vtk-m/vtkm/rendering/MapperWireframer.cxx
Kenneth Moreland edc4c85fd9 Move Scatter from Worklet to Dispatcher
Previously, when a Worklet needed a scatter, the scatter object was
stored in the Worklet object. That was problematic because that means
the Scatter, which is a control object, was shoved into the execution
environment.

To prevent that, move the Scatter into the Dispatcher object. The
worklet still declares a ScatterType alias, but no longer has a
GetScatter method. Instead, the Dispatcher now takes a Scatter object in
its constructor. If using the default scatter (ScatterIdentity), the
default constructor is used. If using another type of Scatter that
requires data to set up its state, then the caller of the worklet needs
to provide that to the dispatcher. For convenience, worklets are
encouraged to have a MakeScatter method to help construct a proper
scatter object.
2018-04-27 00:43:51 -04:00

444 lines
14 KiB
C++

//============================================================================
// Copyright (c) Kitware, Inc.
// All rights reserved.
// See LICENSE.txt for details.
// This software is distributed WITHOUT ANY WARRANTY; without even
// the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
// PURPOSE. See the above copyright notice for more information.
//
// Copyright 2016 National Technology & Engineering Solutions of Sandia, LLC (NTESS).
// Copyright 2016 UT-Battelle, LLC.
// Copyright 2016 Los Alamos National Security.
//
// Under the terms of Contract DE-NA0003525 with NTESS,
// the U.S. Government retains certain rights in this software.
//
// Under the terms of Contract DE-AC52-06NA25396 with Los Alamos National
// Laboratory (LANL), the U.S. Government retains certain rights in
// this software.
//============================================================================
#include <vtkm/Assert.h>
#include <vtkm/cont/DeviceAdapterAlgorithm.h>
#include <vtkm/cont/TryExecute.h>
#include <vtkm/exec/CellEdge.h>
#include <vtkm/filter/ExternalFaces.h>
#include <vtkm/rendering/CanvasRayTracer.h>
#include <vtkm/rendering/MapperRayTracer.h>
#include <vtkm/rendering/MapperWireframer.h>
#include <vtkm/rendering/Wireframer.h>
#include <vtkm/worklet/DispatcherMapField.h>
#include <vtkm/worklet/DispatcherMapTopology.h>
#include <vtkm/worklet/ScatterCounting.h>
#include <vtkm/worklet/WorkletMapField.h>
#include <vtkm/worklet/WorkletMapTopology.h>
namespace vtkm
{
namespace rendering
{
namespace
{
class CreateConnectivity : public vtkm::worklet::WorkletMapField
{
public:
VTKM_CONT
CreateConnectivity() {}
typedef void ControlSignature(FieldIn<>, WholeArrayOut<>);
typedef void ExecutionSignature(_1, _2);
template <typename ConnPortalType>
VTKM_EXEC void operator()(const vtkm::Id& i, ConnPortalType& connPortal) const
{
connPortal.Set(i * 2 + 0, i);
connPortal.Set(i * 2 + 1, i + 1);
}
}; // conn
struct ConnFunctor
{
template <typename Device>
VTKM_CONT bool operator()(Device,
vtkm::cont::ArrayHandleCounting<vtkm::Id>& iter,
vtkm::cont::ArrayHandle<vtkm::Id>& conn)
{
VTKM_IS_DEVICE_ADAPTER_TAG(Device);
vtkm::worklet::DispatcherMapField<CreateConnectivity, Device>(CreateConnectivity())
.Invoke(iter, conn);
return true;
}
};
class Convert1DCoordinates : public vtkm::worklet::WorkletMapField
{
private:
bool LogY;
bool LogX;
public:
VTKM_CONT
Convert1DCoordinates(bool logY, bool logX)
: LogY(logY)
, LogX(logX)
{
}
typedef void ControlSignature(FieldIn<>,
FieldIn<vtkm::TypeListTagScalarAll>,
FieldOut<>,
FieldOut<>);
typedef void ExecutionSignature(_1, _2, _3, _4);
template <typename ScalarType>
VTKM_EXEC void operator()(const vtkm::Vec<vtkm::Float32, 3>& inCoord,
const ScalarType& scalar,
vtkm::Vec<vtkm::Float32, 3>& outCoord,
vtkm::Float32& fieldOut) const
{
//
// Rendering supports lines based on a cellSetStructured<1>
// where only the x coord matters. It creates a y based on
// the scalar values and connects all the points with lines.
// So, we need to convert it back to something that can
// actuall be rendered.
//
outCoord[0] = inCoord[0];
outCoord[1] = static_cast<vtkm::Float32>(scalar);
outCoord[2] = 0.f;
if (LogY)
{
outCoord[1] = vtkm::Log10(outCoord[1]);
}
if (LogX)
{
outCoord[0] = vtkm::Log10(outCoord[0]);
}
// all lines have the same color
fieldOut = 1.f;
}
}; // convert coords
struct ConvertFunctor
{
template <typename Device, typename CoordType, typename ScalarType>
VTKM_CONT bool operator()(Device,
CoordType coords,
ScalarType scalars,
vtkm::cont::ArrayHandle<vtkm::Vec<vtkm::Float32, 3>>& outCoords,
vtkm::cont::ArrayHandle<vtkm::Float32>& outScalars,
bool logY,
bool logX)
{
VTKM_IS_DEVICE_ADAPTER_TAG(Device);
vtkm::worklet::DispatcherMapField<Convert1DCoordinates, Device>(
Convert1DCoordinates(logY, logX))
.Invoke(coords, scalars, outCoords, outScalars);
return true;
}
};
#if defined(VTKM_MSVC)
#pragma warning(push)
#pragma warning(disable : 4127) //conditional expression is constant
#endif
struct EdgesCounter : public vtkm::worklet::WorkletMapPointToCell
{
typedef void ControlSignature(CellSetIn cellSet, FieldOutCell<> numEdges);
typedef _2 ExecutionSignature(CellShape shape, PointCount numPoints);
using InputDomain = _1;
template <typename CellShapeTag>
VTKM_EXEC vtkm::IdComponent operator()(CellShapeTag shape, vtkm::IdComponent numPoints) const
{
//TODO: Remove the if/then with templates.
if (shape.Id == vtkm::CELL_SHAPE_LINE)
{
return 1;
}
else
{
return vtkm::exec::CellEdgeNumberOfEdges(numPoints, shape, *this);
}
}
}; // struct EdgesCounter
struct EdgesExtracter : public vtkm::worklet::WorkletMapPointToCell
{
typedef void ControlSignature(CellSetIn cellSet, FieldOutCell<> edgeIndices);
typedef void ExecutionSignature(CellShape, PointIndices, VisitIndex, _2);
using InputDomain = _1;
using ScatterType = vtkm::worklet::ScatterCounting;
VTKM_CONT
template <typename CountArrayType, typename DeviceTag>
static ScatterType MakeScatter(const CountArrayType& counts, DeviceTag device)
{
return ScatterType(counts, device);
}
template <typename CellShapeTag, typename PointIndexVecType, typename EdgeIndexVecType>
VTKM_EXEC void operator()(CellShapeTag shape,
const PointIndexVecType& pointIndices,
vtkm::IdComponent visitIndex,
EdgeIndexVecType& edgeIndices) const
{
//TODO: Remove the if/then with templates.
vtkm::Id p1, p2;
if (shape.Id == vtkm::CELL_SHAPE_LINE)
{
p1 = pointIndices[0];
p2 = pointIndices[1];
}
else
{
p1 = pointIndices[vtkm::exec::CellEdgeLocalIndex(
pointIndices.GetNumberOfComponents(), 0, visitIndex, shape, *this)];
p2 = pointIndices[vtkm::exec::CellEdgeLocalIndex(
pointIndices.GetNumberOfComponents(), 1, visitIndex, shape, *this)];
}
// These indices need to be arranged in a definite order, as they will later be sorted to
// detect duplicates
edgeIndices[0] = p1 < p2 ? p1 : p2;
edgeIndices[1] = p1 < p2 ? p2 : p1;
}
}; // struct EdgesExtracter
#if defined(VTKM_MSVC)
#pragma warning(pop)
#endif
struct ExtractUniqueEdges
{
vtkm::cont::DynamicCellSet CellSet;
vtkm::cont::ArrayHandle<vtkm::Vec<vtkm::Id, 2>> EdgeIndices;
VTKM_CONT
ExtractUniqueEdges(const vtkm::cont::DynamicCellSet& cellSet)
: CellSet(cellSet)
{
}
template <typename DeviceTag>
VTKM_CONT bool operator()(DeviceTag)
{
VTKM_IS_DEVICE_ADAPTER_TAG(DeviceTag);
vtkm::cont::ArrayHandle<vtkm::IdComponent> counts;
vtkm::worklet::DispatcherMapTopology<EdgesCounter, DeviceTag>().Invoke(CellSet, counts);
vtkm::worklet::DispatcherMapTopology<EdgesExtracter, DeviceTag> extractDispatcher(
EdgesExtracter::MakeScatter(counts, DeviceTag()));
extractDispatcher.Invoke(CellSet, EdgeIndices);
vtkm::cont::DeviceAdapterAlgorithm<DeviceTag>::template Sort<vtkm::Id2>(EdgeIndices);
vtkm::cont::DeviceAdapterAlgorithm<DeviceTag>::template Unique<vtkm::Id2>(EdgeIndices);
return true;
}
}; // struct ExtractUniqueEdges
} // namespace
struct MapperWireframer::InternalsType
{
InternalsType()
: InternalsType(nullptr, false, false)
{
}
InternalsType(vtkm::rendering::Canvas* canvas, bool showInternalZones, bool isOverlay)
: Canvas(canvas)
, ShowInternalZones(showInternalZones)
, IsOverlay(isOverlay)
, CompositeBackground(true)
{
}
vtkm::rendering::Canvas* Canvas;
bool ShowInternalZones;
bool IsOverlay;
bool CompositeBackground;
}; // struct MapperWireframer::InternalsType
MapperWireframer::MapperWireframer()
: Internals(new InternalsType(nullptr, false, false))
{
}
MapperWireframer::~MapperWireframer()
{
}
vtkm::rendering::Canvas* MapperWireframer::GetCanvas() const
{
return this->Internals->Canvas;
}
void MapperWireframer::SetCanvas(vtkm::rendering::Canvas* canvas)
{
this->Internals->Canvas = canvas;
}
bool MapperWireframer::GetShowInternalZones() const
{
return this->Internals->ShowInternalZones;
}
void MapperWireframer::SetShowInternalZones(bool showInternalZones)
{
this->Internals->ShowInternalZones = showInternalZones;
}
bool MapperWireframer::GetIsOverlay() const
{
return this->Internals->IsOverlay;
}
void MapperWireframer::SetIsOverlay(bool isOverlay)
{
this->Internals->IsOverlay = isOverlay;
}
void MapperWireframer::StartScene()
{
// Nothing needs to be done.
}
void MapperWireframer::EndScene()
{
// Nothing needs to be done.
}
void MapperWireframer::RenderCells(const vtkm::cont::DynamicCellSet& inCellSet,
const vtkm::cont::CoordinateSystem& coords,
const vtkm::cont::Field& inScalarField,
const vtkm::cont::ColorTable& colorTable,
const vtkm::rendering::Camera& camera,
const vtkm::Range& scalarRange)
{
vtkm::cont::DynamicCellSet cellSet = inCellSet;
bool is1D = cellSet.IsSameType(vtkm::cont::CellSetStructured<1>());
vtkm::cont::CoordinateSystem actualCoords = coords;
vtkm::cont::Field actualField = inScalarField;
if (is1D)
{
bool isSupportedField = inScalarField.GetAssociation() == vtkm::cont::Field::ASSOC_POINTS;
if (!isSupportedField)
{
throw vtkm::cont::ErrorBadValue(
"WireFramer: field must be associated with points for 1D cell set");
}
vtkm::cont::ArrayHandle<vtkm::Vec<vtkm::Float32, 3>> newCoords;
vtkm::cont::ArrayHandle<vtkm::Float32> newScalars;
//
// Convert the cell set into something we can draw
//
vtkm::cont::TryExecute(ConvertFunctor(),
coords.GetData(),
inScalarField.GetData(),
newCoords,
newScalars,
this->LogarithmY,
this->LogarithmX);
actualCoords = vtkm::cont::CoordinateSystem("coords", newCoords);
actualField =
vtkm::cont::Field(inScalarField.GetName(), vtkm::cont::Field::ASSOC_POINTS, newScalars);
vtkm::Id numCells = cellSet.GetNumberOfCells();
vtkm::cont::ArrayHandle<vtkm::Id> conn;
vtkm::cont::ArrayHandleCounting<vtkm::Id> iter =
vtkm::cont::make_ArrayHandleCounting(vtkm::Id(0), vtkm::Id(1), numCells);
conn.Allocate(numCells * 2);
vtkm::cont::TryExecute(ConnFunctor(), iter, conn);
vtkm::cont::CellSetSingleType<> newCellSet("cells");
newCellSet.Fill(newCoords.GetNumberOfValues(), vtkm::CELL_SHAPE_LINE, 2, conn);
cellSet = vtkm::cont::DynamicCellSet(newCellSet);
}
bool isLines = false;
// Check for a cell set that is already lines
// Since there is no need to de external faces or
// render the depth of the mesh to hide internal zones
if (cellSet.IsSameType(vtkm::cont::CellSetSingleType<>()))
{
auto singleType = cellSet.Cast<vtkm::cont::CellSetSingleType<>>();
isLines = singleType.GetCellShape(0) == vtkm::CELL_SHAPE_LINE;
}
bool doExternalFaces = !(this->Internals->ShowInternalZones) && !isLines && !is1D;
if (doExternalFaces)
{
// If internal zones are to be hidden, the number of edges processed can be reduced by
// running the external faces filter on the input cell set.
vtkm::cont::DataSet dataSet;
dataSet.AddCoordinateSystem(actualCoords);
dataSet.AddCellSet(inCellSet);
dataSet.AddField(inScalarField);
vtkm::filter::ExternalFaces externalFaces;
externalFaces.SetCompactPoints(false);
externalFaces.SetPassPolyData(true);
vtkm::cont::DataSet output = externalFaces.Execute(dataSet);
cellSet = output.GetCellSet();
actualField = output.GetField(0);
}
// Extract unique edges from the cell set.
ExtractUniqueEdges extracter(cellSet);
vtkm::cont::TryExecute(extracter);
vtkm::cont::ArrayHandle<vtkm::Vec<vtkm::Id, 2>> edgeIndices = extracter.EdgeIndices;
Wireframer renderer(
this->Internals->Canvas, this->Internals->ShowInternalZones, this->Internals->IsOverlay);
// Render the cell set using a raytracer, on a separate canvas, and use the generated depth
// buffer, which represents the solid mesh, to avoid drawing on the internal zones
bool renderDepth =
!(this->Internals->ShowInternalZones) && !(this->Internals->IsOverlay) && !isLines && !is1D;
if (renderDepth)
{
CanvasRayTracer canvas(this->Internals->Canvas->GetWidth(),
this->Internals->Canvas->GetHeight());
canvas.SetBackgroundColor(vtkm::rendering::Color::white);
canvas.Initialize();
canvas.Activate();
canvas.Clear();
MapperRayTracer raytracer;
raytracer.SetCanvas(&canvas);
raytracer.SetActiveColorTable(colorTable);
raytracer.RenderCells(cellSet, actualCoords, actualField, colorTable, camera, scalarRange);
renderer.SetSolidDepthBuffer(canvas.GetDepthBuffer());
}
else
{
renderer.SetSolidDepthBuffer(this->Internals->Canvas->GetDepthBuffer());
}
renderer.SetCamera(camera);
renderer.SetColorMap(this->ColorMap);
renderer.SetData(actualCoords, edgeIndices, actualField, scalarRange);
renderer.Render();
if (this->Internals->CompositeBackground)
{
this->Internals->Canvas->BlendBackground();
}
}
void MapperWireframer::SetCompositeBackground(bool on)
{
this->Internals->CompositeBackground = on;
}
vtkm::rendering::Mapper* MapperWireframer::NewCopy() const
{
return new vtkm::rendering::MapperWireframer(*this);
}
}
} // namespace vtkm::rendering