vtk-m/vtkm/worklet/ContourTreeUniformAugmented.h
Kenneth Moreland bddad9b386 Remove TryExecute from filters
Now that the dispatcher does its own TryExecute, filters do not need to
do that. This change requires all worklets called by filters to be able
to execute without knowing the device a priori.
2018-10-16 15:59:53 -06:00

296 lines
12 KiB
C++

//============================================================================
// Copyright (c) Kitware, Inc.
// All rights reserved.
// See LICENSE.txt for details.
// This software is distributed WITHOUT ANY WARRANTY; without even
// the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
// PURPOSE. See the above copyright notice for more information.
//
// Copyright 2014 National Technology & Engineering Solutions of Sandia, LLC (NTESS).
// Copyright 2014 UT-Battelle, LLC.
// Copyright 2014 Los Alamos National Security.
//
// Under the terms of Contract DE-NA0003525 with NTESS,
// the U.S. Government retains certain rights in this software.
//
// Under the terms of Contract DE-AC52-06NA25396 with Los Alamos National
// Laboratory (LANL), the U.S. Government retains certain rights in
// this software.
//============================================================================
// Copyright (c) 2018, The Regents of the University of California, through
// Lawrence Berkeley National Laboratory (subject to receipt of any required approvals
// from the U.S. Dept. of Energy). All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// (1) Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// (2) Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// (3) Neither the name of the University of California, Lawrence Berkeley National
// Laboratory, U.S. Dept. of Energy nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
// IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
// INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
// OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
// OF THE POSSIBILITY OF SUCH DAMAGE.
//
//=============================================================================
//
// This code is an extension of the algorithm presented in the paper:
// Parallel Peak Pruning for Scalable SMP Contour Tree Computation.
// Hamish Carr, Gunther Weber, Christopher Sewell, and James Ahrens.
// Proceedings of the IEEE Symposium on Large Data Analysis and Visualization
// (LDAV), October 2016, Baltimore, Maryland.
//
// The PPP2 algorithm and software were jointly developed by
// Hamish Carr (University of Leeds), Gunther H. Weber (LBNL), and
// Oliver Ruebel (LBNL)
//==============================================================================
#ifndef vtk_m_worklet_ContourTreeUniformAugmented_h
#define vtk_m_worklet_ContourTreeUniformAugmented_h
#include <utility>
#include <vector>
// VTKM includes
#include <vtkm/Math.h>
#include <vtkm/Types.h>
#include <vtkm/cont/ArrayHandle.h>
#include <vtkm/cont/ArrayHandleCounting.h>
#include <vtkm/cont/Field.h>
#include <vtkm/cont/Timer.h>
#include <vtkm/worklet/DispatcherMapField.h>
#include <vtkm/worklet/WorkletMapField.h>
// Contour tree worklet includes
#include <vtkm/worklet/contourtree_augmented/ActiveGraph.h>
#include <vtkm/worklet/contourtree_augmented/ContourTree.h>
#include <vtkm/worklet/contourtree_augmented/ContourTreeMaker.h>
#include <vtkm/worklet/contourtree_augmented/MergeTree.h>
#include <vtkm/worklet/contourtree_augmented/MeshExtrema.h>
#include <vtkm/worklet/contourtree_augmented/Mesh_DEM_Triangulation.h>
#include <vtkm/worklet/contourtree_augmented/Types.h>
namespace vtkm
{
namespace worklet
{
class ContourTreePPP2
{
public:
/*!
* Run the contour tree analysis. This helper function is used to
* allow one to run the contour tree in a consistent fashion independent
* of whether the data is 2D, 3D, or 3D_MC. This function just calls
* Run2D, Run3D, or Run3D_MC depending on the type
*/
template <typename FieldType, typename StorageType>
void Run(const vtkm::cont::ArrayHandle<FieldType, StorageType> fieldArray,
std::vector<std::pair<std::string, vtkm::Float64>>& timings,
contourtree_augmented::ContourTree& contourTree,
contourtree_augmented::IdArrayType& sortOrder,
vtkm::Id& nIterations,
const vtkm::Id nRows,
const vtkm::Id nCols,
const vtkm::Id nSlices = 1,
bool useMarchingCubes = false,
bool computeRegularStructure = true)
{
using namespace vtkm::worklet::contourtree_augmented;
// 2D Contour Tree
if (nSlices == 1)
{
// Build the mesh and fill in the values
Mesh_DEM_Triangulation_2D_Freudenthal<FieldType, StorageType> mesh(nRows, nCols);
// Run the contour tree on the mesh
return RunContourTree(fieldArray,
timings,
contourTree,
sortOrder,
nIterations,
nRows,
nCols,
1,
mesh,
computeRegularStructure);
}
// 3D Contour Tree using marching cubes
else if (useMarchingCubes)
{
// Build the mesh and fill in the values
Mesh_DEM_Triangulation_3D_MarchingCubes<FieldType, StorageType> mesh(nRows, nCols, nSlices);
// Run the contour tree on the mesh
return RunContourTree(fieldArray,
timings,
contourTree,
sortOrder,
nIterations,
nRows,
nCols,
nSlices,
mesh,
computeRegularStructure);
}
// 3D Contour Tree with Freudenthal
else
{
// Build the mesh and fill in the values
Mesh_DEM_Triangulation_3D_Freudenthal<FieldType, StorageType> mesh(nRows, nCols, nSlices);
// Run the contour tree on the mesh
return RunContourTree(fieldArray,
timings,
contourTree,
sortOrder,
nIterations,
nRows,
nCols,
nSlices,
mesh,
computeRegularStructure);
}
}
private:
/*!
* Run the contour tree for the given mesh. This function implements the main steps for
* computing the contour tree after the mesh has been constructed using the approbrite
* contour tree mesh class
*/
template <typename FieldType, typename StorageType, typename MeshClass>
void RunContourTree(const vtkm::cont::ArrayHandle<FieldType, StorageType> fieldArray,
std::vector<std::pair<std::string, vtkm::Float64>>& timings,
contourtree_augmented::ContourTree& contourTree,
contourtree_augmented::IdArrayType& sortOrder,
vtkm::Id& nIterations,
const vtkm::Id /*nRows*/, // FIXME: Remove unused parameter?
const vtkm::Id /*nCols*/, // FIXME: Remove unused parameter?
const vtkm::Id /*nSlices*/, // FIXME: Remove unused parameter?
MeshClass& mesh,
bool computeRegularStructure)
{
using namespace vtkm::worklet::contourtree_augmented;
// TODO: This should be switched to use the logging macros defined in vtkm/cont/logging.h
// Start the timer
vtkm::cont::Timer<> totalTime;
// Stage 1: Load the data into the mesh. This is done in the Run() method above and accessible
// here via the mesh parameter. The actual data load is performed outside of the
// worklet in the example contour tree app (or whoever uses the worklet)
// Stage 2 : Sort the data on the mesh to initialize sortIndex & indexReverse on the mesh
// Start the timer for the mesh sort
vtkm::cont::Timer<> timer;
mesh.SortData(fieldArray);
timings.push_back(std::pair<std::string, vtkm::Float64>("Sort Data", timer.GetElapsedTime()));
timer.Reset();
// Stage 3: Assign every mesh vertex to a peak
MeshExtrema extrema(mesh.nVertices);
extrema.SetStarts(mesh, true);
extrema.BuildRegularChains(true);
timings.push_back(
std::pair<std::string, vtkm::Float64>("Join Tree Regular Chains", timer.GetElapsedTime()));
timer.Reset();
// Stage 4: Identify join saddles & construct Active Join Graph
MergeTree joinTree(mesh.nVertices, true);
ActiveGraph joinGraph(true);
joinGraph.Initialise(mesh, extrema);
timings.push_back(std::pair<std::string, vtkm::Float64>("Join Tree Initialize Active Graph",
timer.GetElapsedTime()));
#ifdef DEBUG_PRINT
joinGraph.DebugPrint("Active Graph Instantiated", __FILE__, __LINE__);
joinGraph.DebugPrint("Active Graph Instantiated", __FILE__, __LINE__);
#endif
timer.Reset();
// Stage 5: Compute Join Tree Hyperarcs from Active Join Graph
joinGraph.MakeMergeTree(joinTree, extrema);
timings.push_back(
std::pair<std::string, vtkm::Float64>("Join Tree Compute", timer.GetElapsedTime()));
#ifdef DEBUG_PRINT
joinTree.DebugPrint("Join tree Computed", __FILE__, __LINE__);
joinTree.DebugPrintTree("Join tree", __FILE__, __LINE__, mesh);
#endif
timer.Reset();
// Stage 6: Assign every mesh vertex to a pit
extrema.SetStarts(mesh, false);
extrema.BuildRegularChains(false);
timings.push_back(
std::pair<std::string, vtkm::Float64>("Spit Tree Regular Chains", timer.GetElapsedTime()));
timer.Reset();
// Stage 7: Identify split saddles & construct Active Split Graph
MergeTree splitTree(mesh.nVertices, false);
ActiveGraph splitGraph(false);
splitGraph.Initialise(mesh, extrema);
timings.push_back(std::pair<std::string, vtkm::Float64>("Split Tree Initialize Active Graph",
timer.GetElapsedTime()));
#ifdef DEBUG_PRINT
splitGraph.DebugPrint("Active Graph Instantiated", __FILE__, __LINE__);
#endif
timer.Reset();
// Stage 8: Compute Split Tree Hyperarcs from Active Split Graph
splitGraph.MakeMergeTree(splitTree, extrema);
timings.push_back(
std::pair<std::string, vtkm::Float64>("Split Tree Compute", timer.GetElapsedTime()));
#ifdef DEBUG_PRINT
splitTree.DebugPrint("Split tree Computed", __FILE__, __LINE__);
// Debug split and join tree
joinTree.DebugPrintTree("Join tree", __FILE__, __LINE__, mesh);
splitTree.DebugPrintTree("Split tree", __FILE__, __LINE__, mesh);
#endif
timer.Reset();
// Stage 9: Join & Split Tree are Augmented, then combined to construct Contour Tree
contourTree.Init(mesh.nVertices);
ContourTreeMaker treeMaker(contourTree, joinTree, splitTree);
// 9.1 First we compute the hyper- and super- structure
treeMaker.ComputeHyperAndSuperStructure();
timings.push_back(std::pair<std::string, vtkm::Float64>(
"Contour Tree Hyper and Super Structure", timer.GetElapsedTime()));
timer.Reset();
// 9.2 Then we compute the regular structure
if (computeRegularStructure)
{
treeMaker.ComputeRegularStructure(extrema);
timings.push_back(std::pair<std::string, vtkm::Float64>("Contour Tree Regular Structure",
timer.GetElapsedTime()));
timer.Reset();
}
// Collect the output data
nIterations = treeMaker.nIterations;
sortOrder = mesh.sortOrder;
// ProcessContourTree::CollectSortedSuperarcs<DeviceAdapter>(contourTree, mesh.sortOrder, saddlePeak);
// contourTree.SortedArcPrint(mesh.sortOrder);
// contourTree.PrintDotSuperStructure();
}
};
} // namespace vtkm
} // namespace vtkm::worklet
#endif // vtk_m_worklet_ContourTreeUniformAugmented_h