,0,0) and each side of length 1.0.
VTKM_EXEC_CONT Box()
: MinPoint(Vector(Scalar(-0.5)))
, MaxPoint(Vector(Scalar(0.5)))
{
}
VTKM_EXEC_CONT Box(const Vector& minPoint, const Vector& maxPoint)
: MinPoint(minPoint)
, MaxPoint(maxPoint)
{
}
VTKM_EXEC_CONT Box(Scalar xmin, Scalar xmax, Scalar ymin, Scalar ymax, Scalar zmin, Scalar zmax)
: MinPoint(xmin, ymin, zmin)
, MaxPoint(xmax, ymax, zmax)
{
}
VTKM_CONT Box(const vtkm::Bounds& bounds) { this->SetBounds(bounds); }
VTKM_CONT void SetMinPoint(const Vector& point) { this->MinPoint = point; }
VTKM_CONT void SetMaxPoint(const Vector& point) { this->MaxPoint = point; }
VTKM_EXEC_CONT const Vector& GetMinPoint() const { return this->MinPoint; }
VTKM_EXEC_CONT const Vector& GetMaxPoint() const { return this->MaxPoint; }
VTKM_CONT void SetBounds(const vtkm::Bounds& bounds)
{
this->SetMinPoint({ Scalar(bounds.X.Min), Scalar(bounds.Y.Min), Scalar(bounds.Z.Min) });
this->SetMaxPoint({ Scalar(bounds.X.Max), Scalar(bounds.Y.Max), Scalar(bounds.Z.Max) });
}
VTKM_EXEC_CONT vtkm::Bounds GetBounds() const
{
return vtkm::Bounds(vtkm::Range(this->MinPoint[0], this->MaxPoint[0]),
vtkm::Range(this->MinPoint[1], this->MaxPoint[1]),
vtkm::Range(this->MinPoint[2], this->MaxPoint[2]));
}
VTKM_EXEC_CONT Scalar Value(const Vector& point) const
{
Scalar minDistance = vtkm::NegativeInfinity32();
Scalar diff, t, dist;
Scalar distance = Scalar(0.0);
vtkm::IdComponent inside = 1;
for (vtkm::IdComponent d = 0; d < 3; d++)
{
diff = this->MaxPoint[d] - this->MinPoint[d];
if (diff != Scalar(0.0))
{
t = (point[d] - this->MinPoint[d]) / diff;
// Outside before the box
if (t < Scalar(0.0))
{
inside = 0;
dist = this->MinPoint[d] - point[d];
}
// Outside after the box
else if (t > Scalar(1.0))
{
inside = 0;
dist = point[d] - this->MaxPoint[d];
}
else
{
// Inside the box in lower half
if (t <= Scalar(0.5))
{
dist = MinPoint[d] - point[d];
}
// Inside the box in upper half
else
{
dist = point[d] - MaxPoint[d];
}
if (dist > minDistance)
{
minDistance = dist;
}
}
}
else
{
dist = vtkm::Abs(point[d] - MinPoint[d]);
if (dist > Scalar(0.0))
{
inside = 0;
}
}
if (dist > Scalar(0.0))
{
distance += dist * dist;
}
}
distance = vtkm::Sqrt(distance);
if (inside)
{
return minDistance;
}
else
{
return distance;
}
}
VTKM_EXEC_CONT Vector Gradient(const Vector& point) const
{
vtkm::IdComponent minAxis = 0;
Scalar dist = 0.0;
Scalar minDist = vtkm::Infinity32();
vtkm::IdComponent3 location;
Vector normal(Scalar(0));
Vector inside(Scalar(0));
Vector outside(Scalar(0));
Vector center((this->MaxPoint + this->MinPoint) * Scalar(0.5));
// Compute the location of the point with respect to the box
// Point will lie in one of 27 separate regions around or within the box
// Gradient vector is computed differently in each of the regions.
for (vtkm::IdComponent d = 0; d < 3; d++)
{
if (point[d] < this->MinPoint[d])
{
// Outside the box low end
location[d] = 0;
outside[d] = -1.0;
}
else if (point[d] > this->MaxPoint[d])
{
// Outside the box high end
location[d] = 2;
outside[d] = 1.0;
}
else
{
location[d] = 1;
if (point[d] <= center[d])
{
// Inside the box low end
dist = point[d] - this->MinPoint[d];
inside[d] = -1.0;
}
else
{
// Inside the box high end
dist = this->MaxPoint[d] - point[d];
inside[d] = 1.0;
}
if (dist < minDist) // dist is negative
{
minDist = dist;
minAxis = d;
}
}
}
vtkm::Id indx = location[0] + 3 * location[1] + 9 * location[2];
switch (indx)
{
// verts - gradient points away from center point
case 0:
case 2:
case 6:
case 8:
case 18:
case 20:
case 24:
case 26:
for (vtkm::IdComponent d = 0; d < 3; d++)
{
normal[d] = point[d] - center[d];
}
vtkm::Normalize(normal);
break;
// edges - gradient points out from axis of cube
case 1:
case 3:
case 5:
case 7:
case 9:
case 11:
case 15:
case 17:
case 19:
case 21:
case 23:
case 25:
for (vtkm::IdComponent d = 0; d < 3; d++)
{
if (outside[d] != 0.0)
{
normal[d] = point[d] - center[d];
}
else
{
normal[d] = 0.0;
}
}
vtkm::Normalize(normal);
break;
// faces - gradient points perpendicular to face
case 4:
case 10:
case 12:
case 14:
case 16:
case 22:
for (vtkm::IdComponent d = 0; d < 3; d++)
{
normal[d] = outside[d];
}
break;
// interior - gradient is perpendicular to closest face
case 13:
normal[0] = normal[1] = normal[2] = 0.0;
normal[minAxis] = inside[minAxis];
break;
default:
VTKM_ASSERT(false);
break;
}
return normal;
}
VTKM_DEPRECATED(1.6, "ImplicitFunctions are no longer pointers. Use . operator.")
VTKM_EXEC Box* operator->() { return this; }
VTKM_DEPRECATED(1.6, "ImplicitFunctions are no longer pointers. Use . operator.")
VTKM_EXEC const Box* operator->() const { return this; }
private:
Vector MinPoint;
Vector MaxPoint;
};
//============================================================================
/// \brief Implicit function for a cylinder
///
/// \c Cylinder computes the implicit function and function gradient
/// for a cylinder using F(r)=r^2-Radius^2. By default the Cylinder is
/// centered at the origin and the axis of rotation is along the
/// y-axis. You can redefine the center and axis of rotation by setting
/// the Center and Axis data members.
///
/// Note that the cylinder is infinite in extent.
///
class VTKM_ALWAYS_EXPORT Cylinder : public vtkm::internal::ImplicitFunctionBase<Cylinder>
{
public:
/// Construct cylinder radius of 0.5; centered at origin with axis
/// along y coordinate axis.
VTKM_EXEC_CONT Cylinder()
: Center(Scalar(0))
, Axis(Scalar(0), Scalar(1), Scalar(0))
, Radius(Scalar(0.5))
{
}
VTKM_EXEC_CONT Cylinder(const Vector& axis, Scalar radius)
: Center(Scalar(0))
, Axis(axis)
, Radius(radius)
{
}
VTKM_EXEC_CONT Cylinder(const Vector& center, const Vector& axis, Scalar radius)
: Center(center)
, Axis(vtkm::Normal(axis))
, Radius(radius)
{
}
VTKM_CONT void SetCenter(const Vector& center) { this->Center = center; }
VTKM_CONT void SetAxis(const Vector& axis) { this->Axis = vtkm::Normal(axis); }
VTKM_CONT void SetRadius(Scalar radius) { this->Radius = radius; }
VTKM_EXEC_CONT Scalar Value(const Vector& point) const
{
Vector x2c = point - this->Center;
FloatDefault proj = vtkm::Dot(this->Axis, x2c);
return vtkm::Dot(x2c, x2c) - (proj * proj) - (this->Radius * this->Radius);
}
VTKM_EXEC_CONT Vector Gradient(const Vector& point) const
{
Vector x2c = point - this->Center;
FloatDefault t = this->Axis[0] * x2c[0] + this->Axis[1] * x2c[1] + this->Axis[2] * x2c[2];
vtkm::Vec<FloatDefault, 3> closestPoint = this->Center + (this->Axis * t);
return (point - closestPoint) * FloatDefault(2);
}
VTKM_DEPRECATED(1.6, "ImplicitFunctions are no longer pointers. Use . operator.")
VTKM_EXEC Cylinder* operator->() { return this; }
VTKM_DEPRECATED(1.6, "ImplicitFunctions are no longer pointers. Use . operator.")
VTKM_EXEC const Cylinder* operator->() const { return this; }
private:
Vector Center;
Vector Axis;
Scalar Radius;
};
//============================================================================
/// \brief Implicit function for a frustum
class VTKM_ALWAYS_EXPORT Frustum : public vtkm::internal::ImplicitFunctionBase<Frustum>
{
public:
/// \brief Construct axis-aligned frustum with center at (0,0,0) and each side of length 1.0.
Frustum() = default;
VTKM_EXEC_CONT Frustum(const Vector points[6], const Vector normals[6])
{
this->SetPlanes(points, normals);
}
VTKM_EXEC_CONT explicit Frustum(const Vector points[8]) { this->CreateFromPoints(points); }
VTKM_EXEC void SetPlanes(const Vector points[6], const Vector normals[6])
{
for (vtkm::Id index : { 0, 1, 2, 3, 4, 5 })
{
this->Points[index] = points[index];
}
for (vtkm::Id index : { 0, 1, 2, 3, 4, 5 })
{
this->Normals[index] = normals[index];
}
}
VTKM_EXEC void SetPlane(int idx, const Vector& point, const Vector& normal)
{
VTKM_ASSERT((idx >= 0) && (idx < 6));
this->Points[idx] = point;
this->Normals[idx] = normal;
}
VTKM_EXEC_CONT void GetPlanes(Vector points[6], Vector normals[6]) const
{
for (vtkm::Id index : { 0, 1, 2, 3, 4, 5 })
{
points[index] = this->Points[index];
}
for (vtkm::Id index : { 0, 1, 2, 3, 4, 5 })
{
normals[index] = this->Normals[index];
}
}
VTKM_EXEC_CONT const Vector* GetPoints() const { return this->Points; }
VTKM_EXEC_CONT const Vector* GetNormals() const { return this->Normals; }
// The points should be specified in the order of hex-cell vertices
VTKM_EXEC_CONT void CreateFromPoints(const Vector points[8])
{
// XXX(clang-format-3.9): 3.8 is silly. 3.9 makes it look like this.
// clang-format off
int planes[6][3] = {
{ 3, 2, 0 }, { 4, 5, 7 }, { 0, 1, 4 }, { 1, 2, 5 }, { 2, 3, 6 }, { 3, 0, 7 }
};
// clang-format on
for (int i = 0; i < 6; ++i)
{
const Vector& v0 = points[planes[i][0]];
const Vector& v1 = points[planes[i][1]];
const Vector& v2 = points[planes[i][2]];
this->Points[i] = v0;
this->Normals[i] = vtkm::Normal(vtkm::TriangleNormal(v0, v1, v2));
}
}
VTKM_EXEC_CONT Scalar Value(const Vector& point) const
{
Scalar maxVal = vtkm::NegativeInfinity<Scalar>();
for (vtkm::Id index : { 0, 1, 2, 3, 4, 5 })
{
const Vector& p = this->Points[index];
const Vector& n = this->Normals[index];
const Scalar val = vtkm::Dot(point - p, n);
maxVal = vtkm::Max(maxVal, val);
}
return maxVal;
}
VTKM_EXEC_CONT Vector Gradient(const Vector& point) const
{
Scalar maxVal = vtkm::NegativeInfinity<Scalar>();
vtkm::Id maxValIdx = 0;
for (vtkm::Id index : { 0, 1, 2, 3, 4, 5 })
{
const Vector& p = this->Points[index];
const Vector& n = this->Normals[index];
Scalar val = vtkm::Dot(point - p, n);
if (val > maxVal)
{
maxVal = val;
maxValIdx = index;
}
}
return this->Normals[maxValIdx];
}
VTKM_DEPRECATED(1.6, "ImplicitFunctions are no longer pointers. Use . operator.")
VTKM_EXEC Frustum* operator->() { return this; }
VTKM_DEPRECATED(1.6, "ImplicitFunctions are no longer pointers. Use . operator.")
VTKM_EXEC const Frustum* operator->() const { return this; }
private:
Vector Points[6] = { { -0.5f, 0.0f, 0.0f }, { 0.5f, 0.0f, 0.0f }, { 0.0f, -0.5f, 0.0f },
{ 0.0f, 0.5f, 0.0f }, { 0.0f, 0.0f, -0.5f }, { 0.0f, 0.0f, 0.5f } };
Vector Normals[6] = { { -1.0f, 0.0f, 0.0f }, { 1.0f, 0.0f, 0.0f }, { 0.0f, -1.0f, 0.0f },
{ 0.0f, 1.0f, 0.0f }, { 0.0f, 0.0f, -1.0f }, { 0.0f, 0.0f, 1.0f } };
};
//============================================================================
/// \brief Implicit function for a plane
///
/// A plane is defined by a point in the plane and a normal to the plane.
/// The normal does not have to be a unit vector. The implicit function will
/// still evaluate to 0 at the plane, but the values outside the plane
/// (and the gradient) will be scaled by the length of the normal vector.
class VTKM_ALWAYS_EXPORT Plane : public vtkm::internal::ImplicitFunctionBase<Plane>
{
public:
/// Construct plane passing through origin and normal to z-axis.
VTKM_EXEC_CONT Plane()
: Origin(Scalar(0))
, Normal(Scalar(0), Scalar(0), Scalar(1))
{
}
/// Construct a plane through the origin with the given normal.
VTKM_EXEC_CONT explicit Plane(const Vector& normal)
: Origin(Scalar(0))
, Normal(normal)
{
}
/// Construct a plane through the given point with the given normal.
VTKM_EXEC_CONT Plane(const Vector& origin, const Vector& normal)
: Origin(origin)
, Normal(normal)
{
}
VTKM_CONT void SetOrigin(const Vector& origin) { this->Origin = origin; }
VTKM_CONT void SetNormal(const Vector& normal) { this->Normal = normal; }
VTKM_EXEC_CONT const Vector& GetOrigin() const { return this->Origin; }
VTKM_EXEC_CONT const Vector& GetNormal() const { return this->Normal; }
VTKM_EXEC_CONT Scalar Value(const Vector& point) const
{
return vtkm::Dot(point - this->Origin, this->Normal);
}
VTKM_EXEC_CONT Vector Gradient(const Vector&) const { return this->Normal; }
VTKM_DEPRECATED(1.6, "ImplicitFunctions are no longer pointers. Use . operator.")
VTKM_EXEC Plane* operator->() { return this; }
VTKM_DEPRECATED(1.6, "ImplicitFunctions are no longer pointers. Use . operator.")
VTKM_EXEC const Plane* operator->() const { return this; }
private:
Vector Origin;
Vector Normal;
};
//============================================================================
/// \brief Implicit function for a sphere
///
/// A sphere is defined by its center and a radius.
///
/// The value of the sphere implicit function is the square of the distance
/// from the center biased by the radius (so the surface of the sphere is
/// at value 0).
class VTKM_ALWAYS_EXPORT Sphere : public vtkm::internal::ImplicitFunctionBase<Sphere>
{
public:
/// Construct sphere with center at (0,0,0) and radius = 0.5.
VTKM_EXEC_CONT Sphere()
: Radius(Scalar(0.5))
, Center(Scalar(0))
{
}
/// Construct a sphere with center at (0,0,0) and the given radius.
VTKM_EXEC_CONT explicit Sphere(Scalar radius)
: Radius(radius)
, Center(Scalar(0))
{
}
VTKM_EXEC_CONT Sphere(Vector center, Scalar radius)
: Radius(radius)
, Center(center)
{
}
VTKM_CONT void SetRadius(Scalar radius) { this->Radius = radius; }
VTKM_CONT void SetCenter(const Vector& center) { this->Center = center; }
VTKM_EXEC_CONT Scalar GetRadius() const { return this->Radius; }
VTKM_EXEC_CONT const Vector& GetCenter() const { return this->Center; }
VTKM_EXEC_CONT Scalar Value(const Vector& point) const
{
return vtkm::MagnitudeSquared(point - this->Center) - (this->Radius * this->Radius);
}
VTKM_EXEC_CONT Vector Gradient(const Vector& point) const
{
return Scalar(2) * (point - this->Center);
}
VTKM_DEPRECATED(1.6, "ImplicitFunctions are no longer pointers. Use . operator.")
VTKM_EXEC Sphere* operator->() { return this; }
VTKM_DEPRECATED(1.6, "ImplicitFunctions are no longer pointers. Use . operator.")
VTKM_EXEC const Sphere* operator->() const { return this; }
private:
Scalar Radius;
Vector Center;
};
namespace detail
{
struct ImplicitFunctionValueFunctor
{
template <typename ImplicitFunctionType>
VTKM_EXEC_CONT typename ImplicitFunctionType::Scalar operator()(
const ImplicitFunctionType& function,
const typename ImplicitFunctionType::Vector& point) const
{
return function.Value(point);
}
};
struct ImplicitFunctionGradientFunctor
{
template <typename ImplicitFunctionType>
VTKM_EXEC_CONT typename ImplicitFunctionType::Vector operator()(
const ImplicitFunctionType& function,
const typename ImplicitFunctionType::Vector& point) const
{
return function.Gradient(point);
}
};
} // namespace detail
//============================================================================
/// \brief Implicit function that can switch among different types.
///
/// An `ImplicitFunctionMultiplexer` is a templated `ImplicitFunction` that takes
/// as template arguments any number of other `ImplicitFunction`s that it can
/// behave as. This allows you to decide at runtime which of these implicit
/// functions to define and compute.
///
/// For example, let's say you want a filter that finds points either inside
/// a sphere or inside a box. Rather than create 2 different filters, one for
/// each type of implicit function, you can use `ImplicitFunctionMultiplexer<Sphere, Box>`
/// and then set either a `Sphere` or a `Box` at runtime.
///
/// To use `ImplicitFunctionMultiplexer`, simply create the actual implicit
/// function that you want to use, and then set the `ImplicitFunctionMultiplexer`
/// to that concrete implicit function object.
///
template <typename... ImplicitFunctionTypes>
class ImplicitFunctionMultiplexer
: public vtkm::internal::ImplicitFunctionBase<
ImplicitFunctionMultiplexer<ImplicitFunctionTypes...>>
{
vtkm::exec::internal::Variant<ImplicitFunctionTypes...> Variant;
using Superclass =
vtkm::internal::ImplicitFunctionBase<ImplicitFunctionMultiplexer<ImplicitFunctionTypes...>>;
public:
using Scalar = typename Superclass::Scalar;
using Vector = typename Superclass::Vector;
ImplicitFunctionMultiplexer() = default;
template <typename FunctionType>
VTKM_EXEC_CONT ImplicitFunctionMultiplexer(
const vtkm::internal::ImplicitFunctionBase<FunctionType>& function)
: Variant(reinterpret_cast<const FunctionType&>(function))
{
}
VTKM_EXEC_CONT Scalar Value(const Vector& point) const
{
return this->Variant.CastAndCall(detail::ImplicitFunctionValueFunctor{}, point);
}
VTKM_EXEC_CONT Vector Gradient(const Vector& point) const
{
return this->Variant.CastAndCall(detail::ImplicitFunctionGradientFunctor{}, point);
}
};
//============================================================================
/// \brief Implicit function that can switch among known implicit function types.
///
/// `ImplicitFunctionGeneral` can behave as any of the predefined implicit functions
/// provided by VTK-m. This is helpful when the type of implicit function is not
/// known at compile time. For example, say you want a filter that can operate on
/// an implicit function. Rather than compile separate versions of the filter, one
/// for each type of implicit function, you can compile the filter once for
/// `ImplicitFunctionGeneral` and then set the desired implicit function at runtime.
///
/// To use `ImplicitFunctionGeneral`, simply create the actual implicit
/// function that you want to use, and then set the `ImplicitFunctionGeneral`
/// to that concrete implicit function object.
///
class ImplicitFunctionGeneral
: public vtkm::ImplicitFunctionMultiplexer<vtkm::Box,
vtkm::Cylinder,
vtkm::Frustum,
vtkm::Plane,
vtkm::Sphere>
{
using Superclass = vtkm::ImplicitFunctionMultiplexer<vtkm::Box,
vtkm::Cylinder,
vtkm::Frustum,
vtkm::Plane,
vtkm::Sphere>;
public:
using Superclass::Superclass;
};
} // namespace vtkm
#endif //vtk_m_ImplicitFunction_h