vtk-m/benchmarking/BenchmarkTopologyAlgorithms.cxx
Haocheng LIU 415252c662 Introduce asynchronous and device independent timer
The timer class now is asynchronous and device independent. it's using an
similiar API as vtkOpenGLRenderTimer with Start(), Stop(), Reset(), Ready(),
and GetElapsedTime() function. For convenience and backward compability, Each
Start() function call will call Reset() internally and each GetElapsedTime()
function call will call Stop() function if it hasn't been called yet for keeping
backward compatibility purpose.

Bascially it can be used in two modes:

* Create a Timer without any device info. vtkm::cont::Timer time;

  * It would enable timers for all enabled devices on the machine. Users can get a
specific elapsed time by passing a device id into the GetElapsedtime function.
If no device is provided, it would pick the maximum of all timer results - the
logic behind this decision is that if cuda is disabled, openmp, serial and tbb
roughly give the same results; if cuda is enabled it's safe to return the
maximum elapsed time since users are more interested in the device execution
time rather than the kernal launch time. The Ready function can be handy here
to query the status of the timer.

* Create a Timer with a device id. vtkm::cont::Timer time((vtkm::cont::DeviceAdapterTagCuda()));

  * It works as the old timer that times for a specific device id.
2019-02-05 12:01:56 -05:00

505 lines
15 KiB
C++

//============================================================================
// Copyright (c) Kitware, Inc.
// All rights reserved.
// See LICENSE.txt for details.
// This software is distributed WITHOUT ANY WARRANTY; without even
// the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
// PURPOSE. See the above copyright notice for more information.
//
// Copyright 2014 National Technology & Engineering Solutions of Sandia, LLC (NTESS).
// Copyright 2014 UT-Battelle, LLC.
// Copyright 2014 Los Alamos National Security.
//
// Under the terms of Contract DE-NA0003525 with NTESS,
// the U.S. Government retains certain rights in this software.
//
// Under the terms of Contract DE-AC52-06NA25396 with Los Alamos National
// Laboratory (LANL), the U.S. Government retains certain rights in
// this software.
//============================================================================
#include <vtkm/Math.h>
#include <vtkm/VectorAnalysis.h>
#include <vtkm/cont/ArrayHandle.h>
#include <vtkm/cont/CellSetStructured.h>
#include <vtkm/cont/Timer.h>
#include <vtkm/worklet/DispatcherMapField.h>
#include <vtkm/worklet/DispatcherMapTopology.h>
#include <vtkm/worklet/WorkletMapField.h>
#include <vtkm/worklet/WorkletMapTopology.h>
#include "Benchmarker.h"
#include <vtkm/cont/testing/Testing.h>
#include <cctype>
#include <random>
#include <string>
namespace vtkm
{
namespace benchmarking
{
#define CUBE_SIZE 256
static const std::string DIVIDER(40, '-');
enum BenchmarkName
{
CELL_TO_POINT = 1 << 1,
POINT_TO_CELL = 1 << 2,
MC_CLASSIFY = 1 << 3,
ALL = CELL_TO_POINT | POINT_TO_CELL | MC_CLASSIFY
};
class AveragePointToCell : public vtkm::worklet::WorkletMapPointToCell
{
public:
using ControlSignature = void(FieldInPoint inPoints, CellSetIn cellset, FieldOutCell outCells);
using ExecutionSignature = void(_1, PointCount, _3);
using InputDomain = _2;
template <typename PointValueVecType, typename OutType>
VTKM_EXEC void operator()(const PointValueVecType& pointValues,
const vtkm::IdComponent& numPoints,
OutType& average) const
{
OutType sum = static_cast<OutType>(pointValues[0]);
for (vtkm::IdComponent pointIndex = 1; pointIndex < numPoints; ++pointIndex)
{
sum = sum + static_cast<OutType>(pointValues[pointIndex]);
}
average = sum / static_cast<OutType>(numPoints);
}
};
class AverageCellToPoint : public vtkm::worklet::WorkletMapCellToPoint
{
public:
using ControlSignature = void(FieldInCell inCells, CellSetIn topology, FieldOut outPoints);
using ExecutionSignature = void(_1, _3, CellCount);
using InputDomain = _2;
template <typename CellVecType, typename OutType>
VTKM_EXEC void operator()(const CellVecType& cellValues,
OutType& avgVal,
const vtkm::IdComponent& numCellIDs) const
{
//simple functor that returns the average cell Value.
avgVal = vtkm::TypeTraits<OutType>::ZeroInitialization();
if (numCellIDs != 0)
{
for (vtkm::IdComponent cellIndex = 0; cellIndex < numCellIDs; ++cellIndex)
{
avgVal += static_cast<OutType>(cellValues[cellIndex]);
}
avgVal = avgVal / static_cast<OutType>(numCellIDs);
}
}
};
// -----------------------------------------------------------------------------
template <typename T>
class Classification : public vtkm::worklet::WorkletMapPointToCell
{
public:
using ControlSignature = void(FieldInPoint inNodes, CellSetIn cellset, FieldOutCell outCaseId);
using ExecutionSignature = void(_1, _3);
using InputDomain = _2;
T IsoValue;
VTKM_CONT
Classification(T isovalue)
: IsoValue(isovalue)
{
}
template <typename FieldInType>
VTKM_EXEC void operator()(const FieldInType& fieldIn, vtkm::IdComponent& caseNumber) const
{
using FieldType = typename vtkm::VecTraits<FieldInType>::ComponentType;
const FieldType iso = static_cast<FieldType>(this->IsoValue);
caseNumber = ((fieldIn[0] > iso) | (fieldIn[1] > iso) << 1 | (fieldIn[2] > iso) << 2 |
(fieldIn[3] > iso) << 3 | (fieldIn[4] > iso) << 4 | (fieldIn[5] > iso) << 5 |
(fieldIn[6] > iso) << 6 | (fieldIn[7] > iso) << 7);
}
};
struct ValueTypes
: vtkm::ListTagBase<vtkm::UInt32, vtkm::Int32, vtkm::Int64, vtkm::Float32, vtkm::Float64>
{
};
/// This class runs a series of micro-benchmarks to measure
/// performance of different field operations
template <class DeviceAdapterTag>
class BenchmarkTopologyAlgorithms
{
using StorageTag = vtkm::cont::StorageTagBasic;
using Timer = vtkm::cont::Timer;
using ValueVariantHandle = vtkm::cont::VariantArrayHandleBase<ValueTypes>;
private:
template <typename T, typename Enable = void>
struct NumberGenerator
{
};
template <typename T>
struct NumberGenerator<T, typename std::enable_if<std::is_floating_point<T>::value>::type>
{
std::mt19937 rng;
std::uniform_real_distribution<T> distribution;
NumberGenerator(T low, T high)
: rng()
, distribution(low, high)
{
}
T next() { return distribution(rng); }
};
template <typename T>
struct NumberGenerator<T, typename std::enable_if<!std::is_floating_point<T>::value>::type>
{
std::mt19937 rng;
std::uniform_int_distribution<T> distribution;
NumberGenerator(T low, T high)
: rng()
, distribution(low, high)
{
}
T next() { return distribution(rng); }
};
template <typename Value>
struct BenchCellToPointAvg
{
std::vector<Value> input;
vtkm::cont::ArrayHandle<Value, StorageTag> InputHandle;
std::size_t DomainSize;
VTKM_CONT
BenchCellToPointAvg()
{
NumberGenerator<Value> generator(static_cast<Value>(1.0), static_cast<Value>(100.0));
//cube size is points in each dim
this->DomainSize = (CUBE_SIZE - 1) * (CUBE_SIZE - 1) * (CUBE_SIZE - 1);
this->input.resize(DomainSize);
for (std::size_t i = 0; i < DomainSize; ++i)
{
this->input[i] = generator.next();
}
this->InputHandle = vtkm::cont::make_ArrayHandle(this->input);
}
VTKM_CONT
vtkm::Float64 operator()()
{
vtkm::cont::CellSetStructured<3> cellSet;
cellSet.SetPointDimensions(vtkm::Id3(CUBE_SIZE, CUBE_SIZE, CUBE_SIZE));
vtkm::cont::ArrayHandle<Value, StorageTag> result;
Timer timer{ DeviceAdapterTag() };
timer.Start();
vtkm::worklet::DispatcherMapTopology<AverageCellToPoint> dispatcher;
dispatcher.SetDevice(DeviceAdapterTag());
dispatcher.Invoke(this->InputHandle, cellSet, result);
return timer.GetElapsedTime();
}
virtual std::string Type() const { return std::string("Static"); }
VTKM_CONT
std::string Description() const
{
std::stringstream description;
description << "Computing Cell To Point Average "
<< "[" << this->Type() << "] "
<< "with a domain size of: " << this->DomainSize;
return description.str();
}
};
template <typename Value>
struct BenchCellToPointAvgDynamic : public BenchCellToPointAvg<Value>
{
VTKM_CONT
vtkm::Float64 operator()()
{
vtkm::cont::CellSetStructured<3> cellSet;
cellSet.SetPointDimensions(vtkm::Id3(CUBE_SIZE, CUBE_SIZE, CUBE_SIZE));
ValueVariantHandle dinput(this->InputHandle);
vtkm::cont::ArrayHandle<Value, StorageTag> result;
Timer timer{ DeviceAdapterTag() };
timer.Start();
vtkm::worklet::DispatcherMapTopology<AverageCellToPoint> dispatcher;
dispatcher.SetDevice(DeviceAdapterTag());
dispatcher.Invoke(dinput, cellSet, result);
return timer.GetElapsedTime();
}
virtual std::string Type() const { return std::string("Dynamic"); }
};
VTKM_MAKE_BENCHMARK(CellToPointAvg, BenchCellToPointAvg);
VTKM_MAKE_BENCHMARK(CellToPointAvgDynamic, BenchCellToPointAvgDynamic);
template <typename Value>
struct BenchPointToCellAvg
{
std::vector<Value> input;
vtkm::cont::ArrayHandle<Value, StorageTag> InputHandle;
std::size_t DomainSize;
VTKM_CONT
BenchPointToCellAvg()
{
NumberGenerator<Value> generator(static_cast<Value>(1.0), static_cast<Value>(100.0));
this->DomainSize = (CUBE_SIZE) * (CUBE_SIZE) * (CUBE_SIZE);
this->input.resize(DomainSize);
for (std::size_t i = 0; i < DomainSize; ++i)
{
this->input[i] = generator.next();
}
this->InputHandle = vtkm::cont::make_ArrayHandle(this->input);
}
VTKM_CONT
vtkm::Float64 operator()()
{
vtkm::cont::CellSetStructured<3> cellSet;
cellSet.SetPointDimensions(vtkm::Id3(CUBE_SIZE, CUBE_SIZE, CUBE_SIZE));
vtkm::cont::ArrayHandle<Value, StorageTag> result;
Timer timer{ DeviceAdapterTag() };
timer.Start();
vtkm::worklet::DispatcherMapTopology<AveragePointToCell> dispatcher;
dispatcher.SetDevice(DeviceAdapterTag());
dispatcher.Invoke(this->InputHandle, cellSet, result);
return timer.GetElapsedTime();
}
virtual std::string Type() const { return std::string("Static"); }
VTKM_CONT
std::string Description() const
{
std::stringstream description;
description << "Computing Point To Cell Average "
<< "[" << this->Type() << "] "
<< "with a domain size of: " << this->DomainSize;
return description.str();
}
};
template <typename Value>
struct BenchPointToCellAvgDynamic : public BenchPointToCellAvg<Value>
{
VTKM_CONT
vtkm::Float64 operator()()
{
vtkm::cont::CellSetStructured<3> cellSet;
cellSet.SetPointDimensions(vtkm::Id3(CUBE_SIZE, CUBE_SIZE, CUBE_SIZE));
ValueVariantHandle dinput(this->InputHandle);
vtkm::cont::ArrayHandle<Value, StorageTag> result;
Timer timer{ DeviceAdapterTag() };
timer.Start();
vtkm::worklet::DispatcherMapTopology<AveragePointToCell> dispatcher;
dispatcher.SetDevice(DeviceAdapterTag());
dispatcher.Invoke(dinput, cellSet, result);
return timer.GetElapsedTime();
}
virtual std::string Type() const { return std::string("Dynamic"); }
};
VTKM_MAKE_BENCHMARK(PointToCellAvg, BenchPointToCellAvg);
VTKM_MAKE_BENCHMARK(PointToCellAvgDynamic, BenchPointToCellAvgDynamic);
template <typename Value>
struct BenchClassification
{
std::vector<Value> input;
vtkm::cont::ArrayHandle<Value, StorageTag> InputHandle;
Value IsoValue;
size_t DomainSize;
VTKM_CONT
BenchClassification()
{
NumberGenerator<Value> generator(static_cast<Value>(1.0), static_cast<Value>(100.0));
this->DomainSize = (CUBE_SIZE) * (CUBE_SIZE) * (CUBE_SIZE);
this->input.resize(DomainSize);
for (std::size_t i = 0; i < DomainSize; ++i)
{
this->input[i] = generator.next();
}
this->InputHandle = vtkm::cont::make_ArrayHandle(this->input);
this->IsoValue = generator.next();
}
VTKM_CONT
vtkm::Float64 operator()()
{
vtkm::cont::CellSetStructured<3> cellSet;
cellSet.SetPointDimensions(vtkm::Id3(CUBE_SIZE, CUBE_SIZE, CUBE_SIZE));
vtkm::cont::ArrayHandle<vtkm::IdComponent, StorageTag> result;
ValueVariantHandle dinput(this->InputHandle);
Timer timer{ DeviceAdapterTag() };
timer.Start();
Classification<Value> worklet(this->IsoValue);
vtkm::worklet::DispatcherMapTopology<Classification<Value>> dispatcher(worklet);
dispatcher.SetDevice(DeviceAdapterTag());
dispatcher.Invoke(dinput, cellSet, result);
return timer.GetElapsedTime();
}
virtual std::string Type() const { return std::string("Static"); }
VTKM_CONT
std::string Description() const
{
std::stringstream description;
description << "Computing Marching Cubes Classification "
<< "[" << this->Type() << "] "
<< "with a domain size of: " << this->DomainSize;
return description.str();
}
};
template <typename Value>
struct BenchClassificationDynamic : public BenchClassification<Value>
{
VTKM_CONT
vtkm::Float64 operator()()
{
vtkm::cont::CellSetStructured<3> cellSet;
cellSet.SetPointDimensions(vtkm::Id3(CUBE_SIZE, CUBE_SIZE, CUBE_SIZE));
vtkm::cont::ArrayHandle<vtkm::IdComponent, StorageTag> result;
Timer timer{ DeviceAdapterTag() };
timer.Start();
Classification<Value> worklet(this->IsoValue);
vtkm::worklet::DispatcherMapTopology<Classification<Value>> dispatcher(worklet);
dispatcher.SetDevice(DeviceAdapterTag());
dispatcher.Invoke(this->InputHandle, cellSet, result);
timer.Stop();
return timer.GetElapsedTime();
}
virtual std::string Type() const { return std::string("Dynamic"); }
};
VTKM_MAKE_BENCHMARK(Classification, BenchClassification);
VTKM_MAKE_BENCHMARK(ClassificationDynamic, BenchClassificationDynamic);
public:
static VTKM_CONT int Run(int benchmarks)
{
std::cout << DIVIDER << "\nRunning Topology Algorithm benchmarks\n";
if (benchmarks & CELL_TO_POINT)
{
std::cout << DIVIDER << "\nBenchmarking Cell To Point Average\n";
VTKM_RUN_BENCHMARK(CellToPointAvg, ValueTypes());
VTKM_RUN_BENCHMARK(CellToPointAvgDynamic, ValueTypes());
}
if (benchmarks & POINT_TO_CELL)
{
std::cout << DIVIDER << "\nBenchmarking Point to Cell Average\n";
VTKM_RUN_BENCHMARK(PointToCellAvg, ValueTypes());
VTKM_RUN_BENCHMARK(PointToCellAvgDynamic, ValueTypes());
}
if (benchmarks & MC_CLASSIFY)
{
std::cout << DIVIDER << "\nBenchmarking Hex/Voxel MC Classification\n";
VTKM_RUN_BENCHMARK(Classification, ValueTypes());
VTKM_RUN_BENCHMARK(ClassificationDynamic, ValueTypes());
}
return 0;
}
};
#undef ARRAY_SIZE
}
} // namespace vtkm::benchmarking
int main(int argc, char* argv[])
{
vtkm::cont::InitLogging(argc, argv);
int benchmarks = 0;
if (argc < 2)
{
benchmarks = vtkm::benchmarking::ALL;
}
else
{
for (int i = 1; i < argc; ++i)
{
std::string arg = argv[i];
std::transform(arg.begin(), arg.end(), arg.begin(), [](char c) {
return static_cast<char>(std::tolower(static_cast<unsigned char>(c)));
});
if (arg == "celltopoint")
{
benchmarks |= vtkm::benchmarking::CELL_TO_POINT;
}
else if (arg == "pointtocell")
{
benchmarks |= vtkm::benchmarking::POINT_TO_CELL;
}
else if (arg == "classify")
{
benchmarks |= vtkm::benchmarking::MC_CLASSIFY;
}
else
{
std::cout << "Unrecognized benchmark: " << argv[i] << std::endl;
return 1;
}
}
}
//now actually execute the benchmarks
using Device = VTKM_DEFAULT_DEVICE_ADAPTER_TAG;
auto tracker = vtkm::cont::GetGlobalRuntimeDeviceTracker();
tracker.ForceDevice(Device{});
return vtkm::benchmarking::BenchmarkTopologyAlgorithms<Device>::Run(benchmarks);
}