vtk-m/vtkm/worklet/contourtree/Mesh3D_DEM_SaddleStarter.h
2017-05-18 12:59:33 -04:00

236 lines
11 KiB
C++

//============================================================================
// Copyright (c) Kitware, Inc.
// All rights reserved.
// See LICENSE.txt for details.
// This software is distributed WITHOUT ANY WARRANTY; without even
// the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
// PURPOSE. See the above copyright notice for more information.
//
// Copyright 2014 Sandia Corporation.
// Copyright 2014 UT-Battelle, LLC.
// Copyright 2014 Los Alamos National Security.
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Under the terms of Contract DE-AC52-06NA25396 with Los Alamos National
// Laboratory (LANL), the U.S. Government retains certain rights in
// this software.
//============================================================================
// Copyright (c) 2016, Los Alamos National Security, LLC
// All rights reserved.
//
// Copyright 2016. Los Alamos National Security, LLC.
// This software was produced under U.S. Government contract DE-AC52-06NA25396
// for Los Alamos National Laboratory (LANL), which is operated by
// Los Alamos National Security, LLC for the U.S. Department of Energy.
// The U.S. Government has rights to use, reproduce, and distribute this
// software. NEITHER THE GOVERNMENT NOR LOS ALAMOS NATIONAL SECURITY, LLC
// MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LIABILITY FOR THE
// USE OF THIS SOFTWARE. If software is modified to produce derivative works,
// such modified software should be clearly marked, so as not to confuse it
// with the version available from LANL.
//
// Additionally, redistribution and use in source and binary forms, with or
// without modification, are permitted provided that the following conditions
// are met:
//
// 1. Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// 3. Neither the name of Los Alamos National Security, LLC, Los Alamos
// National Laboratory, LANL, the U.S. Government, nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY LOS ALAMOS NATIONAL SECURITY, LLC AND
// CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
// BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LOS ALAMOS
// NATIONAL SECURITY, LLC OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
// USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
// THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//============================================================================
// This code is based on the algorithm presented in the paper:
// “Parallel Peak Pruning for Scalable SMP Contour Tree Computation.”
// Hamish Carr, Gunther Weber, Christopher Sewell, and James Ahrens.
// Proceedings of the IEEE Symposium on Large Data Analysis and Visualization
// (LDAV), October 2016, Baltimore, Maryland.
//=======================================================================================
//
// COMMENTS:
//
// This functor replaces a parallel loop examining neighbours - again, for arbitrary
// meshes, it needs to be a reduction, but for regular meshes, it's faster this way.
//
// Any vector needed by the functor for lookup purposes will be passed as a parameter to
// the constructor and saved, with the actual function call being the operator ()
//
// Vectors marked I/O are intrinsically risky unless there is an algorithmic guarantee
// that the read/writes are completely independent - which for our case actually occurs
// The I/O vectors should therefore be justified in comments both here & in caller
//
//=======================================================================================
#ifndef vtkm_worklet_contourtree_mesh3d_dem_saddle_starter_h
#define vtkm_worklet_contourtree_mesh3d_dem_saddle_starter_h
#include <vtkm/exec/ExecutionWholeArray.h>
#include <vtkm/worklet/WorkletMapField.h>
#include <vtkm/worklet/contourtree/LinkComponentCaseTable3D.h>
#include <vtkm/worklet/contourtree/Mesh3D_DEM_Triangulation_Macros.h>
namespace vtkm {
namespace worklet {
namespace contourtree {
// Worklet for setting initial chain maximum value
template<typename DeviceAdapter>
class Mesh3D_DEM_SaddleStarter : public vtkm::worklet::WorkletMapField
{
public:
struct PairType : vtkm::ListTagBase<vtkm::Pair<vtkm::Id, vtkm::Id> > {};
typedef void ControlSignature(FieldIn<IdType> vertex, // (input) index into active vertices
FieldIn<PairType> outDegFirstEdge, // (input) out degree/first edge of vertex
FieldIn<IdType> valueIndex, // (input) index into regular graph
WholeArrayIn<IdType> linkMask, // (input) neighbors of vertex
WholeArrayIn<IdType> arcArray, // (input) chain extrema per vertex
WholeArrayIn<IdType> inverseIndex, // (input) permutation of index
WholeArrayOut<IdType> edgeNear, // (output) low end of edges
WholeArrayOut<IdType> edgeFar, // (output) high end of edges
WholeArrayOut<IdType> activeEdges); // (output) active edge list
typedef void ExecutionSignature(_1, _2, _3, _4, _5, _6, _7, _8, _9);
typedef _1 InputDomain;
typedef typename vtkm::cont::ArrayHandle<vtkm::IdComponent>::template
ExecutionTypes<DeviceAdapter>::PortalConst IdComponentPortalType;
typedef typename vtkm::cont::ArrayHandle<vtkm::UInt16>::template
ExecutionTypes<DeviceAdapter>::PortalConst IdPortalType;
vtkm::Id nRows; // (input) number of rows in 3D
vtkm::Id nCols; // (input) number of cols in 3D
vtkm::Id nSlices; // (input) number of cols in 3D
bool ascending; // (input) ascending or descending (join or split)
IdComponentPortalType neighbourTable; // (input) table for neighbour offsets
IdPortalType caseTable; // (input) case table for neighbours
// Constructor
VTKM_EXEC_CONT
Mesh3D_DEM_SaddleStarter(vtkm::Id NRows,
vtkm::Id NCols,
vtkm::Id NSlices,
bool Ascending,
IdComponentPortalType NeighbourTable,
IdPortalType CaseTable) :
nRows(NRows),
nCols(NCols),
nSlices(NSlices),
ascending(Ascending),
neighbourTable(NeighbourTable),
caseTable(CaseTable) {}
// operator() routine that executes the loop
template<typename InFieldPortalType, typename OutFieldPortalType>
VTKM_EXEC
void operator()(const vtkm::Id& vertex,
const vtkm::Pair<vtkm::Id,vtkm::Id>& outDegFirstEdge,
const vtkm::Id& valueIndex,
const InFieldPortalType& linkMask,
const InFieldPortalType& arcArray,
const InFieldPortalType& inverseIndex,
const OutFieldPortalType& edgeNear,
const OutFieldPortalType& edgeFar,
const OutFieldPortalType& activeEdges) const
{
vtkm::Id outdegree = outDegFirstEdge.first;
vtkm::Id firstEdge = outDegFirstEdge.second;
// skip local extrema
if (outdegree == 0)
return;
// get the saddle mask for the vertex
vtkm::Id nbrMask = linkMask.Get(valueIndex);
// get the row and column
vtkm::Id row = VERTEX_ROW_3D(valueIndex, nRows, nCols);
vtkm::Id col = VERTEX_COL_3D(valueIndex, nRows, nCols);
vtkm::Id slice = VERTEX_SLICE_3D(valueIndex, nRows, nCols);
// we know which edges are outbound, so we count to get the outdegree
vtkm::Id outDegree = 0;
vtkm::Id farEnds[MAX_OUTDEGREE_3D];
for (vtkm::Id edgeNo = 0; edgeNo < N_INCIDENT_EDGES_3D; edgeNo++)
{
if (caseTable.Get(nbrMask) & (1 << edgeNo))
{
vtkm::Id indx = edgeNo * 3;
vtkm::Id nbrSlice = slice + neighbourTable.Get(indx);
vtkm::Id nbrRow = row + neighbourTable.Get(indx + 1);
vtkm::Id nbrCol = col + neighbourTable.Get(indx + 2);
vtkm::Id nbr = VERTEX_ID_3D(nbrSlice, nbrRow, nbrCol, nRows, nCols);
farEnds[outDegree++] = inverseIndex.Get(arcArray.Get(nbr));
}
}
// now we check them against each other
if ((outDegree == 2) && (farEnds[0] == farEnds[1]))
{ // outDegree 2 & both match
// treat as a regular point
outDegree = 1;
} // outDegree 2 & both match
else if (outDegree == 3)
{ // outDegree 3
if (farEnds[0] == farEnds[1])
{ // first two match
if (farEnds[0] == farEnds[2])
{ // triple match
// all match - treat as regular point
outDegree = 1;
} // triple match
else
{ // first two match, but not third
// copy third down one place
farEnds[1] = farEnds[2];
// and reset the count
outDegree = 2;
} //
} // first two match
else if ((farEnds[0] == farEnds[2]) || (farEnds[1] == farEnds[2]))
{ // second one matches either of the first two
// decrease the count, keeping 0 & 1
outDegree = 2;
} // second one matches either of the first two
} // outDegree 3
// now the farEnds array holds the far ends we can reach
for (vtkm::Id edge = 0; edge < outDegree; edge++)
{
// compute the edge index in the edge arrays
vtkm::Id edgeID = firstEdge + edge;
// now set the near and far ends and save the edge itself
edgeNear.Set(edgeID, vertex);
edgeFar.Set(edgeID, farEnds[edge]);
activeEdges.Set(edgeID, edgeID);
} // per start
} // operator()
}; // Mesh3D_DEM_SaddleStarter
}
}
}
#endif