vtk-m/vtkm/worklet/StreamLineUniformGrid.h
Kenneth Moreland a598f03fbb Fix initialization order of fields in MakeStreamLines class
When a C++ object is constructed, the fields (ivars) of that object are
initialized in the order they are declared in the structure regardless
of the order of initializers listed in the constructor. Thus, it is good
C++ convention to list the initializers of the constructor in the same
order they are declared in the class so that there is no confusion about
the order of initialization (which can matter if there are any
dependencies). To help enforce this convention, some compilers warn if
the order does not match. This commit fixes that issue.

This commit also removes trailing whitespace at the end of some lines in
StreamLineUniformGrid.h. My editor does this automatically because
trailing whitespace bugs some programmers.
2015-11-30 14:20:00 -07:00

441 lines
17 KiB
C++

//============================================================================
// Copyright (c) Kitware, Inc.
// All rights reserved.
// See LICENSE.txt for details.
// This software is distributed WITHOUT ANY WARRANTY; without even
// the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
// PURPOSE. See the above copyright notice for more information.
//
// Copyright 2014 Sandia Corporation.
// Copyright 2014 UT-Battelle, LLC.
// Copyright 2014 Los Alamos National Security.
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Under the terms of Contract DE-AC52-06NA25396 with Los Alamos National
// Laboratory (LANL), the U.S. Government retains certain rights in
// this software.
//============================================================================
#ifndef vtk_m_worklet_StreamLineUniformGrid_h
#define vtk_m_worklet_StreamLineUniformGrid_h
#include <vtkm/cont/DeviceAdapter.h>
#include <vtkm/cont/ArrayHandle.h>
#include <vtkm/cont/ArrayHandleCounting.h>
#include <vtkm/cont/DataSet.h>
#include <vtkm/cont/CellSetStructured.h>
#include <vtkm/cont/CellSetExplicit.h>
#include <vtkm/cont/Field.h>
#include <vtkm/worklet/DispatcherMapField.h>
#include <vtkm/worklet/ScatterUniform.h>
#include <vtkm/worklet/WorkletMapField.h>
#include <vtkm/exec/ExecutionWholeArray.h>
namespace vtkm {
// Take this out when defined in CellShape.h
const vtkm::UInt8 CELL_SHAPE_POLY_LINE = 4;
namespace worklet {
namespace internal {
enum StreamLineMode
{
FORWARD = 0,
BACKWARD = 1,
BOTH = 2
};
// Trilinear interpolation to calculate vector data at position
template <typename FieldType, typename PortalType>
VTKM_EXEC_EXPORT
vtkm::Vec<FieldType, 3> VecDataAtPos(
vtkm::Vec<FieldType, 3> pos,
const vtkm::Id3 &vdims,
const vtkm::Id &planesize,
const vtkm::Id &rowsize,
const PortalType &vecdata)
{
// Adjust initial position to be within bounding box of grid
for (vtkm::IdComponent d = 0; d < 3; d++)
{
if (pos[d] < 0.0f)
pos[d] = 0.0f;
if (pos[d] > static_cast<FieldType>(vdims[d] - 1))
pos[d] = static_cast<FieldType>(vdims[d] - 1);
}
// Set the eight corner indices with no wraparound
vtkm::Id3 idx000, idx001, idx010, idx011, idx100, idx101, idx110, idx111;
idx000[0] = static_cast<vtkm::Id>(floor(pos[0]));
idx000[1] = static_cast<vtkm::Id>(floor(pos[1]));
idx000[2] = static_cast<vtkm::Id>(floor(pos[2]));
idx001 = idx000; idx001[0] = (idx001[0] + 1) <= vdims[0] - 1 ? idx001[0] + 1 : vdims[0] - 1;
idx010 = idx000; idx010[1] = (idx010[1] + 1) <= vdims[1] - 1 ? idx010[1] + 1 : vdims[1] - 1;
idx011 = idx010; idx011[0] = (idx011[0] + 1) <= vdims[0] - 1 ? idx011[0] + 1 : vdims[0] - 1;
idx100 = idx000; idx100[2] = (idx100[2] + 1) <= vdims[2] - 1 ? idx100[2] + 1 : vdims[2] - 1;
idx101 = idx100; idx101[0] = (idx101[0] + 1) <= vdims[0] - 1 ? idx101[0] + 1 : vdims[0] - 1;
idx110 = idx100; idx110[1] = (idx110[1] + 1) <= vdims[1] - 1 ? idx110[1] + 1 : vdims[1] - 1;
idx111 = idx110; idx111[0] = (idx111[0] + 1) <= vdims[0] - 1 ? idx111[0] + 1 : vdims[0] - 1;
// Get the vecdata at the eight corners
vtkm::Vec<FieldType, 3> v000, v001, v010, v011, v100, v101, v110, v111;
v000 = vecdata.Get(idx000[2] * planesize + idx000[1] * rowsize + idx000[0]);
v001 = vecdata.Get(idx001[2] * planesize + idx001[1] * rowsize + idx001[0]);
v010 = vecdata.Get(idx010[2] * planesize + idx010[1] * rowsize + idx010[0]);
v011 = vecdata.Get(idx011[2] * planesize + idx011[1] * rowsize + idx011[0]);
v100 = vecdata.Get(idx100[2] * planesize + idx100[1] * rowsize + idx100[0]);
v101 = vecdata.Get(idx101[2] * planesize + idx101[1] * rowsize + idx101[0]);
v110 = vecdata.Get(idx110[2] * planesize + idx110[1] * rowsize + idx110[0]);
v111 = vecdata.Get(idx111[2] * planesize + idx111[1] * rowsize + idx111[0]);
// Interpolation in X
vtkm::Vec<FieldType, 3> v00, v01, v10, v11;
FieldType a = pos[0] - static_cast<FieldType>(floor(pos[0]));
v00[0] = (1.0f - a) * v000[0] + a * v001[0];
v00[1] = (1.0f - a) * v000[1] + a * v001[1];
v00[2] = (1.0f - a) * v000[2] + a * v001[2];
v01[0] = (1.0f - a) * v010[0] + a * v011[0];
v01[1] = (1.0f - a) * v010[1] + a * v011[1];
v01[2] = (1.0f - a) * v010[2] + a * v011[2];
v10[0] = (1.0f - a) * v100[0] + a * v101[0];
v10[1] = (1.0f - a) * v100[1] + a * v101[1];
v10[2] = (1.0f - a) * v100[2] + a * v101[2];
v11[0] = (1.0f - a) * v110[0] + a * v111[0];
v11[1] = (1.0f - a) * v110[1] + a * v111[1];
v11[2] = (1.0f - a) * v110[2] + a * v111[2];
// Interpolation in Y
vtkm::Vec<FieldType, 3> v0, v1;
a = pos[1] - static_cast<FieldType>(floor(pos[1]));
v0[0] = (1.0f - a) * v00[0] + a * v01[0];
v0[1] = (1.0f - a) * v00[1] + a * v01[1];
v0[2] = (1.0f - a) * v00[2] + a * v01[2];
v1[0] = (1.0f - a) * v10[0] + a * v11[0];
v1[1] = (1.0f - a) * v10[1] + a * v11[1];
v1[2] = (1.0f - a) * v10[2] + a * v11[2];
// Interpolation in Z
vtkm::Vec<FieldType, 3> v;
a = pos[2] - static_cast<FieldType>(floor(pos[2]));
v[0] = (1.0f - a) * v0[0] + v1[0];
v[1] = (1.0f - a) * v0[1] + v1[1];
v[2] = (1.0f - a) * v0[2] + v1[2];
return v;
}
}
/// \brief Compute the streamline
template <typename FieldType, typename DeviceAdapter>
class StreamLineFilterUniformGrid
{
public:
struct IsUnity
{
template<typename T>
VTKM_EXEC_CONT_EXPORT bool operator()(const T &x) const
{
return x == T(1);
}
};
typedef vtkm::cont::ArrayHandle<vtkm::Vec<FieldType, 3> > FieldHandle;
typedef typename FieldHandle::template ExecutionTypes<DeviceAdapter>::PortalConst FieldPortalConstType;
class MakeStreamLines : public vtkm::worklet::WorkletMapField
{
public:
typedef void ControlSignature(FieldIn<IdType> seedId,
FieldIn<> position,
ExecObject numIndices,
ExecObject validPoint,
ExecObject streamLines);
typedef void ExecutionSignature(_1, _2, _3, _4, _5, VisitIndex);
typedef _1 InputDomain;
typedef vtkm::worklet::ScatterUniform ScatterType;
VTKM_CONT_EXPORT
ScatterType GetScatter() const
{
return ScatterType(2);
}
FieldPortalConstType field;
const vtkm::Id3 vdims;
const vtkm::Id maxsteps;
const FieldType timestep;
const vtkm::Id planesize;
const vtkm::Id rowsize;
const vtkm::Id streammode;
VTKM_CONT_EXPORT
MakeStreamLines(const FieldType tStep,
const vtkm::Id sMode,
const vtkm::Id nSteps,
const vtkm::Id3 dims,
FieldPortalConstType fieldArray) :
field(fieldArray),
vdims(dims),
maxsteps(nSteps),
timestep(tStep),
planesize(dims[0] * dims[1]),
rowsize(dims[0]),
streammode(sMode)
{
}
VTKM_EXEC_EXPORT
void operator()(vtkm::Id &seedId,
vtkm::Vec<FieldType, 3> &seedPos,
vtkm::exec::ExecutionWholeArray<vtkm::IdComponent> &numIndices,
vtkm::exec::ExecutionWholeArray<vtkm::IdComponent> &validPoint,
vtkm::exec::ExecutionWholeArray<vtkm::Vec<FieldType, 3> > &slLists,
vtkm::IdComponent visitIndex) const
{
// Set initial offset into the output streams array
vtkm::Vec<FieldType, 3> pos = seedPos;
vtkm::Vec<FieldType, 3> pre_pos = seedPos;
// Forward tracing
if (visitIndex == 0 &&
(streammode == vtkm::worklet::internal::FORWARD ||
streammode == vtkm::worklet::internal::BOTH))
{
vtkm::Id index = (seedId * 2) * maxsteps;
bool done = false;
vtkm::Id step = 0;
validPoint.Set(index, 1);
slLists.Set(index++, pos);
while (done != true && step < maxsteps)
{
vtkm::Vec<FieldType, 3> vdata, adata, bdata, cdata, ddata;
vdata = internal::VecDataAtPos<FieldType, FieldPortalConstType>
(pos, vdims, planesize, rowsize, field);
for (vtkm::IdComponent d = 0; d < 3; d++)
{
adata[d] = timestep * vdata[d];
pos[d] += adata[d] / 2.0f;
}
vdata = internal::VecDataAtPos<FieldType, FieldPortalConstType>
(pos, vdims, planesize, rowsize, field);
for (vtkm::IdComponent d = 0; d < 3; d++)
{
bdata[d] = timestep * vdata[d];
pos[d] += bdata[d] / 2.0f;
}
vdata = internal::VecDataAtPos<FieldType, FieldPortalConstType>
(pos, vdims, planesize, rowsize, field);
for (vtkm::IdComponent d = 0; d < 3; d++)
{
cdata[d] = timestep * vdata[d];
pos[d] += cdata[d] / 2.0f;
}
vdata = internal::VecDataAtPos<FieldType, FieldPortalConstType>
(pos, vdims, planesize, rowsize, field);
for (vtkm::IdComponent d = 0; d < 3; d++)
{
ddata[d] = timestep * vdata[d];
pos[d] += (adata[d] + (2.0f * bdata[d]) + (2.0f * cdata[d]) + ddata[d]) / 6.0f;
}
if (pos[0] < 0.0f || pos[0] > vdims[0] ||
pos[1] < 0.0f || pos[1] > vdims[1] ||
pos[2] < 0.0f || pos[2] > vdims[2])
{
pos = pre_pos;
done = true;
} else {
validPoint.Set(index, 1);
slLists.Set(index++, pos);
pre_pos = pos;
}
step++;
}
numIndices.Set(seedId * 2, static_cast<vtkm::IdComponent>(step));
}
// Backward tracing
if (visitIndex == 1 &&
(streammode == vtkm::worklet::internal::BACKWARD ||
streammode == vtkm::worklet::internal::BOTH))
{
vtkm::Id index = (seedId * 2 + 1) * maxsteps;
bool done = false;
vtkm::Id step = 0;
validPoint.Set(index, 1);
slLists.Set(index++, pos);
while (done != true && step < maxsteps)
{
vtkm::Vec<FieldType, 3> vdata, adata, bdata, cdata, ddata;
vdata = internal::VecDataAtPos<FieldType, FieldPortalConstType>
(pos, vdims, planesize, rowsize, field);
for (vtkm::IdComponent d = 0; d < 3; d++)
{
adata[d] = timestep * (0.0f - vdata[d]);
pos[d] += adata[d] / 2.0f;
}
vdata = internal::VecDataAtPos<FieldType, FieldPortalConstType>
(pos, vdims, planesize, rowsize, field);
for (vtkm::IdComponent d = 0; d < 3; d++)
{
bdata[d] = timestep * (0.0f - vdata[d]);
pos[d] += bdata[d] / 2.0f;
}
vdata = internal::VecDataAtPos<FieldType, FieldPortalConstType>
(pos, vdims, planesize, rowsize, field);
for (vtkm::IdComponent d = 0; d < 3; d++)
{
cdata[d] = timestep * (0.0f - vdata[d]);
pos[d] += cdata[d] / 2.0f;
}
vdata = internal::VecDataAtPos<FieldType, FieldPortalConstType>
(pos, vdims, planesize, rowsize, field);
for (vtkm::IdComponent d = 0; d < 3; d++)
{
ddata[d] = timestep * (0.0f - vdata[d]);
pos[d] += (adata[d] + (2.0f * bdata[d]) + (2.0f * cdata[d]) + ddata[d]) / 6.0f;
}
if (pos[0] < 0.0f || pos[0] > vdims[0] ||
pos[1] < 0.0f || pos[1] > vdims[1] ||
pos[2] < 0.0f || pos[2] > vdims[2])
{
pos = pre_pos;
done = true;
} else {
validPoint.Set(index, 1);
slLists.Set(index++, pos);
pre_pos = pos;
}
step++;
}
numIndices.Set((seedId * 2) + 1, static_cast<vtkm::IdComponent>(step));
}
}
};
StreamLineFilterUniformGrid()
{
}
vtkm::cont::DataSet Run(const vtkm::cont::DataSet &InDataSet,
vtkm::Id streamMode,
vtkm::Id numSeeds,
vtkm::Id maxSteps,
FieldType timeStep)
{
typedef typename vtkm::cont::DeviceAdapterAlgorithm<DeviceAdapter> DeviceAlgorithm;
// Get information from input dataset
vtkm::cont::CellSetStructured<3> &inCellSet =
InDataSet.GetCellSet(0).template CastTo<vtkm::cont::CellSetStructured<3> >();
vtkm::Id3 vdims= inCellSet.GetSchedulingRange(vtkm::TopologyElementTagPoint());
vtkm::cont::ArrayHandle<vtkm::Vec<FieldType, 3> > fieldArray =
InDataSet.GetField("vecData").GetData().
CastToArrayHandle<vtkm::Vec<FieldType, 3>, VTKM_DEFAULT_STORAGE_TAG>();
// Generate random seeds for starting streamlines
std::vector<vtkm::Vec<FieldType, 3> > seeds;
for (vtkm::Id i = 0; i < numSeeds; i++)
{
vtkm::Vec<FieldType, 3> seed;
seed[0] = static_cast<FieldType>(rand() % vdims[0]);
seed[1] = static_cast<FieldType>(rand() % vdims[1]);
seed[2] = static_cast<FieldType>(rand() % vdims[2]);
seeds.push_back(seed);
}
vtkm::cont::ArrayHandle<vtkm::Vec<FieldType, 3> > seedPosArray =
vtkm::cont::make_ArrayHandle(&seeds[0], numSeeds);
vtkm::cont::ArrayHandleCounting<vtkm::Id> seedIdArray(0, 1, numSeeds);
// Number of streams * number of steps * [forward, backward]
vtkm::Id numCells = numSeeds * 2;
vtkm::Id maxConnectivityLen = numCells * maxSteps;
// Stream array at max size will be filled with stream coordinates
vtkm::cont::ArrayHandle<vtkm::Vec<FieldType, 3> > streamArray;
streamArray.Allocate(maxConnectivityLen);
// NumIndices per polyline cell filled in by MakeStreamLines
vtkm::cont::ArrayHandle<vtkm::IdComponent> numIndices;
numIndices.Allocate(numCells);
// All cells are polylines
vtkm::cont::ArrayHandle<vtkm::UInt8> cellTypes;
cellTypes.Allocate(numCells);
vtkm::cont::ArrayHandleConstant<vtkm::UInt8> polyLineShape(vtkm::CELL_SHAPE_POLY_LINE, numCells);
DeviceAlgorithm::Copy(polyLineShape, cellTypes);
// Possible maxSteps points but if less use stencil
vtkm::cont::ArrayHandle<vtkm::IdComponent> validPoint;
vtkm::cont::ArrayHandleConstant<vtkm::Id> zeros(0, maxConnectivityLen);
validPoint.Allocate(maxConnectivityLen);
DeviceAlgorithm::Copy(zeros, validPoint);
// Worklet to make the streamlines
MakeStreamLines makeStreamLines(timeStep,
streamMode,
maxSteps,
vdims,
fieldArray.PrepareForInput(DeviceAdapter()));
typedef typename vtkm::worklet::DispatcherMapField<MakeStreamLines> MakeStreamLinesDispatcher;
MakeStreamLinesDispatcher makeStreamLinesDispatcher(makeStreamLines);
makeStreamLinesDispatcher.Invoke(
seedIdArray,
seedPosArray,
vtkm::exec::ExecutionWholeArray<vtkm::IdComponent>(numIndices, numCells),
vtkm::exec::ExecutionWholeArray<vtkm::IdComponent>(validPoint, maxConnectivityLen),
vtkm::exec::ExecutionWholeArray<vtkm::Vec<FieldType, 3> >(streamArray, maxConnectivityLen));
// Size of connectivity based on size of returned streamlines
vtkm::cont::ArrayHandle<vtkm::IdComponent> numIndicesOut;
vtkm::IdComponent connectivityLen = DeviceAlgorithm::ScanExclusive(numIndices, numIndicesOut);
// Connectivity is sequential
vtkm::cont::ArrayHandleCounting<vtkm::Id> connCount(0, 1, connectivityLen);
vtkm::cont::ArrayHandle<vtkm::Id> connectivity;
DeviceAlgorithm::Copy(connCount, connectivity);
// Compact the stream array so it only has valid points
vtkm::cont::ArrayHandle<vtkm::Vec<FieldType, 3> > coordinates;
DeviceAlgorithm::StreamCompact(streamArray,
validPoint,
coordinates,
IsUnity());
// Create the output data set
vtkm::cont::DataSet OutDataSet;
vtkm::cont::CellSetExplicit<> outCellSet;
outCellSet.Fill(cellTypes, numIndices, connectivity);
OutDataSet.AddCellSet(outCellSet);
OutDataSet.AddCoordinateSystem(vtkm::cont::CoordinateSystem("coordinates", 0, coordinates));
return OutDataSet;
}
};
}
}
#endif // vtk_m_worklet_StreamLineUniformGrid_h