vtk-m/vtkm/worklet/testing/UnitTestCrossProduct.cxx
Haocheng LIU 8859636672 Merge worklet testing executables into a device dependent shared library
VTK-m has been updated to replace old per device worklet testing executables with a device
dependent shared library so that it's able to accept a device adapter
at runtime.
Meanwhile, it updates the testing infrastructure APIs. vtkm::cont::testing::Run
function would call ForceDevice when needed and if users need the device
adapter info at runtime, RunOnDevice function would pass the adapter into the functor.

Optional Parser is bumped from 1.3 to 1.7.
2018-11-23 10:13:56 -05:00

131 lines
4.9 KiB
C++

//============================================================================
// Copyright (c) Kitware, Inc.
// All rights reserved.
// See LICENSE.txt for details.
// This software is distributed WITHOUT ANY WARRANTY; without even
// the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
// PURPOSE. See the above copyright notice for more information.
//
// Copyright 2014 National Technology & Engineering Solutions of Sandia, LLC (NTESS).
// Copyright 2014 UT-Battelle, LLC.
// Copyright 2014 Los Alamos National Security.
//
// Under the terms of Contract DE-NA0003525 with NTESS,
// the U.S. Government retains certain rights in this software.
//
// Under the terms of Contract DE-AC52-06NA25396 with Los Alamos National
// Laboratory (LANL), the U.S. Government retains certain rights in
// this software.
//============================================================================
#include <vtkm/worklet/CrossProduct.h>
#include <vtkm/worklet/DispatcherMapField.h>
#include <random>
#include <vtkm/cont/testing/Testing.h>
namespace
{
std::mt19937 randGenerator;
template <typename T>
void createVectors(std::vector<vtkm::Vec<T, 3>>& vecs1, std::vector<vtkm::Vec<T, 3>>& vecs2)
{
// First, test the standard directions.
// X x Y
vecs1.push_back(vtkm::make_Vec(1, 0, 0));
vecs2.push_back(vtkm::make_Vec(0, 1, 0));
// Y x Z
vecs1.push_back(vtkm::make_Vec(0, 1, 0));
vecs2.push_back(vtkm::make_Vec(0, 0, 1));
// Z x X
vecs1.push_back(vtkm::make_Vec(0, 0, 1));
vecs2.push_back(vtkm::make_Vec(1, 0, 0));
// Y x X
vecs1.push_back(vtkm::make_Vec(0, 1, 0));
vecs2.push_back(vtkm::make_Vec(1, 0, 0));
// Z x Y
vecs1.push_back(vtkm::make_Vec(0, 0, 1));
vecs2.push_back(vtkm::make_Vec(0, 1, 0));
// X x Z
vecs1.push_back(vtkm::make_Vec(1, 0, 0));
vecs2.push_back(vtkm::make_Vec(0, 0, 1));
//Test some other vector combinations
std::uniform_real_distribution<vtkm::Float64> randomDist(-10.0, 10.0);
randomDist(randGenerator);
for (int i = 0; i < 100; i++)
{
vecs1.push_back(vtkm::make_Vec(
randomDist(randGenerator), randomDist(randGenerator), randomDist(randGenerator)));
vecs2.push_back(vtkm::make_Vec(
randomDist(randGenerator), randomDist(randGenerator), randomDist(randGenerator)));
}
}
template <typename T>
void TestCrossProduct()
{
std::vector<vtkm::Vec<T, 3>> inputVecs1, inputVecs2;
createVectors(inputVecs1, inputVecs2);
vtkm::cont::ArrayHandle<vtkm::Vec<T, 3>> inputArray1, inputArray2;
vtkm::cont::ArrayHandle<vtkm::Vec<T, 3>> outputArray;
inputArray1 = vtkm::cont::make_ArrayHandle(inputVecs1);
inputArray2 = vtkm::cont::make_ArrayHandle(inputVecs2);
vtkm::worklet::CrossProduct crossProductWorklet;
vtkm::worklet::DispatcherMapField<vtkm::worklet::CrossProduct> dispatcherCrossProduct(
crossProductWorklet);
dispatcherCrossProduct.Invoke(inputArray1, inputArray2, outputArray);
VTKM_TEST_ASSERT(outputArray.GetNumberOfValues() == inputArray1.GetNumberOfValues(),
"Wrong number of results for CrossProduct worklet");
//Test the canonical cases.
VTKM_TEST_ASSERT(
test_equal(outputArray.GetPortalConstControl().Get(0), vtkm::make_Vec(0, 0, 1)) &&
test_equal(outputArray.GetPortalConstControl().Get(1), vtkm::make_Vec(1, 0, 0)) &&
test_equal(outputArray.GetPortalConstControl().Get(2), vtkm::make_Vec(0, 1, 0)) &&
test_equal(outputArray.GetPortalConstControl().Get(3), vtkm::make_Vec(0, 0, -1)) &&
test_equal(outputArray.GetPortalConstControl().Get(4), vtkm::make_Vec(-1, 0, 0)) &&
test_equal(outputArray.GetPortalConstControl().Get(5), vtkm::make_Vec(0, -1, 0)),
"Wrong result for CrossProduct worklet");
for (vtkm::Id i = 0; i < inputArray1.GetNumberOfValues(); i++)
{
vtkm::Vec<T, 3> v1 = inputArray1.GetPortalConstControl().Get(i);
vtkm::Vec<T, 3> v2 = inputArray2.GetPortalConstControl().Get(i);
vtkm::Vec<T, 3> res = outputArray.GetPortalConstControl().Get(i);
//Make sure result is orthogonal each input vector. Need to normalize to compare with zero.
vtkm::Vec<T, 3> v1N(vtkm::Normal(v1)), v2N(vtkm::Normal(v1)), resN(vtkm::Normal(res));
VTKM_TEST_ASSERT(test_equal(vtkm::Dot(resN, v1N), T(0.0)), "Wrong result for cross product");
VTKM_TEST_ASSERT(test_equal(vtkm::Dot(resN, v2N), T(0.0)), "Wrong result for cross product");
T sinAngle = vtkm::Magnitude(res) * vtkm::RMagnitude(v1) * vtkm::RMagnitude(v2);
T cosAngle = vtkm::Dot(v1, v2) * vtkm::RMagnitude(v1) * vtkm::RMagnitude(v2);
VTKM_TEST_ASSERT(test_equal(sinAngle * sinAngle + cosAngle * cosAngle, T(1.0)),
"Bad cross product length.");
}
}
void TestCrossProductWorklets()
{
std::cout << "Testing CrossProduct Worklet" << std::endl;
TestCrossProduct<vtkm::Float32>();
TestCrossProduct<vtkm::Float64>();
}
}
int UnitTestCrossProduct(int argc, char* argv[])
{
return vtkm::cont::testing::Testing::Run(TestCrossProductWorklets, argc, argv);
}