vtk-m/vtkm/worklet/testing/UnitTestSplatKernels.cxx
Haocheng LIU 8859636672 Merge worklet testing executables into a device dependent shared library
VTK-m has been updated to replace old per device worklet testing executables with a device
dependent shared library so that it's able to accept a device adapter
at runtime.
Meanwhile, it updates the testing infrastructure APIs. vtkm::cont::testing::Run
function would call ForceDevice when needed and if users need the device
adapter info at runtime, RunOnDevice function would pass the adapter into the functor.

Optional Parser is bumped from 1.3 to 1.7.
2018-11-23 10:13:56 -05:00

158 lines
5.0 KiB
C++

//============================================================================
// Copyright (c) Kitware, Inc.
// All rights reserved.
// See LICENSE.txt for details.
// This software is distributed WITHOUT ANY WARRANTY; without even
// the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
// PURPOSE. See the above copyright notice for more information.
//
// Copyright 2014 National Technology & Engineering Solutions of Sandia, LLC (NTESS).
// Copyright 2014 UT-Battelle, LLC.
// Copyright 2014 Los Alamos National Security.
//
// Under the terms of Contract DE-NA0003525 with NTESS,
// the U.S. Government retains certain rights in this software.
//
// Under the terms of Contract DE-AC52-06NA25396 with Los Alamos National
// Laboratory (LANL), the U.S. Government retains certain rights in
// this software.
//============================================================================
#include <iostream>
#include <vector>
#include <vtkm/cont/testing/Testing.h>
#include <vtkm/worklet/splatkernels/Gaussian.h>
#include <vtkm/worklet/splatkernels/Spline3rdOrder.h>
/*
#include "KernelBox.h"
#include "KernelCusp.h"
#include "KernelQuadratic.h"
#include "KernelSpline5thOrder.h"
#include "KernelWendland.h"
*/
using Vector = vtkm::Vec<vtkm::Float64, 3>;
// Simpson integradion rule
double SimpsonIntegration(const std::vector<double>& y, const std::vector<double>& x)
{
std::size_t n = x.size() - 1;
const double aux = 2. * (x[n] - x[0]) / (3. * static_cast<double>(n));
double val = 0.5 * (y[0] * x[0] + y[n] * x[n]);
for (std::size_t i = 2; i < n; i += 2)
{
val += 2 * y[i - 1] + y[i];
}
val += 2 * y[n - 1];
return aux * val;
}
// Integrade a kernel in 3D
template <typename Kernel>
double IntegralOfKernel(const Kernel& ker)
{
const double supportlength = ker.maxDistance();
const int npoint = 15000;
std::vector<double> x;
std::vector<double> y;
for (int i = 0; i < npoint; i++)
{
const double r = static_cast<double>(i) * supportlength / static_cast<double>(npoint);
x.push_back(r);
y.push_back(ker.w(r) * r * r);
}
return 4.0 * M_PI * SimpsonIntegration(y, x);
}
// Same integration, but using the variable smoothing length interface
template <typename Kernel>
double IntegralOfKernel(const Kernel& ker, double h)
{
const double supportlength = ker.maxDistance();
const int npoint = 15000;
std::vector<double> x;
std::vector<double> y;
for (int i = 0; i < npoint; i++)
{
const double r = static_cast<double>(i) * supportlength / static_cast<double>(npoint);
x.push_back(r);
y.push_back(ker.w(h, r) * r * r);
}
return 4.0 * M_PI * SimpsonIntegration(y, x);
}
int TestSplatKernels()
{
const double eps = 1e-4;
double s;
double smoothinglength;
std::cout << "Testing Gaussian 3D fixed h kernel integration \n";
for (int i = 0; i < 100; ++i)
{
smoothinglength = 0.01 + i * (10.0 / 100.0);
s = IntegralOfKernel(vtkm::worklet::splatkernels::Gaussian<3>(smoothinglength));
VTKM_TEST_ASSERT(fabs(s - 1.0) < eps, "Gaussian 3D integration failure");
}
std::cout << "Testing Gaussian 3D variable h kernel integration \n";
for (int i = 0; i < 100; ++i)
{
smoothinglength = 0.01 + i * (10.0 / 100.0);
s =
IntegralOfKernel(vtkm::worklet::splatkernels::Gaussian<3>(smoothinglength), smoothinglength);
VTKM_TEST_ASSERT(fabs(s - 1.0) < eps, "Gaussian 3D integration failure");
}
// s = IntegralOfKernel(vtkm::worklet::splatkernels::Gaussian<2>(smoothinglength));
// VTKM_TEST_ASSERT ( fabs(s - 1.0) < eps, "Gaussian 2D integration failure");
std::cout << "Testing Spline3rdOrder 3D kernel integration \n";
for (int i = 0; i < 100; ++i)
{
smoothinglength = 0.01 + i * (10.0 / 100.0);
s = IntegralOfKernel(vtkm::worklet::splatkernels::Spline3rdOrder<3>(smoothinglength));
VTKM_TEST_ASSERT(fabs(s - 1.0) < eps, "Spline3rdOrder 3D integration failure");
}
// s = IntegralOfKernel(vtkm::worklet::splatkernels::Spline3rdOrder<2>(smoothinglength));
// VTKM_TEST_ASSERT ( fabs(s - 1.0) < eps, "Spline3rdOrder 2D integration failure");
/*
s = IntegralOfKernel(KernelBox(ndim, smoothinglength));
if ( fabs(s - 1.0) > eps) {
return EXIT_FAILURE;
}
s = IntegralOfKernel(KernelCusp(ndim, smoothinglength));
if ( fabs(s - 1.0) > eps) {
return EXIT_FAILURE;
}
s = IntegralOfKernel(KernelGaussian(ndim, smoothinglength));
if ( fabs(s - 1.0) > eps) {
return EXIT_FAILURE;
}
s = IntegralOfKernel(KernelQuadratic(ndim, smoothinglength));
if ( fabs(s - 1.0) > eps) {
return EXIT_FAILURE;
}
s = IntegralOfKernel(KernelSpline3rdOrder(ndim, smoothinglength));
if ( fabs(s - 1.0) > eps) {
return EXIT_FAILURE;
}
s = IntegralOfKernel(KernelSpline5thOrder(ndim, smoothinglength));
if ( fabs(s - 1.0) > eps) {
return EXIT_FAILURE;
}
s = IntegralOfKernel(KernelWendland(ndim, smoothinglength));
if ( fabs(s - 1.0) > eps) {
return EXIT_FAILURE;
}
*/
return EXIT_SUCCESS;
}
int UnitTestSplatKernels(int argc, char* argv[])
{
return vtkm::cont::testing::Testing::Run(TestSplatKernels, argc, argv);
}