Go to file
Kenneth Moreland e3dfa48910 Do not attempt to move non-trivial objects in Variant
The `Variant` class has separate implementations for its move and copy
constructors/assignment operators depending on whether the classes it
holds can be trivially moved. If the objects are trivial, Variant is
trivial as well. However, in the case where the objects are not trivial,
special construction and copying needs to be done.

Previously, the non-trivial `Variant` defined a move constructor that
did a byte copy of the contained object and reset the right hand side
object so that it did not attempt to destroy the object. That usually
works because it guarantees that only one version of the `Variant` will
attempt to destroy the object and its resources should be cleaned up
correctly.

But C++ is a funny language that lets you do weird things. Turns out
there are cases where moving the location of memory for an object
without calling the proper copy method can invalidate the object. For
example, if the object holds a pointer to one of its own members, that
pointer will become invalid. Also, if it points to something that points
back, then the object will need to update those pointers when it is
moved. GCC's version of `std::string` seems to be a type like this.

Solve the problem by simply deleting the move constructors. The copy
constructors and destructor will be called instead to properly manage
the object. A test for these conditions is added to `UnitTestVariant`.
2020-11-09 12:48:10 -07:00
.github docs: update gitlab links to include /-/ component 2020-05-26 14:48:49 -04:00
.gitlab/ci Update ubuntu1804+cuda from 10.1 to 11.1 2020-10-19 15:32:10 -04:00
benchmarking BenchmarkFilters: Add Unstructured bench for Contour 2020-10-21 19:12:51 -04:00
CMake Add support for the Ampere line of NVIDIA GPU's 2020-10-21 10:15:52 -04:00
data remove test on large graph and sample data 2020-10-08 13:26:46 -06:00
docs Disable VTKM_ASSERT when using HIP 2020-09-25 11:06:57 -04:00
examples Commented out incomplete code creating a warning 2020-09-18 06:33:09 -07:00
Utilities Change CI script hash-bang from /bin/env to /usr/bin/env 2020-06-29 06:58:51 -06:00
vtkm Do not attempt to move non-trivial objects in Variant 2020-11-09 12:48:10 -07:00
vtkmstd Allow Variant to be trivial 2020-09-22 16:22:37 -06:00
.clang-format clang-format: update configuration for 9.0 2020-08-24 11:47:55 -04:00
.gitattributes clang-format: update configuration for 9.0 2020-08-24 11:47:55 -04:00
.gitignore Add a point-oscillator filter + example 2018-07-18 09:33:06 -04:00
.gitlab-ci.yml Update ubuntu1804+cuda from 10.1 to 11.1 2020-10-19 15:32:10 -04:00
.hooks-config hooks: add hook chains for development checks and LFS 2020-04-02 12:51:43 -04:00
CMakeLists.txt Disable VTKM_ASSERT when using HIP 2020-09-25 11:06:57 -04:00
CONTRIBUTING.md docs: update gitlab links to include /-/ component 2020-05-26 14:48:49 -04:00
CTestConfig.cmake conslidate the license statement 2019-04-17 10:57:13 -06:00
CTestCustom.cmake.in Rename CellLocatorUniformBins to CellLocatorTwoLevel 2020-09-21 15:42:47 -06:00
LICENSE.txt Correct license on FindMPI.cmake 2019-06-24 14:48:01 -04:00
README.md Update ubuntu1804+cuda from 10.1 to 11.1 2020-10-19 15:32:10 -04:00
version.txt 1.5.0 is our 6th official release of VTK-m. 2019-10-15 13:46:35 -04:00

VTK-m

VTK-m is a toolkit of scientific visualization algorithms for emerging processor architectures. VTK-m supports the fine-grained concurrency for data analysis and visualization algorithms required to drive extreme scale computing by providing abstract models for data and execution that can be applied to a variety of algorithms across many different processor architectures.

You can find out more about the design of VTK-m on the VTK-m Wiki.

Learning Resources

  • A high-level overview is given in the IEEE Vis talk "VTK-m: Accelerating the Visualization Toolkit for Massively Threaded Architectures."

  • The VTK-m Users Guide provides extensive documentation. It is broken into multiple parts for learning and references at multiple different levels.

    • "Part 1: Getting Started" provides the introductory instruction for building VTK-m and using its high-level features.
    • "Part 2: Using VTK-m" covers the core fundamental components of VTK-m including data model, worklets, and filters.
    • "Part 3: Developing with VTK-m" covers how to develop new worklets and filters.
    • "Part 4: Advanced Development" covers topics such as new worklet types and custom device adapters.
  • A practical VTK-m Tutorial based in what users want to accomplish with VTK-m:

    • Building VTK-m and using existing VTK-m data structures and filters.
    • Algorithm development with VTK-m.
    • Writing new VTK-m filters.
  • Community discussion takes place on the VTK-m users email list.

  • Doxygen-generated nightly reference documentation is available online.

Contributing

There are many ways to contribute to VTK-m, with varying levels of effort.

Dependencies

VTK-m Requires:

  • C++11 Compiler. VTK-m has been confirmed to work with the following
    • GCC 4.8+
    • Clang 5.0+
    • XCode 5.0+
    • MSVC 2015+
    • Intel 17.0.4+
  • CMake
    • CMake 3.12+
    • CMake 3.13+ (for CUDA support)

Optional dependencies are:

  • CUDA Device Adapter
  • TBB Device Adapter
  • OpenMP Device Adapter
    • Requires a compiler that supports OpenMP >= 4.0.
  • OpenGL Rendering
    • The rendering module contains multiple rendering implementations including standalone rendering code. The rendering module also includes (optionally built) OpenGL rendering classes.
    • The OpenGL rendering classes require that you have a extension binding library and one rendering library. A windowing library is not needed except for some optional tests.
  • Extension Binding
  • On Screen Rendering
    • OpenGL Driver
    • Mesa Driver
  • On Screen Rendering Tests
  • Headless Rendering

VTK-m has been tested on the following configurations:c

  • On Linux
    • GCC 4.8.5, 5.4, 6.5, 7.4, 8.2, 9.2; Clang 5, 8; Intel 17.0.4; 19.0.0
    • CMake 3.12, 3.13, 3.16, 3.17
    • CUDA 9.2, 10.2, 11.0, 11.1
    • TBB 4.4 U2, 2017 U7
  • On Windows
    • Visual Studio 2015, 2017
    • CMake 3.12, 3.17
    • CUDA 10.2
    • TBB 2017 U3, 2018 U2
  • On MacOS
    • AppleClang 9.1
    • CMake 3.12
    • TBB 2018

Building

VTK-m supports all majors platforms (Windows, Linux, OSX), and uses CMake to generate all the build rules for the project. The VTK-m source code is available from the VTK-m download page or by directly cloning the VTK-m git repository.

The basic procedure for building VTK-m is to unpack the source, create a build directory, run CMake in that build directory (pointing to the source) and then build. Here are some example *nix commands for the process (individual commands may vary).

$ tar xvzf ~/Downloads/vtk-m-v1.4.0.tar.gz
$ mkdir vtkm-build
$ cd vtkm-build
$ cmake-gui ../vtk-m-v1.4.0
$ cmake --build -j .              # Runs make (or other build program)

A more detailed description of building VTK-m is available in the VTK-m Users Guide.

Example

The VTK-m source distribution includes a number of examples. The goal of the VTK-m examples is to illustrate specific VTK-m concepts in a consistent and simple format. However, these examples only cover a small part of the capabilities of VTK-m.

Below is a simple example of using VTK-m to load a VTK image file, run the Marching Cubes algorithm on it, and render the results to an image:

#include <vtkm/Bounds.h>
#include <vtkm/Range.h>
#include <vtkm/cont/ColorTable.h>
#include <vtkm/filter/Contour.h>
#include <vtkm/io/VTKDataSetReader.h>
#include <vtkm/rendering/Actor.h>
#include <vtkm/rendering/Camera.h>
#include <vtkm/rendering/CanvasRayTracer.h>
#include <vtkm/rendering/Color.h>
#include <vtkm/rendering/MapperRayTracer.h>
#include <vtkm/rendering/Scene.h>
#include <vtkm/rendering/View3D.h>

vtkm::io::VTKDataSetReader reader("path/to/vtk_image_file.vtk");
vtkm::cont::DataSet inputData = reader.ReadDataSet();
std::string fieldName = "scalars";

vtkm::Range range;
inputData.GetPointField(fieldName).GetRange(&range);
vtkm::Float64 isovalue = range.Center();

// Create an isosurface filter
vtkm::filter::Contour filter;
filter.SetIsoValue(0, isovalue);
filter.SetActiveField(fieldName);
vtkm::cont::DataSet outputData = filter.Execute(inputData);

// compute the bounds and extends of the input data
vtkm::Bounds coordsBounds = inputData.GetCoordinateSystem().GetBounds();

// setup a camera and point it to towards the center of the input data
vtkm::rendering::Camera camera;
camera.ResetToBounds(coordsBounds);
vtkm::cont::ColorTable colorTable("inferno");

// Create a mapper, canvas and view that will be used to render the scene
vtkm::rendering::Scene scene;
vtkm::rendering::MapperRayTracer mapper;
vtkm::rendering::CanvasRayTracer canvas(512, 512);
vtkm::rendering::Color bg(0.2f, 0.2f, 0.2f, 1.0f);

// Render an image of the output isosurface
scene.AddActor(vtkm::rendering::Actor(outputData.GetCellSet(),
                                      outputData.GetCoordinateSystem(),
                                      outputData.GetField(fieldName),
                                      colorTable));
vtkm::rendering::View3D view(scene, mapper, canvas, camera, bg);
view.Paint();
view.SaveAs("demo_output.png");

A minimal CMakeLists.txt such as the following one can be used to build this example.

project(example)

set(VTKm_DIR "/somepath/lib/cmake/vtkm-XYZ")

find_package(VTKm REQUIRED)

add_executable(example example.cxx)
target_link_libraries(example vtkm_cont vtkm_rendering)

License

VTK-m is distributed under the OSI-approved BSD 3-clause License. See LICENSE.txt for details.