vtk-m2/vtkm/worklet/cosmotools/CosmoToolsCenterFinder.h
Haocheng LIU 8859636672 Merge worklet testing executables into a device dependent shared library
VTK-m has been updated to replace old per device worklet testing executables with a device
dependent shared library so that it's able to accept a device adapter
at runtime.
Meanwhile, it updates the testing infrastructure APIs. vtkm::cont::testing::Run
function would call ForceDevice when needed and if users need the device
adapter info at runtime, RunOnDevice function would pass the adapter into the functor.

Optional Parser is bumped from 1.3 to 1.7.
2018-11-23 10:13:56 -05:00

433 lines
20 KiB
C++

//============================================================================
// Copyright (c) Kitware, Inc.
// All rights reserved.
// See LICENSE.txt for details.
// This software is distributed WITHOUT ANY WARRANTY; without even
// the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
// PURPOSE. See the above copyright notice for more information.
//
// Copyright 2014 National Technology & Engineering Solutions of Sandia, LLC (NTESS).
// Copyright 2014 UT-Battelle, LLC.
// Copyright 2014 Los Alamos National Security.
//
// Under the terms of Contract DE-NA0003525 with NTESS,
// the U.S. Government retains certain rights in this software.
//
// Under the terms of Contract DE-AC52-06NA25396 with Los Alamos National
// Laboratory (LANL), the U.S. Government retains certain rights in
// this software.
//============================================================================
// Copyright (c) 2016, Los Alamos National Security, LLC
// All rights reserved.
//
// Copyright 2016. Los Alamos National Security, LLC.
// This software was produced under U.S. Government contract DE-AC52-06NA25396
// for Los Alamos National Laboratory (LANL), which is operated by
// Los Alamos National Security, LLC for the U.S. Department of Energy.
// The U.S. Government has rights to use, reproduce, and distribute this
// software. NEITHER THE GOVERNMENT NOR LOS ALAMOS NATIONAL SECURITY, LLC
// MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LIABILITY FOR THE
// USE OF THIS SOFTWARE. If software is modified to produce derivative works,
// such modified software should be clearly marked, so as not to confuse it
// with the version available from LANL.
//
// Additionally, redistribution and use in source and binary forms, with or
// without modification, are permitted provided that the following conditions
// are met:
//
// 1. Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// 3. Neither the name of Los Alamos National Security, LLC, Los Alamos
// National Laboratory, LANL, the U.S. Government, nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY LOS ALAMOS NATIONAL SECURITY, LLC AND
// CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
// BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LOS ALAMOS
// NATIONAL SECURITY, LLC OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
// USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
// THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//============================================================================
#ifndef vtkm_worklet_cosmotools_cosmotools_centerfinder_h
#define vtkm_worklet_cosmotools_cosmotools_centerfinder_h
#include <vtkm/worklet/cosmotools/CosmoTools.h>
namespace vtkm
{
namespace worklet
{
namespace cosmotools
{
///////////////////////////////////////////////////////////////////////////////
//
// Center finder for particles in FOF halo using estimations but with exact final answer
// MBP (Most Bound Particle) is particle with the minimum potential energy
//
///////////////////////////////////////////////////////////////////////////////
template <typename T, typename StorageType>
vtkm::Id CosmoTools<T, StorageType>::MBPCenterFinderMxN(T* mxnPotential)
{
vtkm::cont::ArrayHandle<vtkm::Id> partId;
vtkm::cont::ArrayHandle<vtkm::Id> binId;
vtkm::cont::ArrayHandle<vtkm::Id> uniqueBins;
vtkm::cont::ArrayHandle<vtkm::Id> partPerBin;
vtkm::cont::ArrayHandle<vtkm::Id> particleOffset;
vtkm::cont::ArrayHandle<vtkm::Id> binX;
vtkm::cont::ArrayHandle<vtkm::Id> binY;
vtkm::cont::ArrayHandle<vtkm::Id> binZ;
// Bin all particles in the halo into bins of size linking length
BinParticlesHalo(partId, binId, uniqueBins, partPerBin, particleOffset, binX, binY, binZ);
#ifdef DEBUG_PRINT
DebugPrint("uniqueBins", uniqueBins);
DebugPrint("partPerBin", partPerBin);
#endif
// Compute the estimated potential per bin using 27 contiguous bins
vtkm::cont::ArrayHandle<T> partPotential;
MBPCenterFindingByKey(binId, partId, partPotential);
// Reduce by key to get the estimated minimum potential per bin within 27 neighbors
vtkm::cont::ArrayHandle<vtkm::Id> tempId;
vtkm::cont::ArrayHandle<T> minPotential;
DeviceAlgorithm::ReduceByKey(binId, partPotential, tempId, minPotential, vtkm::Minimum());
// Reduce by key to get the estimated maximum potential per bin within 27 neighbors
vtkm::cont::ArrayHandle<T> maxPotential;
DeviceAlgorithm::ReduceByKey(binId, partPotential, tempId, maxPotential, vtkm::Maximum());
#ifdef DEBUG_PRINT
DebugPrint("minPotential", minPotential);
DebugPrint("maxPotential", maxPotential);
#endif
// Compute potentials estimate for a bin using all other bins
// Particles in the other bins are located at the closest point to this bin
vtkm::cont::ArrayHandleIndex uniqueIndex(uniqueBins.GetNumberOfValues());
vtkm::cont::ArrayHandle<T> bestEstPotential;
vtkm::cont::ArrayHandle<T> worstEstPotential;
// Initialize each bin potential with the nxn for that bin
DeviceAlgorithm::Copy(minPotential, bestEstPotential);
DeviceAlgorithm::Copy(maxPotential, worstEstPotential);
// Estimate only across the uniqueBins that contain particles
ComputePotentialBin<T> computePotentialBin(uniqueBins.GetNumberOfValues(), particleMass, linkLen);
vtkm::worklet::DispatcherMapField<ComputePotentialBin<T>> computePotentialBinDispatcher(
computePotentialBin);
computePotentialBinDispatcher.Invoke(uniqueIndex, // input
partPerBin, // input (whole array)
binX, // input (whole array)
binY, // input (whole array)
binZ, // input (whole array)
bestEstPotential, // input/output
worstEstPotential); // input/output
#ifdef DEBUG_PRINT
DebugPrint("bestEstPotential", bestEstPotential);
DebugPrint("worstEstPotential", worstEstPotential);
std::cout << "Number of bestEstPotential " << bestEstPotential.GetNumberOfValues() << std::endl;
std::cout << "Number of worstEstPotential " << worstEstPotential.GetNumberOfValues() << std::endl;
#endif
// Sort everything by the best estimated potential per bin
vtkm::cont::ArrayHandle<T> tempBest;
DeviceAlgorithm::Copy(bestEstPotential, tempBest);
DeviceAlgorithm::SortByKey(tempBest, worstEstPotential);
// Use the worst estimate for the first selected bin to compare to best of all others
// Any bin that passes is a candidate for having the MBP
T cutoffPotential = worstEstPotential.GetPortalControl().Get(0);
vtkm::cont::ArrayHandle<vtkm::Id> candidate;
DeviceAlgorithm::Copy(vtkm::cont::ArrayHandleConstant<vtkm::Id>(0, nParticles), candidate);
SetCandidateParticles<T> setCandidateParticles(cutoffPotential);
vtkm::worklet::DispatcherMapField<SetCandidateParticles<T>> setCandidateParticlesDispatcher(
setCandidateParticles);
setCandidateParticlesDispatcher.Invoke(bestEstPotential, // input
particleOffset, // input
partPerBin, // input
candidate); // output (whole array)
// Copy the M candidate particles to a new array
vtkm::cont::ArrayHandle<vtkm::Id> mparticles;
DeviceAlgorithm::CopyIf(partId, candidate, mparticles);
// Compute potentials only on the candidate particles
vtkm::cont::ArrayHandle<T> mpotential;
ComputePotentialOnCandidates<T> computePotentialOnCandidates(nParticles, particleMass);
vtkm::worklet::DispatcherMapField<ComputePotentialOnCandidates<T>>
computePotentialOnCandidatesDispatcher(computePotentialOnCandidates);
computePotentialOnCandidatesDispatcher.Invoke(mparticles,
xLoc, // input (whole array)
yLoc, // input (whole array)
zLoc, // input (whole array)
mpotential); // output
// Of the M candidate particles which has the minimum potential
DeviceAlgorithm::SortByKey(mpotential, mparticles);
#ifdef DEBUG_PRINT
DebugPrint("mparticles", mparticles);
DebugPrint("mpotential", mpotential);
#endif
// Return the found MBP particle and its potential
vtkm::Id mxnMBP = mparticles.GetPortalControl().Get(0);
*mxnPotential = mpotential.GetPortalControl().Get(0);
return mxnMBP;
}
///////////////////////////////////////////////////////////////////////////////
//
// Bin particles in one halo for quick MBP finding
//
///////////////////////////////////////////////////////////////////////////////
template <typename T, typename StorageType>
void CosmoTools<T, StorageType>::BinParticlesHalo(vtkm::cont::ArrayHandle<vtkm::Id>& partId,
vtkm::cont::ArrayHandle<vtkm::Id>& binId,
vtkm::cont::ArrayHandle<vtkm::Id>& uniqueBins,
vtkm::cont::ArrayHandle<vtkm::Id>& partPerBin,
vtkm::cont::ArrayHandle<vtkm::Id>& particleOffset,
vtkm::cont::ArrayHandle<vtkm::Id>& binX,
vtkm::cont::ArrayHandle<vtkm::Id>& binY,
vtkm::cont::ArrayHandle<vtkm::Id>& binZ)
{
// Compute number of bins and ranges for each bin
vtkm::Vec<T, 2> xRange(xLoc.GetPortalConstControl().Get(0));
vtkm::Vec<T, 2> yRange(yLoc.GetPortalConstControl().Get(0));
vtkm::Vec<T, 2> zRange(zLoc.GetPortalConstControl().Get(0));
xRange = DeviceAlgorithm::Reduce(xLoc, xRange, vtkm::MinAndMax<T>());
T minX = xRange[0];
T maxX = xRange[1];
yRange = DeviceAlgorithm::Reduce(yLoc, yRange, vtkm::MinAndMax<T>());
T minY = yRange[0];
T maxY = yRange[1];
zRange = DeviceAlgorithm::Reduce(zLoc, zRange, vtkm::MinAndMax<T>());
T minZ = zRange[0];
T maxZ = zRange[1];
numBinsX = static_cast<vtkm::Id>(vtkm::Floor((maxX - minX) / linkLen));
numBinsY = static_cast<vtkm::Id>(vtkm::Floor((maxY - minY) / linkLen));
numBinsZ = static_cast<vtkm::Id>(vtkm::Floor((maxZ - minZ) / linkLen));
vtkm::Id maxBins = 1048576;
numBinsX = std::min(maxBins, numBinsX);
numBinsY = std::min(maxBins, numBinsY);
numBinsZ = std::min(maxBins, numBinsZ);
vtkm::Id minBins = 1;
numBinsX = std::max(minBins, numBinsX);
numBinsY = std::max(minBins, numBinsY);
numBinsZ = std::max(minBins, numBinsZ);
#ifdef DEBUG_PRINT
std::cout << std::endl
<< "** BinParticlesHalo (" << numBinsX << ", " << numBinsY << ", " << numBinsZ << ") ("
<< minX << ", " << minY << ", " << minZ << ") (" << maxX << ", " << maxY << ", " << maxZ
<< ")" << std::endl;
#endif
// Compute which bin each particle is in
ComputeBins<T> computeBins(minX,
maxX, // Physical range on domain
minY,
maxY,
minZ,
maxZ,
numBinsX,
numBinsY,
numBinsZ); // Size of superimposed mesh
vtkm::worklet::DispatcherMapField<ComputeBins<T>> computeBinsDispatcher(computeBins);
computeBinsDispatcher.Invoke(xLoc, // input
yLoc, // input
zLoc, // input
binId); // output
vtkm::cont::ArrayHandleIndex indexArray(nParticles);
DeviceAlgorithm::Copy(indexArray, partId);
#ifdef DEBUG_PRINT
DebugPrint("xLoc", xLoc);
DebugPrint("yLoc", yLoc);
DebugPrint("zLoc", zLoc);
DebugPrint("partId", partId);
DebugPrint("binId", binId);
#endif
// Sort the particles by bin
DeviceAlgorithm::SortByKey(binId, partId);
// Count the number of particles per bin
vtkm::cont::ArrayHandleConstant<vtkm::Id> constArray(1, nParticles);
DeviceAlgorithm::ReduceByKey(binId, constArray, uniqueBins, partPerBin, vtkm::Add());
#ifdef DEBUG_PRINT
DebugPrint("sorted binId", binId);
DebugPrint("sorted partId", partId);
DebugPrint("uniqueBins", uniqueBins);
DebugPrint("partPerBin", partPerBin);
#endif
// Calculate the bin indices
ComputeBinIndices<T> computeBinIndices(numBinsX, numBinsY, numBinsZ);
vtkm::worklet::DispatcherMapField<ComputeBinIndices<T>> computeBinIndicesDispatcher(
computeBinIndices);
computeBinIndicesDispatcher.Invoke(uniqueBins, // input
binX, // input
binY, // input
binZ); // input
DeviceAlgorithm::ScanExclusive(partPerBin, particleOffset);
}
///////////////////////////////////////////////////////////////////////////////
//
// Center finder for all particles given location, particle id and key id
// Assumed that key and particles are already sorted
// MBP (Most Bound Particle) is particle with the minimum potential energy
// Method uses ScanInclusiveByKey() and ArrayHandleReverse
//
///////////////////////////////////////////////////////////////////////////////
template <typename T, typename StorageType>
void CosmoTools<T, StorageType>::MBPCenterFindingByKey(vtkm::cont::ArrayHandle<vtkm::Id>& keyId,
vtkm::cont::ArrayHandle<vtkm::Id>& partId,
vtkm::cont::ArrayHandle<T>& minPotential)
{
// Compute starting and ending indices of each key (bin or halo)
vtkm::cont::ArrayHandleIndex indexArray(nParticles);
vtkm::cont::ArrayHandle<T> potential;
vtkm::cont::ArrayHandleReverse<vtkm::cont::ArrayHandle<vtkm::Id>> keyReverse(keyId);
vtkm::cont::ArrayHandleReverse<vtkm::cont::ArrayHandle<T>> minPotReverse(minPotential);
// Compute indices of all left neighbor bins per bin not per particle
vtkm::cont::ArrayHandle<vtkm::Id> leftNeighbor;
vtkm::cont::ArrayHandle<vtkm::Id> rightNeighbor;
leftNeighbor.Allocate(NUM_NEIGHBORS * nParticles);
rightNeighbor.Allocate(NUM_NEIGHBORS * nParticles);
vtkm::cont::ArrayHandleIndex countArray(nParticles);
ComputeNeighborBins computeNeighborBins(numBinsX, numBinsY, numBinsZ, NUM_NEIGHBORS);
vtkm::worklet::DispatcherMapField<ComputeNeighborBins> computeNeighborBinsDispatcher(
computeNeighborBins);
computeNeighborBinsDispatcher.Invoke(countArray, keyId, leftNeighbor);
// Compute indices of all right neighbor bins
ComputeBinRange computeBinRange(numBinsX);
vtkm::worklet::DispatcherMapField<ComputeBinRange> computeBinRangeDispatcher(computeBinRange);
computeBinRangeDispatcher.Invoke(leftNeighbor, rightNeighbor);
// Convert bin range to particle range within the bins
DeviceAlgorithm::LowerBounds(keyId, leftNeighbor, leftNeighbor);
DeviceAlgorithm::UpperBounds(keyId, rightNeighbor, rightNeighbor);
#ifdef DEBUG_PRINT
DebugPrint("leftNeighbor", leftNeighbor);
DebugPrint("rightNeighbor", rightNeighbor);
#endif
// Initialize halo id of each particle to itself
// Compute potentials on particles in 27 neighbors to find minimum
ComputePotentialNeighbors<T> computePotentialNeighbors(
numBinsX, numBinsY, numBinsZ, NUM_NEIGHBORS, particleMass);
vtkm::worklet::DispatcherMapField<ComputePotentialNeighbors<T>>
computePotentialNeighborsDispatcher(computePotentialNeighbors);
computePotentialNeighborsDispatcher.Invoke(indexArray,
keyId, // input (whole array)
partId, // input (whole array)
xLoc, // input (whole array)
yLoc, // input (whole array)
zLoc, // input (whole array)
leftNeighbor, // input (whole array)
rightNeighbor, // input (whole array)
potential); // output
// Find minimum potential for all particles in a halo
DeviceAlgorithm::ScanInclusiveByKey(keyId, potential, minPotential, vtkm::Minimum());
DeviceAlgorithm::ScanInclusiveByKey(keyReverse, minPotReverse, minPotReverse, vtkm::Minimum());
#ifdef DEBUG_PRINT
DebugPrint("potential", potential);
DebugPrint("minPotential", minPotential);
#endif
// Find the particle id matching the minimum potential
vtkm::cont::ArrayHandle<vtkm::Id> centerId;
EqualsMinimumPotential<T> equalsMinimumPotential;
vtkm::worklet::DispatcherMapField<EqualsMinimumPotential<T>> equalsMinimumPotentialDispatcher(
equalsMinimumPotential);
equalsMinimumPotentialDispatcher.Invoke(partId, potential, minPotential, centerId);
}
///////////////////////////////////////////////////////////////////////////////
//
// Center finder for particles in a single halo given location and particle id
// MBP (Most Bound Particle) is particle with the minimum potential energy
// Method uses ScanInclusiveByKey() and ArrayHandleReverse
//
///////////////////////////////////////////////////////////////////////////////
template <typename T, typename StorageType>
vtkm::Id CosmoTools<T, StorageType>::MBPCenterFinderNxN(T* nxnPotential)
{
vtkm::cont::ArrayHandle<T> potential;
vtkm::cont::ArrayHandle<T> minPotential;
vtkm::cont::ArrayHandleReverse<vtkm::cont::ArrayHandle<T>> minPotReverse(minPotential);
vtkm::cont::ArrayHandleIndex particleIndex(nParticles);
// Compute potentials (Worklet)
ComputePotentialNxN<T> computePotentialHalo(nParticles, particleMass);
vtkm::worklet::DispatcherMapField<ComputePotentialNxN<T>> computePotentialHaloDispatcher(
computePotentialHalo);
computePotentialHaloDispatcher.Invoke(particleIndex, // input
xLoc, // input (whole array)
yLoc, // input (whole array)
zLoc, // input (whole array)
potential); // output
// Find minimum potential for all particles in a halo
DeviceAlgorithm::ScanInclusive(potential, minPotential, vtkm::Minimum());
DeviceAlgorithm::ScanInclusive(minPotReverse, minPotReverse, vtkm::Minimum());
// Find the particle id matching the minimum potential
vtkm::cont::ArrayHandle<vtkm::Id> centerId;
EqualsMinimumPotential<T> equalsMinimumPotential;
vtkm::worklet::DispatcherMapField<EqualsMinimumPotential<T>> equalsMinimumPotentialDispatcher(
equalsMinimumPotential);
equalsMinimumPotentialDispatcher.Invoke(particleIndex, potential, minPotential, centerId);
// Fill out entire array with center index
vtkm::cont::ArrayHandleReverse<vtkm::cont::ArrayHandle<vtkm::Id>> centerIdReverse(centerId);
DeviceAlgorithm::ScanInclusive(centerId, centerId, vtkm::Maximum());
DeviceAlgorithm::ScanInclusive(centerIdReverse, centerIdReverse, vtkm::Maximum());
vtkm::Id nxnMBP = centerId.GetPortalConstControl().Get(0);
*nxnPotential = potential.GetPortalConstControl().Get(nxnMBP);
return nxnMBP;
}
}
}
}
#endif