vtk-m/vtkm/worklet/wavelets/WaveletBase.h
Haocheng LIU 8859636672 Merge worklet testing executables into a device dependent shared library
VTK-m has been updated to replace old per device worklet testing executables with a device
dependent shared library so that it's able to accept a device adapter
at runtime.
Meanwhile, it updates the testing infrastructure APIs. vtkm::cont::testing::Run
function would call ForceDevice when needed and if users need the device
adapter info at runtime, RunOnDevice function would pass the adapter into the functor.

Optional Parser is bumped from 1.3 to 1.7.
2018-11-23 10:13:56 -05:00

363 lines
12 KiB
C++

//============================================================================
// Copyright (c) Kitware, Inc.
// All rights reserved.
// See LICENSE.txt for details.
// This software is distributed WITHOUT ANY WARRANTY; without even
// the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
// PURPOSE. See the above copyright notice for more information.
//
// Copyright 2014 National Technology & Engineering Solutions of Sandia, LLC (NTESS).
// Copyright 2014 UT-Battelle, LLC.
// Copyright 2014 Los Alamos National Security.
//
// Under the terms of Contract DE-NA0003525 with NTESS,
// the U.S. Government retains certain rights in this software.
//
// Under the terms of Contract DE-AC52-06NA25396 with Los Alamos National
// Laboratory (LANL), the U.S. Government retains certain rights in
// this software.
//============================================================================
#ifndef vtk_m_worklet_wavelets_waveletbase_h
#define vtk_m_worklet_wavelets_waveletbase_h
#include <vtkm/worklet/wavelets/WaveletFilter.h>
#include <vtkm/worklet/wavelets/WaveletTransforms.h>
#include <vtkm/Math.h>
#include <vtkm/cont/Algorithm.h>
namespace vtkm
{
namespace worklet
{
namespace wavelets
{
// Functionalities are similar to MatWaveBase in VAPoR.
class WaveletBase
{
public:
// Constructor
WaveletBase(WaveletName name)
: wname(name)
, filter(name)
{
if (wname == CDF9_7 || wname == BIOR4_4 || wname == CDF5_3 || wname == BIOR2_2)
{
this->wmode = SYMW; // Default extension mode, see MatWaveBase.cpp
}
else if (wname == HAAR || wname == BIOR1_1 || wname == CDF8_4 || wname == BIOR3_3)
{
this->wmode = SYMH;
}
}
// Returns length of approximation coefficients from a decomposition pass.
vtkm::Id GetApproxLength(vtkm::Id sigInLen)
{
if (sigInLen % 2 != 0)
{
return ((sigInLen + 1) / 2);
}
else
{
return ((sigInLen) / 2);
}
}
// Returns length of detail coefficients from a decomposition pass
vtkm::Id GetDetailLength(vtkm::Id sigInLen)
{
if (sigInLen % 2 != 0)
{
return ((sigInLen - 1) / 2);
}
else
{
return ((sigInLen) / 2);
}
}
// Returns length of coefficients generated in a decomposition pass
vtkm::Id GetCoeffLength(vtkm::Id sigInLen)
{
return (GetApproxLength(sigInLen) + GetDetailLength(sigInLen));
}
vtkm::Id GetCoeffLength2(vtkm::Id sigInX, vtkm::Id sigInY)
{
return (GetCoeffLength(sigInX) * GetCoeffLength(sigInY));
}
vtkm::Id GetCoeffLength3(vtkm::Id sigInX, vtkm::Id sigInY, vtkm::Id sigInZ)
{
return (GetCoeffLength(sigInX) * GetCoeffLength(sigInY) * GetCoeffLength(sigInZ));
}
// Returns maximum wavelet decomposition level
vtkm::Id GetWaveletMaxLevel(vtkm::Id sigInLen)
{
vtkm::Id filterLen = this->filter.GetFilterLength();
vtkm::Id level;
this->WaveLengthValidate(sigInLen, filterLen, level);
return level;
}
// perform a device copy. The whole 1st array to a certain start location of the 2nd array
template <typename ArrayType1, typename ArrayType2>
void DeviceCopyStartX(const ArrayType1& srcArray, ArrayType2& dstArray, vtkm::Id startIdx)
{
using CopyType = vtkm::worklet::wavelets::CopyWorklet;
CopyType cp(startIdx);
vtkm::worklet::DispatcherMapField<CopyType> dispatcher(cp);
dispatcher.Invoke(srcArray, dstArray);
}
// Assign zero value to a certain location of an array
template <typename ArrayType>
void DeviceAssignZero(ArrayType& array, vtkm::Id index)
{
using ZeroWorklet = vtkm::worklet::wavelets::AssignZeroWorklet;
ZeroWorklet worklet(index);
vtkm::worklet::DispatcherMapField<ZeroWorklet> dispatcher(worklet);
dispatcher.Invoke(array);
}
// Assign zeros to a certain row to a matrix
template <typename ArrayType>
void DeviceAssignZero2DRow(ArrayType& array,
vtkm::Id dimX,
vtkm::Id dimY, // input
vtkm::Id rowIdx)
{
using AssignZero2DType = vtkm::worklet::wavelets::AssignZero2DWorklet;
AssignZero2DType zeroWorklet(dimX, dimY, -1, rowIdx);
vtkm::worklet::DispatcherMapField<AssignZero2DType> dispatcher(zeroWorklet);
dispatcher.Invoke(array);
}
// Assign zeros to a certain column to a matrix
template <typename ArrayType>
void DeviceAssignZero2DColumn(ArrayType& array,
vtkm::Id dimX,
vtkm::Id dimY, // input
vtkm::Id colIdx)
{
using AssignZero2DType = vtkm::worklet::wavelets::AssignZero2DWorklet;
AssignZero2DType zeroWorklet(dimX, dimY, colIdx, -1);
vtkm::worklet::DispatcherMapField<AssignZero2DType> dispatcher(zeroWorklet);
dispatcher.Invoke(array);
}
// Assign zeros to a plane that's perpendicular to the X axis (Left-Right direction)
template <typename ArrayType>
void DeviceAssignZero3DPlaneX(ArrayType& array, // input array
vtkm::Id dimX,
vtkm::Id dimY,
vtkm::Id dimZ, // dims of input
vtkm::Id zeroX) // X idx to set zero
{
using AssignZero3DType = vtkm::worklet::wavelets::AssignZero3DWorklet;
AssignZero3DType zeroWorklet(dimX, dimY, dimZ, zeroX, -1, -1);
vtkm::worklet::DispatcherMapField<AssignZero3DType> dispatcher(zeroWorklet);
dispatcher.Invoke(array);
}
// Assign zeros to a plane that's perpendicular to the Y axis (Top-Down direction)
template <typename ArrayType>
void DeviceAssignZero3DPlaneY(ArrayType& array, // input array
vtkm::Id dimX,
vtkm::Id dimY,
vtkm::Id dimZ, // dims of input
vtkm::Id zeroY) // Y idx to set zero
{
using AssignZero3DType = vtkm::worklet::wavelets::AssignZero3DWorklet;
AssignZero3DType zeroWorklet(dimX, dimY, dimZ, -1, zeroY, -1);
vtkm::worklet::DispatcherMapField<AssignZero3DType> dispatcher(zeroWorklet);
dispatcher.Invoke(array);
}
// Assign zeros to a plane that's perpendicular to the Z axis (Front-Back direction)
template <typename ArrayType>
void DeviceAssignZero3DPlaneZ(ArrayType& array, // input array
vtkm::Id dimX,
vtkm::Id dimY,
vtkm::Id dimZ, // dims of input
vtkm::Id zeroZ) // Y idx to set zero
{
using AssignZero3DType = vtkm::worklet::wavelets::AssignZero3DWorklet;
AssignZero3DType zeroWorklet(dimX, dimY, dimZ, -1, -1, zeroZ);
vtkm::worklet::DispatcherMapField<AssignZero3DType> dispatcher(zeroWorklet);
dispatcher.Invoke(array);
}
// Sort by the absolute value on device
struct SortLessAbsFunctor
{
template <typename T>
VTKM_EXEC bool operator()(const T& x, const T& y) const
{
return vtkm::Abs(x) < vtkm::Abs(y);
}
};
template <typename ArrayType>
void DeviceSort(ArrayType& array)
{
vtkm::cont::Algorithm::Sort(array, SortLessAbsFunctor());
}
// Reduce to the sum of all values on device
template <typename ArrayType>
typename ArrayType::ValueType DeviceSum(const ArrayType& array)
{
return vtkm::cont::Algorithm::Reduce(array, static_cast<typename ArrayType::ValueType>(0.0));
}
// Helper functors for finding the max and min of an array
struct minFunctor
{
template <typename FieldType>
VTKM_EXEC FieldType operator()(const FieldType& x, const FieldType& y) const
{
return Min(x, y);
}
};
struct maxFunctor
{
template <typename FieldType>
VTKM_EXEC FieldType operator()(const FieldType& x, const FieldType& y) const
{
return vtkm::Max(x, y);
}
};
// Device Min and Max functions
template <typename ArrayType>
typename ArrayType::ValueType DeviceMax(const ArrayType& array)
{
typename ArrayType::ValueType initVal = array.GetPortalConstControl().Get(0);
return vtkm::cont::Algorithm::Reduce(array, initVal, maxFunctor());
}
template <typename ArrayType>
typename ArrayType::ValueType DeviceMin(const ArrayType& array)
{
typename ArrayType::ValueType initVal = array.GetPortalConstControl().Get(0);
return vtkm::cont::Algorithm::Reduce(array, initVal, minFunctor());
}
// Max absolute value of an array
struct maxAbsFunctor
{
template <typename FieldType>
VTKM_EXEC FieldType operator()(const FieldType& x, const FieldType& y) const
{
return vtkm::Max(vtkm::Abs(x), vtkm::Abs(y));
}
};
template <typename ArrayType>
typename ArrayType::ValueType DeviceMaxAbs(const ArrayType& array)
{
typename ArrayType::ValueType initVal = array.GetPortalConstControl().Get(0);
return vtkm::cont::Algorithm::Reduce(array, initVal, maxAbsFunctor());
}
// Calculate variance of an array
template <typename ArrayType>
vtkm::Float64 DeviceCalculateVariance(ArrayType& array)
{
vtkm::Float64 mean = static_cast<vtkm::Float64>(this->DeviceSum(array)) /
static_cast<vtkm::Float64>(array.GetNumberOfValues());
vtkm::cont::ArrayHandle<vtkm::Float64> squaredDeviation;
// Use a worklet
using SDWorklet = vtkm::worklet::wavelets::SquaredDeviation;
SDWorklet sdw(mean);
vtkm::worklet::DispatcherMapField<SDWorklet> dispatcher(sdw);
dispatcher.Invoke(array, squaredDeviation);
vtkm::Float64 sdMean = this->DeviceSum(squaredDeviation) /
static_cast<vtkm::Float64>(squaredDeviation.GetNumberOfValues());
return sdMean;
}
// Copy a small rectangle to a big rectangle
template <typename SmallArrayType, typename BigArrayType>
void DeviceRectangleCopyTo(const SmallArrayType& smallRect,
vtkm::Id smallX,
vtkm::Id smallY,
BigArrayType& bigRect,
vtkm::Id bigX,
vtkm::Id bigY,
vtkm::Id startX,
vtkm::Id startY)
{
using CopyToWorklet = vtkm::worklet::wavelets::RectangleCopyTo;
CopyToWorklet cp(smallX, smallY, bigX, bigY, startX, startY);
vtkm::worklet::DispatcherMapField<CopyToWorklet> dispatcher(cp);
dispatcher.Invoke(smallRect, bigRect);
}
// Copy a small cube to a big cube
template <typename SmallArrayType, typename BigArrayType>
void DeviceCubeCopyTo(const SmallArrayType& smallCube,
vtkm::Id smallX,
vtkm::Id smallY,
vtkm::Id smallZ,
BigArrayType& bigCube,
vtkm::Id bigX,
vtkm::Id bigY,
vtkm::Id bigZ,
vtkm::Id startX,
vtkm::Id startY,
vtkm::Id startZ)
{
using CopyToWorklet = vtkm::worklet::wavelets::CubeCopyTo;
CopyToWorklet cp(smallX, smallY, smallZ, bigX, bigY, bigZ, startX, startY, startZ);
vtkm::worklet::DispatcherMapField<CopyToWorklet> dispatcher(cp);
dispatcher.Invoke(smallCube, bigCube);
}
template <typename ArrayType>
void Print2DArray(const std::string& str, const ArrayType& arr, vtkm::Id dimX)
{
std::cerr << str << std::endl;
for (vtkm::Id i = 0; i < arr.GetNumberOfValues(); i++)
{
std::cerr << arr.GetPortalConstControl().Get(i) << " ";
if (i % dimX == dimX - 1)
{
std::cerr << std::endl;
}
}
}
protected:
WaveletName wname;
DWTMode wmode;
WaveletFilter filter;
void WaveLengthValidate(vtkm::Id sigInLen, vtkm::Id filterLength, vtkm::Id& level)
{
if (sigInLen < filterLength)
{
level = 0;
}
else
{
level = static_cast<vtkm::Id>(
vtkm::Floor(1.0 + vtkm::Log2(static_cast<vtkm::Float64>(sigInLen) /
static_cast<vtkm::Float64>(filterLength))));
}
}
}; // class WaveletBase.
} // namespace wavelets
} // namespace worklet
} // namespace vtkm
#endif