Go to file
Sujin Philip fdfd62d43a Improve WorldCoordinatesToParametricCoordinates
1. Add a 'FastVec' class that copies input vector types to an efficient
   Vec type on the stack. Specializations avoid copies of already efficient
   types.
2. Update 'WorldCoordinatesToParametricCoordinates' functions to utilize the
   'FastVec' class. This should improve performance when the passed in
    vectors are of slow types like 'vtkm::VecFromPortalPermute'.
3. Since most input Vec types will convert to the same 'FastVec' type this
   also reduces the code generations. Some code refactoring was required for
   this.
2018-02-05 15:52:16 -05:00
CMake Misc. typos 2018-01-30 06:51:47 -05:00
data Add sample input 2017-09-06 14:05:15 -06:00
docs Update coding conventions 2017-10-26 10:37:08 -06:00
examples Revert un-intended change to examples 2018-01-16 10:55:02 -07:00
Utilities Revert spelling correction in GitSetup script 2018-01-31 15:59:57 -07:00
vtkm Improve WorldCoordinatesToParametricCoordinates 2018-02-05 15:52:16 -05:00
.clang-format Allow clang-format to pass more empty lines 2017-05-31 09:35:26 -06:00
.gitattributes update diy location in gitattributes. 2018-01-03 14:06:14 -05:00
CMakeLists.txt Misc. typos 2018-01-30 06:51:47 -05:00
CONTRIBUTING.md Misc. typos 2018-01-30 06:51:47 -05:00
CTestConfig.cmake Update copyright for Sandia 2017-09-20 15:33:44 -06:00
CTestCustom.cmake.in Suppress warnings generated by doxygen when building documentation 2018-01-31 13:08:03 -05:00
LICENSE.txt Update copyright for Sandia 2017-09-20 15:33:44 -06:00
README.md Change organization of OpenGL dependency documentation 2017-10-26 13:51:48 -06:00
version.txt Release 1.1.0: Update the version.txt 2017-11-06 15:04:06 -05:00

VTK-m

VTK-m is a toolkit of scientific visualization algorithms for emerging processor architectures. VTK-m supports the fine-grained concurrency for data analysis and visualization algorithms required to drive extreme scale computing by providing abstract models for data and execution that can be applied to a variety of algorithms across many different processor architectures.

You can find out more about the design of VTK-m on the VTK-m Wiki.

Learning Resources

  • A high-level overview is given in the IEEE Vis talk "VTK-m: Accelerating the Visualization Toolkit for Massively Threaded Architectures."

  • The VTK-m Users Guide provides extensive documentation. It is broken into multiple parts for learning and references at multiple different levels.

    • "Part 1: Getting Started" provides the introductory instruction for building VTK-m and using its high-level features.
    • "Part 2: Using VTK-m" covers the core fundamental components of VTK-m including data model, worklets, and filters.
    • "Part 3: Developing with VTK-m" covers how to develop new worklets and filters.
    • "Part 4: Advanced Development" covers topics such as new worklet types and custom device adapters.
  • Community discussion takes place on the VTK-m users email list.

  • Doxygen-generated nightly reference documentation is available online.

Contributing

There are many ways to contribute to VTK-m, with varying levels of effort.

Dependencies

VTK-m Requires:

  • C++11 Compiler. VTK-m has been confirmed to work with the following
    • GCC 4.8+
    • Clang 3.3+
    • XCode 5.0+
    • MSVC 2013+
  • CMake
    • CMake 3.3+ (for any build)
    • CMake 3.9+ (for CUDA build)

Optional dependencies are:

  • CUDA Device Adapter
  • TBB Device Adapter
  • OpenGL Rendering
    • The rendering module contains multiple rendering implementations including standalone rendering code. The rendering module also includes (optionally built) OpenGL rendering classes.
    • The OpenGL rendering classes require that you have a extension binding library and one rendering library. A windowing library is not needed except for some optional tests.
  • Extension Binding
  • On Screen Rendering
    • OpenGL Driver
    • Mesa Driver
  • On Screen Rendering Tests
  • Headless Rendering

Building

VTK-m supports all majors platforms (Windows, Linux, OSX), and uses CMake to generate all the build rules for the project. The VTK-m source code is available from the VTK-m download page or by directly cloning the VTK-m git repository.

$ git clone https://gitlab.kitware.com/vtk/vtk-m.git
$ mkdir vtkm-build
$ cd vtkm-build
$ cmake-gui ../vtk-m
$ make -j<N>
$ make test

A more detailed description of building VTK-m is available in the VTK-m Users Guide.

Example##

The VTK-m source distribution includes a number of examples. The goal of the VTK-m examples is to illustrate specific VTK-m concepts in a consistent and simple format. However, these examples only cover a small part of the capabilities of VTK-m.

Below is a simple example of using VTK-m to load a VTK image file, run the Marching Cubes algorithm on it, and render the results to an image:

vtkm::io::reader::VTKDataSetReader reader("path/to/vtk_image_file");
inputData = reader.ReadDataSet();

vtkm::Float64 isovalue = 100.0f;
std::string fieldName = "pointvar";

// Create an isosurface filter
vtkm::filter::MarchingCubes filter;
filter.SetIsoValue(0, isovalue);
vtkm::filter::Result result = filter.Execute( inputData,
                                              inputData.GetField(fieldName) );
filter.MapFieldOntoOutput(result, inputData.GetField(fieldName));

// compute the bounds and extends of the input data
vtkm::Bounds coordsBounds = inputData.GetCoordinateSystem().GetBounds();
vtkm::Vec<vtkm::Float64,3> totalExtent( coordsBounds.X.Length(),
                                        coordsBounds.Y.Length(),
                                        coordsBounds.Z.Length() );
vtkm::Float64 mag = vtkm::Magnitude(totalExtent);
vtkm::Normalize(totalExtent);

// setup a camera and point it to towards the center of the input data
vtkm::rendering::Camera camera;
camera.ResetToBounds(coordsBounds);

camera.SetLookAt(totalExtent*(mag * .5f));
camera.SetViewUp(vtkm::make_Vec(0.f, 1.f, 0.f));
camera.SetClippingRange(1.f, 100.f);
camera.SetFieldOfView(60.f);
camera.SetPosition(totalExtent*(mag * 2.f));
vtkm::rendering::ColorTable colorTable("thermal");

// Create a mapper, canvas and view that will be used to render the scene
vtkm::rendering::Scene scene;
vtkm::rendering::MapperRayTracer mapper;
vtkm::rendering::CanvasRayTracer canvas(512, 512);
vtkm::rendering::Color bg(0.2f, 0.2f, 0.2f, 1.0f);

// Render an image of the output isosurface
vtkm::cont::DataSet& outputData = result.GetDataSet();
scene.AddActor(vtkm::rendering::Actor(outputData.GetCellSet(),
                                      outputData.GetCoordinateSystem(),
                                      outputData.GetField(fieldName),
                                      colorTable));
vtkm::rendering::View3D view(scene, mapper, canvas, camera, bg);
view.Initialize();
view.Paint();
view.SaveAs("demo_output.pnm");

License

VTK-m is distributed under the OSI-approved BSD 3-clause License. See LICENSE.txt for details.