vtk-m/vtkm/worklet/contourtree_distributed/tree_grafter/CopyNewSupernodesWorklet.h

418 lines
22 KiB
C++

//============================================================================
// Copyright (c) Kitware, Inc.
// All rights reserved.
// See LICENSE.txt for details.
//
// This software is distributed WITHOUT ANY WARRANTY; without even
// the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
// PURPOSE. See the above copyright notice for more information.
//============================================================================
// Copyright (c) 2018, The Regents of the University of California, through
// Lawrence Berkeley National Laboratory (subject to receipt of any required approvals
// from the U.S. Dept. of Energy). All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// (1) Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// (2) Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// (3) Neither the name of the University of California, Lawrence Berkeley National
// Laboratory, U.S. Dept. of Energy nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
// IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
// INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
// OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
// OF THE POSSIBILITY OF SUCH DAMAGE.
//
//=============================================================================
//
// This code is an extension of the algorithm presented in the paper:
// Parallel Peak Pruning for Scalable SMP Contour Tree Computation.
// Hamish Carr, Gunther Weber, Christopher Sewell, and James Ahrens.
// Proceedings of the IEEE Symposium on Large Data Analysis and Visualization
// (LDAV), October 2016, Baltimore, Maryland.
//
// The PPP2 algorithm and software were jointly developed by
// Hamish Carr (University of Leeds), Gunther H. Weber (LBNL), and
// Oliver Ruebel (LBNL)
//==============================================================================
#ifndef vtk_m_worklet_contourtree_distributed_tree_grafter_copy_new_supernodes_worklet_h
#define vtk_m_worklet_contourtree_distributed_tree_grafter_copy_new_supernodes_worklet_h
#include <vtkm/worklet/WorkletMapField.h>
#include <vtkm/worklet/contourtree_augmented/Types.h>
namespace vtkm
{
namespace worklet
{
namespace contourtree_distributed
{
namespace tree_grafter
{
// Worklet implementing TreeGrafter.CopyNewSupernodes
class CopyNewSupernodesWorklet : public vtkm::worklet::WorkletMapField
{
public:
using ControlSignature = void(WholeArrayIn newSupernode, // input and iteration index
WholeArrayIn contourTreeSupernodes, // input
WholeArrayIn meshSorterOrder, // input
WholeArrayIn hierarchicalTreeId, // input
WholeArrayIn whenTransferred, // input
WholeArrayIn hierarchicalSuperparent, // input
WholeArrayIn hierarchicalHyperparent, //input
WholeArrayIn hierarchicalSuperId, // input
WholeArrayIn hierarchicalHyperId, // input
WholeArrayIn hierarchicalHyperarc, // input
WholeArrayOut hierarchicalTreeSupernodes, // output
WholeArrayOut hierarchicalTreeWhichRound, // output
WholeArrayOut hierarchicalTreeWhichIteration, // output
WholeArrayOut hierarchicalTreeSuperarcs, // output
WholeArrayInOut hierarchicalRegularId, // input/output
WholeArrayInOut hierarchicalTreeHyperparents, // input/output
WholeArrayInOut hierarchicalTreeSuperparents // input/output
);
using ExecutionSignature =
void(InputIndex, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17);
using InputDomain = _1;
// Default Constructor
VTKM_EXEC_CONT
CopyNewSupernodesWorklet(vtkm::Id theRound, vtkm::Id numOldSupernodes)
: TheRound(theRound)
, NumOldSupernodes(numOldSupernodes)
{
}
template <typename InFieldPortalType,
typename SortOrderPortalType,
typename OutFieldPortalType,
typename InOutFieldPortalType>
VTKM_EXEC void operator()(
const vtkm::Id& newSupernode,
const InFieldPortalType& newSupernodesPortal,
const InFieldPortalType& contourTreeSupernodesPortal,
const SortOrderPortalType&
meshSortOrderPortal, // depending on the mesh type these may be differnt fancy arrays
const InFieldPortalType& hierarchicalTreeIdPortal,
const InFieldPortalType& whenTransferredPortal,
const InFieldPortalType& hierarchicalSuperparentPortal,
const InFieldPortalType& hierarchicalHyperparentPortal,
const InFieldPortalType& hierarchicalSuperIdPortal,
const InFieldPortalType& hierarchicalHyperIdPortal,
const InFieldPortalType& hierarchicalHyperarcPortal,
const OutFieldPortalType& hierarchicalTreeSupernodesPortal,
const OutFieldPortalType& hierarchicalTreeWhichRoundPortal,
const OutFieldPortalType& hierarchicalTreeWhichIterationPortal,
const OutFieldPortalType& hierarchicalTreeSuperarcsPortal,
const InOutFieldPortalType& hierarchicalRegularIdPortal,
const InOutFieldPortalType& hierarchicalTreeHyperparentsPortal,
const InOutFieldPortalType& hierarchicalTreeSuperparentsPortal
) const
{ // operator ()
// per new supernode
// retrieve the old supernode & regular node Ids
vtkm::Id oldSupernodeId = newSupernodesPortal.Get(newSupernode);
vtkm::Id oldSortId = contourTreeSupernodesPortal.Get(oldSupernodeId);
vtkm::Id oldRegularId = meshSortOrderPortal.Get(oldSortId);
// convert to new Ids
vtkm::Id newRegularId = hierarchicalTreeIdPortal.Get(oldRegularId);
vtkm::Id newSupernodeId = this->NumOldSupernodes + newSupernode;
// set the supernode accordingly
hierarchicalTreeSupernodesPortal.Set(newSupernodeId, newRegularId);
// and set the round and iteration
hierarchicalTreeWhichRoundPortal.Set(newSupernodeId, this->TheRound);
hierarchicalTreeWhichIterationPortal.Set(newSupernodeId,
whenTransferredPortal.Get(oldSupernodeId));
// We want to set the superarc and hyperparent. At this point, supernodes fall into four groups:
// I. Present in the hierarchical tree as supernodes No work required (not in newSupernodes)
// II. Present in the hierarchical tree as regular nodes only Added as supernode. Hyperparent only needs to be set.
// III. Not present in the hierarchical tree: attachment point Super/hyper parent stored in hierarchical Ids
// IV. Not present, and not an attachment point Super/hyper parent stored in local Ids
// Note that I. is already taken care of, so we test whether the supernode was previously in the hierarchical tree at all
vtkm::Id storedRegularId = hierarchicalRegularIdPortal.Get(oldSupernodeId);
// and set the regular Id in the hierarchical tree (even if it is already set)
hierarchicalRegularIdPortal.Set(oldSupernodeId, newRegularId);
// now we sort out hyperparent
if (!vtkm::worklet::contourtree_augmented::NoSuchElement(storedRegularId))
{ // present: II
// if it isn't already a supernode, it is "only" a regular node
if (newSupernodeId >= this->NumOldSupernodes)
{ // regular but not super
// in this case, it already has a superparent (because it is already present in the tree as a regular node)
// so we look up the relevant hyperparent
hierarchicalTreeHyperparentsPortal.Set(
newSupernodeId,
hierarchicalTreeHyperparentsPortal.Get(
hierarchicalTreeSuperparentsPortal.Get(storedRegularId)));
// we set this to indicate that it's an attachment point
hierarchicalTreeSuperarcsPortal.Set(
newSupernodeId, (vtkm::Id)vtkm::worklet::contourtree_augmented::NO_SUCH_ELEMENT);
} // regular but not super
} // present: actually II
else
{ // not present: III or IV
// attachment point (III) or free point (IV)
if (!vtkm::worklet::contourtree_augmented::NoSuchElement(
hierarchicalSuperparentPortal.Get(oldSupernodeId)))
{ // attachment point
// we've already captured the super-/hyper- parent in an earlier stage
hierarchicalTreeSuperparentsPortal.Set(newRegularId,
hierarchicalSuperparentPortal.Get(oldSupernodeId));
hierarchicalTreeHyperparentsPortal.Set(newSupernodeId,
hierarchicalHyperparentPortal.Get(oldSupernodeId));
// and the superarc should indicate an attachment point
hierarchicalTreeSuperarcsPortal.Set(
newSupernodeId, (vtkm::Id)vtkm::worklet::contourtree_augmented::NO_SUCH_ELEMENT);
} // attachment point
// otherwise, we have a brand new free supernode, which is it's own superparent
else
{ // free point
// this is a supernode that was never in the hierarchical tree in the first place
// it is its own superparent, and has a new hyperparent in old supernode Ids (often itself)
// and can use that to look up the new hyperId
vtkm::Id hierarchicalHyperparentOldSuperId =
hierarchicalHyperparentPortal.Get(oldSupernodeId);
vtkm::Id hierarchicalHyperparentNewHyperId =
hierarchicalHyperIdPortal.Get(hierarchicalHyperparentOldSuperId);
hierarchicalTreeHyperparentsPortal.Set(newSupernodeId, hierarchicalHyperparentNewHyperId);
// since it is its own superparent, this is easy . . .
hierarchicalTreeSuperparentsPortal.Set(newRegularId, newSupernodeId);
// now the hard part: fill in the superarc
vtkm::Id hierarchicalHyperarcOldSuperId =
hierarchicalHyperarcPortal.Get(hierarchicalHyperparentOldSuperId);
vtkm::Id isAscendingHyperarc =
vtkm::worklet::contourtree_augmented::IsAscending(hierarchicalHyperarcOldSuperId)
? (vtkm::Id)vtkm::worklet::contourtree_augmented::IS_ASCENDING
: 0x0;
hierarchicalHyperarcOldSuperId =
vtkm::worklet::contourtree_augmented::MaskedIndex(hierarchicalHyperarcOldSuperId);
vtkm::Id hierarchicalHyperarcNewSuperId =
hierarchicalSuperIdPortal.Get(hierarchicalHyperarcOldSuperId);
// we have located each supernode on a hyperarc
// and we have to work out the supernode each connects to
// unfortunately, the attachment points complicate this compared to the old code
// for sweeping later, we will set the # of superchildren, but we don't have that yet
// So the test will have to be the following:
// i. the "neighbour" is the +1 index
// ii. if the neighbour is off the end, we take the end of the hyperarc
// iii. if the neighbour has flagged as an attachment point, we take the end of the hyperarc
// iv. in all other cases, we take the neighbour
// Note that we are saved some trouble by the fact that this code only applies to free points
// the superarc is now set by checking to see if the neighbour has the same hyperparent:
// if it does, our superarc goes to the next element
// if not (or we're at array end), we go to the hyperarc's target
// NOTE: we will store the OLD superarc Id at this stage, since we need it to sort out regular arcs
// this means we will have to add a final loop to reset to hierarchical Ids
vtkm::Id neighbour = newSupernode + 1;
// special case at end of array: map the old hyperarc Id to a new one
if (neighbour >= newSupernodesPortal.GetNumberOfValues())
{ // end of array
hierarchicalTreeSuperarcsPortal.Set(newSupernodeId,
hierarchicalHyperarcNewSuperId | isAscendingHyperarc);
} // end of array
else
{ // not at the end of the array
vtkm::Id nbrSuperId = newSupernodesPortal.Get(neighbour);
// immediately check for case iii. by looking at the hierarchicalSuperparent of the neighbour's old Id
// if it's already set, it's because it's an attachment point
if (!vtkm::worklet::contourtree_augmented::NoSuchElement(
hierarchicalSuperparentPortal.Get(nbrSuperId)))
{ // attachment point
hierarchicalTreeSuperarcsPortal.Set(
newSupernodeId, hierarchicalHyperarcNewSuperId | isAscendingHyperarc);
} // attachment point
else
{ // not attachment point
vtkm::Id nbrHyperparent = hierarchicalHyperparentPortal.Get(nbrSuperId);
// if they share a hyperparent, just take the neighbour
if (nbrHyperparent == hierarchicalHyperparentOldSuperId)
{ // shared hyperparent
hierarchicalTreeSuperarcsPortal.Set(
newSupernodeId, hierarchicalSuperIdPortal.Get(nbrSuperId) | isAscendingHyperarc);
} // shared hyperparent
// if not, take the target of the hyperarc
else
{ // not shared hyperparent
hierarchicalTreeSuperarcsPortal.Set(
newSupernodeId, hierarchicalHyperarcNewSuperId | isAscendingHyperarc);
} // not shared hyperparent
} // not attachment point
} // not at the end of the array
} // free point
} // attachment point (III) or free point (IV)
// In serial this worklet implements the following operation
/*
for (indexType newSupernode = 0; newSupernode < nNewSupernodes; newSupernode++)
{ // per new supernode
// retrieve the old supernode & regular node IDs
indexType oldSupernodeID = newSupernodes[newSupernode];
indexType oldSortID = contourTree->supernodes[oldSupernodeID];
indexType oldRegularID = mesh->SortOrder(oldSortID);
// convert to new IDs
indexType newRegularID = hierarchicalTreeID[oldRegularID];
indexType newSupernodeID = nOldSupernodes + newSupernode;
// set the supernode accordingly
hierarchicalTree.supernodes[newSupernodeID] = newRegularID;
// and set the round and iteration
hierarchicalTree.whichRound[newSupernodeID] = theRound;
hierarchicalTree.whichIteration[newSupernodeID] = whenTransferred[oldSupernodeID];
// We want to set the superarc and hyperparent. At this point, supernodes fall into four groups:
// I. Present in the hierarchical tree as supernodes No work required (not in newSupernodes)
// II. Present in the hierarchical tree as regular nodes only Added as supernode. Hyperparent only needs to be set.
// III. Not present in the hierarchical tree: attachment point Super/hyper parent stored in hierarchical IDs
// IV. Not present, and not an attachment point Super/hyper parent stored in local IDs
// Note that I. is already taken care of, so we test whether the supernode was previously in the hierarchical tree at all
indexType storedRegularID = hierarchicalRegularID[oldSupernodeID];
// and set the regular ID in the hierarchical tree (even if it is already set)
hierarchicalRegularID[oldSupernodeID] = newRegularID;
// now we sort out hyperparent
if (!noSuchElement(storedRegularID))
{ // present: II
// if it isn't already a supernode, it is "only" a regular node
if (newSupernodeID >= nOldSupernodes)
{ // regular but not super
// in this case, it already has a superparent (because it is already present in the tree as a regular node)
// so we look up the relevant hyperparent
hierarchicalTree.hyperparents[newSupernodeID] = hierarchicalTree.hyperparents[hierarchicalTree.superparents[storedRegularID]];
// we set this to indicate that it's an attachment point
hierarchicalTree.superarcs[newSupernodeID] = NO_SUCH_ELEMENT;
} // regular but not super
} // present: actually II
else
{ // not present: III or IV
// attachment point (III) or free point (IV)
if (!noSuchElement(hierarchicalSuperparent[oldSupernodeID]))
{ // attachment point
// we've already captured the super-/hyper- parent in an earlier stage
hierarchicalTree.superparents[newRegularID] = hierarchicalSuperparent[oldSupernodeID];
hierarchicalTree.hyperparents[newSupernodeID] = hierarchicalHyperparent[oldSupernodeID];
// and the superarc should indicate an attachment point
hierarchicalTree.superarcs[newSupernodeID] = NO_SUCH_ELEMENT;
} // attachment point
// otherwise, we have a brand new free supernode, which is it's own superparent
else
{ // free point
// this is a supernode that was never in the hierarchical tree in the first place
// it is its own superparent, and has a new hyperparent in old supernode IDs (often itself)
// and can use that to look up the new hyperID
indexType hierarchicalHyperparentOldSuperID = hierarchicalHyperparent[oldSupernodeID];
indexType hierarchicalHyperparentNewHyperID = hierarchicalHyperID[hierarchicalHyperparentOldSuperID];
hierarchicalTree.hyperparents[newSupernodeID] = hierarchicalHyperparentNewHyperID;
// since it is its own superparent, this is easy . . .
hierarchicalTree.superparents[newRegularID] = newSupernodeID;
// now the hard part: fill in the superarc
indexType hierarchicalHyperarcOldSuperID = hierarchicalHyperarc[hierarchicalHyperparentOldSuperID];
indexType isAscendingHyperarc = isAscending(hierarchicalHyperarcOldSuperID) ? IS_ASCENDING : 0x0;
hierarchicalHyperarcOldSuperID = maskedIndex(hierarchicalHyperarcOldSuperID);
indexType hierarchicalHyperarcNewSuperID = hierarchicalSuperID[hierarchicalHyperarcOldSuperID];
// we have located each supernode on a hyperarc
// and we have to work out the supernode each connects to
// unfortunately, the attachment points complicate this compared to the old code
// for sweeping later, we will set the # of superchildren, but we don't have that yet
// So the test will have to be the following:
// i. the "neighbour" is the +1 index
// ii. if the neighbour is off the end, we take the end of the hyperarc
// iii. if the neighbour has flagged as an attachment point, we take the end of the hyperarc
// iv. in all other cases, we take the neighbour
// Note that we are saved some trouble by the fact that this code only applies to free points
// the superarc is now set by checking to see if the neighbour has the same hyperparent:
// if it does, our superarc goes to the next element
// if not (or we're at array end), we go to the hyperarc's target
// NOTE: we will store the OLD superarc ID at this stage, since we need it to sort out regular arcs
// this means we will have to add a final loop to reset to hierarchical IDs
indexType neighbour = newSupernode+1;
// special case at end of array: map the old hyperarc ID to a new one
if (neighbour >= newSupernodes.size())
{ // end of array
hierarchicalTree.superarcs[newSupernodeID] = hierarchicalHyperarcNewSuperID | isAscendingHyperarc;
} // end of array
else
{ // not at the end of the array
indexType nbrSuperID = newSupernodes[neighbour];
// immediately check for case iii. by looking at the hierarchicalSuperparent of the neighbour's old ID
// if it's already set, it's because it's an attachment point
if (!noSuchElement(hierarchicalSuperparent[nbrSuperID]))
{ // attachment point
hierarchicalTree.superarcs[newSupernodeID] = hierarchicalHyperarcNewSuperID | isAscendingHyperarc;
} // attachment point
else
{ // not attachment point
indexType nbrHyperparent = hierarchicalHyperparent[nbrSuperID];
// if they share a hyperparent, just take the neighbour
if (nbrHyperparent == hierarchicalHyperparentOldSuperID)
{ // shared hyperparent
hierarchicalTree.superarcs[newSupernodeID] = hierarchicalSuperID[nbrSuperID] | isAscendingHyperarc;
} // shared hyperparent
// if not, take the target of the hyperarc
else
{ // not shared hyperparent
hierarchicalTree.superarcs[newSupernodeID] = hierarchicalHyperarcNewSuperID | isAscendingHyperarc;
} // not shared hyperparent
} // not attachment point
} // not at the end of the array
} // free point
} // attachment point (III) or free point (IV)
} // per new supernode
*/
} // operator ()
private:
vtkm::Id TheRound;
vtkm::Id NumOldSupernodes;
}; // CopyNewHypernodes
} // namespace tree_grafter
} // namespace contourtree_distributed
} // namespace worklet
} // namespace vtkm
#endif