vtk-m/vtkm/worklet/cosmotools/CosmoToolsHaloFinder.h
Haocheng LIU 8859636672 Merge worklet testing executables into a device dependent shared library
VTK-m has been updated to replace old per device worklet testing executables with a device
dependent shared library so that it's able to accept a device adapter
at runtime.
Meanwhile, it updates the testing infrastructure APIs. vtkm::cont::testing::Run
function would call ForceDevice when needed and if users need the device
adapter info at runtime, RunOnDevice function would pass the adapter into the functor.

Optional Parser is bumped from 1.3 to 1.7.
2018-11-23 10:13:56 -05:00

410 lines
18 KiB
C++

//============================================================================
// Copyright (c) Kitware, Inc.
// All rights reserved.
// See LICENSE.txt for details.
// This software is distributed WITHOUT ANY WARRANTY; without even
// the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
// PURPOSE. See the above copyright notice for more information.
//
// Copyright 2014 National Technology & Engineering Solutions of Sandia, LLC (NTESS).
// Copyright 2014 UT-Battelle, LLC.
// Copyright 2014 Los Alamos National Security.
//
// Under the terms of Contract DE-NA0003525 with NTESS,
// the U.S. Government retains certain rights in this software.
//
// Under the terms of Contract DE-AC52-06NA25396 with Los Alamos National
// Laboratory (LANL), the U.S. Government retains certain rights in
// this software.
//============================================================================
// Copyright (c) 2016, Los Alamos National Security, LLC
// All rights reserved.
//
// Copyright 2016. Los Alamos National Security, LLC.
// This software was produced under U.S. Government contract DE-AC52-06NA25396
// for Los Alamos National Laboratory (LANL), which is operated by
// Los Alamos National Security, LLC for the U.S. Department of Energy.
// The U.S. Government has rights to use, reproduce, and distribute this
// software. NEITHER THE GOVERNMENT NOR LOS ALAMOS NATIONAL SECURITY, LLC
// MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LIABILITY FOR THE
// USE OF THIS SOFTWARE. If software is modified to produce derivative works,
// such modified software should be clearly marked, so as not to confuse it
// with the version available from LANL.
//
// Additionally, redistribution and use in source and binary forms, with or
// without modification, are permitted provided that the following conditions
// are met:
//
// 1. Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// 3. Neither the name of Los Alamos National Security, LLC, Los Alamos
// National Laboratory, LANL, the U.S. Government, nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY LOS ALAMOS NATIONAL SECURITY, LLC AND
// CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
// BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LOS ALAMOS
// NATIONAL SECURITY, LLC OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
// USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
// THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//============================================================================
#ifndef vtkm_worklet_cosmotools_cosmotools_halofinder_h
#define vtkm_worklet_cosmotools_cosmotools_halofinder_h
#include <vtkm/worklet/cosmotools/CosmoTools.h>
namespace vtkm
{
namespace worklet
{
namespace cosmotools
{
///////////////////////////////////////////////////////////////////////////////////////////
//
// Halo finder for all particles in domain
//
///////////////////////////////////////////////////////////////////////////////////////////
template <typename T, typename StorageType>
void CosmoTools<T, StorageType>::HaloFinder(vtkm::cont::ArrayHandle<vtkm::Id>& resultHaloId,
vtkm::cont::ArrayHandle<vtkm::Id>& resultMBP,
vtkm::cont::ArrayHandle<T>& resultPot)
{
// Package locations for worklets
using CompositeLocationType =
typename vtkm::cont::ArrayHandleCompositeVector<LocationType, LocationType, LocationType>;
CompositeLocationType location;
location = make_ArrayHandleCompositeVector(xLoc, yLoc, zLoc);
vtkm::cont::ArrayHandle<vtkm::Id> leftNeighbor; // lower particle id to check for linking length
vtkm::cont::ArrayHandle<vtkm::Id> rightNeighbor; // upper particle id to check for linking length
vtkm::cont::ArrayHandle<vtkm::UInt32>
activeMask; // mask per particle indicating active neighbor bins
vtkm::cont::ArrayHandle<vtkm::Id> partId; // index into all particles
vtkm::cont::ArrayHandle<vtkm::Id> binId; // bin id for each particle in each FOF halo
leftNeighbor.Allocate(NUM_NEIGHBORS * nParticles);
rightNeighbor.Allocate(NUM_NEIGHBORS * nParticles);
vtkm::cont::ArrayHandleConstant<bool> trueArray(true, nParticles);
vtkm::cont::ArrayHandleIndex indexArray(nParticles);
// Bin all particles in domain into bins of size linking length
BinParticlesAll(partId, binId, leftNeighbor, rightNeighbor);
// Mark active neighbor bins, meaning at least one particle in the bin
// is within linking length of the given particle indicated by mask
MarkActiveNeighbors<T> markActiveNeighbors(numBinsX, numBinsY, numBinsZ, NUM_NEIGHBORS, linkLen);
vtkm::worklet::DispatcherMapField<MarkActiveNeighbors<T>> markActiveNeighborsDispatcher(
markActiveNeighbors);
markActiveNeighborsDispatcher.Invoke(
indexArray, // (input) index into all particles
partId, // (input) particle id sorted by bin
binId, // (input) bin id sorted
partId, // (input) particle id (whole array)
location, // (input) location on original particle order
leftNeighbor, // (input) first partId for neighbor vector
rightNeighbor, // (input) last partId for neighbor vector
activeMask); // (output) mask per particle indicating valid neighbors
// Initialize halo id of each particle to itself
vtkm::cont::ArrayHandle<vtkm::Id> haloIdCurrent;
vtkm::cont::ArrayHandle<vtkm::Id> haloIdLast;
DeviceAlgorithm::Copy(indexArray, haloIdCurrent);
DeviceAlgorithm::Copy(indexArray, haloIdLast);
// rooted star is nchecked each iteration for all particles being rooted in a halo
vtkm::cont::ArrayHandle<bool> rootedStar;
// Iterate over particles graft together to form halos
while (true)
{
// Connect each particle to another close particle to build halos
GraftParticles<T> graftParticles(numBinsX, numBinsY, numBinsZ, NUM_NEIGHBORS, linkLen);
vtkm::worklet::DispatcherMapField<GraftParticles<T>> graftParticlesDispatcher(graftParticles);
graftParticlesDispatcher.Invoke(indexArray, // (input) index into particles
partId, // (input) particle id sorted by bin
binId, // (input) bin id sorted by bin
activeMask, // (input) flag indicates if neighor range is used
partId, // (input) particle id (whole array)
location, // (input) location on original particle order
leftNeighbor, // (input) first partId for neighbor
rightNeighbor, // (input) last partId for neighbor
haloIdCurrent); // (output)
#ifdef DEBUG_PRINT
DebugPrint("haloIdCurrent", haloIdCurrent);
#endif
// Reininitialize rootedStar for each pass
DeviceAlgorithm::Copy(trueArray, rootedStar);
// By comparing the haloIds from the last pass and this one
// determine if any particles are still migrating to halos
IsStar isStar;
vtkm::worklet::DispatcherMapField<IsStar> isStarDispatcher(isStar);
isStarDispatcher.Invoke(indexArray,
haloIdCurrent, // input (whole array)
haloIdLast, // input (whole array)
rootedStar); // output (whole array)
// If all vertices are in rooted stars, algorithm is complete
bool allStars = DeviceAlgorithm::Reduce(rootedStar, true, vtkm::BitwiseAnd());
if (allStars)
{
break;
}
else
// Otherwise copy current halo ids to last pass halo ids
{
PointerJump pointerJump;
vtkm::worklet::DispatcherMapField<PointerJump> pointerJumpDispatcher(pointerJump);
pointerJumpDispatcher.Invoke(indexArray, haloIdCurrent); // input (whole array)
DeviceAlgorithm::Copy(haloIdCurrent, haloIdLast);
}
}
// Index into final halo id is the original particle ordering
// not the particles sorted by bin
DeviceAlgorithm::Copy(indexArray, partId);
#ifdef DEBUG_PRINT
DebugPrint("FINAL haloId", haloIdCurrent);
DebugPrint("FINAL partId", partId);
#endif
// Call center finding on all halos using method with ReduceByKey and Scatter
DeviceAlgorithm::Copy(haloIdCurrent, resultHaloId);
MBPCenterFindingByHalo(partId, resultHaloId, resultMBP, resultPot);
}
///////////////////////////////////////////////////////////////////////////////
//
// Bin all particles in the system for halo finding
//
///////////////////////////////////////////////////////////////////////////////
template <typename T, typename StorageType>
void CosmoTools<T, StorageType>::BinParticlesAll(vtkm::cont::ArrayHandle<vtkm::Id>& partId,
vtkm::cont::ArrayHandle<vtkm::Id>& binId,
vtkm::cont::ArrayHandle<vtkm::Id>& leftNeighbor,
vtkm::cont::ArrayHandle<vtkm::Id>& rightNeighbor)
{
// Compute number of bins and ranges for each bin
vtkm::Vec<T, 2> result;
vtkm::Vec<T, 2> xInit(xLoc.GetPortalConstControl().Get(0));
vtkm::Vec<T, 2> yInit(yLoc.GetPortalConstControl().Get(0));
vtkm::Vec<T, 2> zInit(zLoc.GetPortalConstControl().Get(0));
result = DeviceAlgorithm::Reduce(xLoc, xInit, vtkm::MinAndMax<T>());
T minX = result[0];
T maxX = result[1];
result = DeviceAlgorithm::Reduce(yLoc, yInit, vtkm::MinAndMax<T>());
T minY = result[0];
T maxY = result[1];
result = DeviceAlgorithm::Reduce(zLoc, zInit, vtkm::MinAndMax<T>());
T minZ = result[0];
T maxZ = result[1];
vtkm::Id maxBins = 1048576;
vtkm::Id minBins = 1;
numBinsX = static_cast<vtkm::Id>(vtkm::Floor((maxX - minX) / linkLen));
numBinsY = static_cast<vtkm::Id>(vtkm::Floor((maxY - minY) / linkLen));
numBinsZ = static_cast<vtkm::Id>(vtkm::Floor((maxZ - minZ) / linkLen));
numBinsX = std::min(maxBins, numBinsX);
numBinsY = std::min(maxBins, numBinsY);
numBinsZ = std::min(maxBins, numBinsZ);
numBinsX = std::max(minBins, numBinsX);
numBinsY = std::max(minBins, numBinsY);
numBinsZ = std::max(minBins, numBinsZ);
// Compute which bin each particle is in
ComputeBins<T> computeBins(minX,
maxX, // Physical range on domain
minY,
maxY,
minZ,
maxZ,
numBinsX,
numBinsY,
numBinsZ); // Size of superimposed mesh
vtkm::worklet::DispatcherMapField<ComputeBins<T>> computeBinsDispatcher(computeBins);
computeBinsDispatcher.Invoke(xLoc, // input
yLoc, // input
zLoc, // input
binId); // output
vtkm::cont::ArrayHandleIndex indexArray(nParticles);
DeviceAlgorithm::Copy(indexArray, partId);
#ifdef DEBUG_PRINT
std::cout << std::endl
<< "** BinParticlesAll (" << numBinsX << ", " << numBinsY << ", " << numBinsZ << ")"
<< std::endl;
DebugPrint("xLoc", xLoc);
DebugPrint("yLoc", yLoc);
DebugPrint("zLoc", zLoc);
DebugPrint("partId", partId);
DebugPrint("binId", binId);
std::cout << std::endl;
#endif
// Sort the particles by bin (remember that xLoc and yLoc are not sorted)
DeviceAlgorithm::SortByKey(binId, partId);
#ifdef DEBUG_PRINT
DebugPrint("partId", partId);
DebugPrint("binId", binId);
#endif
// Compute indices of all left neighbor bins
vtkm::cont::ArrayHandleIndex countArray(nParticles);
ComputeNeighborBins computeNeighborBins(numBinsX, numBinsY, numBinsZ, NUM_NEIGHBORS);
vtkm::worklet::DispatcherMapField<ComputeNeighborBins> computeNeighborBinsDispatcher(
computeNeighborBins);
computeNeighborBinsDispatcher.Invoke(countArray, binId, leftNeighbor);
// Compute indices of all right neighbor bins
ComputeBinRange computeBinRange(numBinsX);
vtkm::worklet::DispatcherMapField<ComputeBinRange> computeBinRangeDispatcher(computeBinRange);
computeBinRangeDispatcher.Invoke(leftNeighbor, rightNeighbor);
// Convert bin range to particle range within the bins
DeviceAlgorithm::LowerBounds(binId, leftNeighbor, leftNeighbor);
DeviceAlgorithm::UpperBounds(binId, rightNeighbor, rightNeighbor);
}
///////////////////////////////////////////////////////////////////////////////
//
// Center finder for all particles given location, particle id and halo id
// MBP (Most Bound Particle) is particle with the minimum potential energy
// Method uses ReduceByKey() and Scatter()
//
///////////////////////////////////////////////////////////////////////////////
template <typename T, typename StorageType>
void CosmoTools<T, StorageType>::MBPCenterFindingByHalo(vtkm::cont::ArrayHandle<vtkm::Id>& partId,
vtkm::cont::ArrayHandle<vtkm::Id>& haloId,
vtkm::cont::ArrayHandle<vtkm::Id>& mbpId,
vtkm::cont::ArrayHandle<T>& minPotential)
{
// Sort particles into groups according to halo id using an index into WholeArrays
DeviceAlgorithm::SortByKey(haloId, partId);
#ifdef DEBUG_PRINT
DebugPrint("Sorted haloId", haloId);
DebugPrint("Sorted partId", partId);
#endif
// Find the particle in each halo with the lowest potential
// Compute starting and ending indices of each halo
vtkm::cont::ArrayHandleConstant<vtkm::Id> constArray(1, nParticles);
vtkm::cont::ArrayHandleIndex indexArray(nParticles);
vtkm::cont::ArrayHandle<vtkm::Id> uniqueHaloIds;
vtkm::cont::ArrayHandle<vtkm::Id> particlesPerHalo;
vtkm::cont::ArrayHandle<vtkm::Id> minParticle;
vtkm::cont::ArrayHandle<vtkm::Id> maxParticle;
vtkm::cont::ArrayHandle<T> potential;
vtkm::cont::ArrayHandle<vtkm::Id> tempI;
vtkm::cont::ArrayHandle<T> tempT;
// Halo ids have been sorted, reduce to find the number of particles per halo
DeviceAlgorithm::ReduceByKey(haloId, constArray, uniqueHaloIds, particlesPerHalo, vtkm::Add());
#ifdef DEBUG_PRINT
DebugPrint("uniqueHaloId", uniqueHaloIds);
DebugPrint("partPerHalo", particlesPerHalo);
std::cout << std::endl;
#endif
// Setup the ScatterCounting worklets needed to expand the ReduceByKeyResults
vtkm::worklet::ScatterCounting scatter(particlesPerHalo);
vtkm::worklet::DispatcherMapField<ScatterWorklet<vtkm::Id>> scatterWorkletIdDispatcher(scatter);
vtkm::worklet::DispatcherMapField<ScatterWorklet<T>> scatterWorkletDispatcher(scatter);
// Calculate the minimum particle index per halo id and scatter
DeviceAlgorithm::ScanExclusive(particlesPerHalo, tempI);
scatterWorkletIdDispatcher.Invoke(tempI, minParticle);
// Calculate the maximum particle index per halo id and scatter
DeviceAlgorithm::ScanInclusive(particlesPerHalo, tempI);
scatterWorkletIdDispatcher.Invoke(tempI, maxParticle);
using IdArrayType = vtkm::cont::ArrayHandle<vtkm::Id>;
vtkm::cont::ArrayHandleTransform<IdArrayType, ScaleBiasFunctor<vtkm::Id>> scaleBias =
vtkm::cont::make_ArrayHandleTransform<IdArrayType>(maxParticle,
ScaleBiasFunctor<vtkm::Id>(1, -1));
DeviceAlgorithm::Copy(scaleBias, maxParticle);
#ifdef DEBUG_PRINT
DebugPrint("minParticle", minParticle);
DebugPrint("maxParticle", maxParticle);
#endif
// Compute potentials
ComputePotential<T> computePotential(particleMass);
vtkm::worklet::DispatcherMapField<ComputePotential<T>> computePotentialDispatcher(
computePotential);
computePotentialDispatcher.Invoke(indexArray,
partId, // input (whole array)
xLoc, // input (whole array)
yLoc, // input (whole array)
zLoc, // input (whole array)
minParticle, // input (whole array)
maxParticle, // input (whole array)
potential); // output
// Find minimum potential for all particles in a halo and scatter
DeviceAlgorithm::ReduceByKey(haloId, potential, uniqueHaloIds, tempT, vtkm::Minimum());
scatterWorkletDispatcher.Invoke(tempT, minPotential);
#ifdef DEBUG_PRINT
DebugPrint("potential", potential);
DebugPrint("minPotential", minPotential);
#endif
// Find the particle id matching the minimum potential (Worklet)
EqualsMinimumPotential<T> equalsMinimumPotential;
vtkm::worklet::DispatcherMapField<EqualsMinimumPotential<T>> equalsMinimumPotentialDispatcher(
equalsMinimumPotential);
equalsMinimumPotentialDispatcher.Invoke(partId, potential, minPotential, mbpId);
// Fill out entire array with center index, another reduce and scatter
vtkm::cont::ArrayHandle<vtkm::Id> minIndx;
minIndx.Allocate(nParticles);
DeviceAlgorithm::ReduceByKey(haloId, mbpId, uniqueHaloIds, minIndx, vtkm::Maximum());
scatterWorkletIdDispatcher.Invoke(minIndx, mbpId);
// Resort particle ids and mbpId to starting order
vtkm::cont::ArrayHandle<vtkm::Id> savePartId;
DeviceAlgorithm::Copy(partId, savePartId);
DeviceAlgorithm::SortByKey(partId, haloId);
DeviceAlgorithm::Copy(savePartId, partId);
DeviceAlgorithm::SortByKey(partId, mbpId);
DeviceAlgorithm::Copy(savePartId, partId);
DeviceAlgorithm::SortByKey(partId, minPotential);
#ifdef DEBUG_PRINT
std::cout << std::endl;
DebugPrint("partId", partId);
DebugPrint("xLoc", xLoc);
DebugPrint("yLoc", yLoc);
DebugPrint("haloId", haloId);
DebugPrint("mbpId", mbpId);
DebugPrint("minPotential", minPotential);
#endif
}
}
}
}
#endif