Go to file
Kenneth Moreland 04fce28ae3 Deal with small integer promotions
C and C++ has a funny feature where operations on small integers (char
and short) actually promote the result to a 32 bit integer. Most often
in our code the result is pushed back to the same type, and picky compilers
can then give a warning about an implicit type conversion (that we
inevitably don't care about). Here are a lot of changes to suppress
the warnings.
2015-07-30 17:41:58 -06:00
CMake Update FindBoostHeaders to include boost 1.57 and 1.58 2015-07-22 14:59:26 -04:00
docs The Copyright statement now has all the periods in the correct location. 2015-05-21 10:30:11 -04:00
vtkm Deal with small integer promotions 2015-07-30 17:41:58 -06:00
CMakeLists.txt Fix support for enabling 64bit vtkm::Id and double precision 2015-07-23 09:01:39 -04:00
CONTRIBUTING.md Add a contributing guide to vtk-m. 2015-07-29 17:33:30 -04:00
CTestConfig.cmake The Copyright statement now has all the periods in the correct location. 2015-05-21 10:30:11 -04:00
LICENSE.txt Add TBB backend. 2015-06-01 13:57:37 -04:00
README.md Update ReadMe to reference gitlab. 2015-05-13 08:45:52 -04:00

VTK-m

One of the biggest recent changes in high-performance computing is the increasing use of accelerators. Accelerators contain processing cores that independently are inferior to a core in a typical CPU, but these cores are replicated and grouped such that their aggregate execution provides a very high computation rate at a much lower power. Current and future CPU processors also require much more explicit parallelism. Each successive version of the hardware packs more cores into each processor, and technologies like hyperthreading and vector operations require even more parallel processing to leverage each cores full potential.

VTK-m is a toolkit of scientific visualization algorithms for emerging processor architectures. VTK-m supports the fine-grained concurrency for data analysis and visualization algorithms required to drive extreme scale computing by providing abstract models for data and execution that can be applied to a variety of algorithms across many different processor architectures.

Getting VTK-m

The VTK-m repository is located at https://gitlab.kitware.com/vtk/vtk-m

VTK-m dependencies are:

git clone https://gitlab.kitware.com/vtk/vtk-m.git vtkm
mkdir vtkm-build
cd vtkm-build
cmake-gui ../vtkm

A detailed walk-through of installing and building VTK-m can be found on our Contributing page