vtk-m2/vtkm/cont/ArrayRangeCompute.hxx
Kenneth Moreland 0b32831afd Make ArrayHandleVirtual conform with other ArrayHandle structure
Previously, ArrayHandleVirtual was defined as a specialization of
ArrayHandle with the virtual storage tag. This was because the storage
object was polymorphic and needed to be handled special. These changes
moved the existing storage definition to an internal class, and then
managed the pointer to that implementation class in a Storage object
that can be managed like any other storage object.

Also moved the implementation of StorageAny into the implementation of
the internal storage object.
2019-03-01 15:50:14 -07:00

168 lines
5.4 KiB
C++

//============================================================================
// Copyright (c) Kitware, Inc.
// All rights reserved.
// See LICENSE.txt for details.
// This software is distributed WITHOUT ANY WARRANTY; without even
// the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
// PURPOSE. See the above copyright notice for more information.
//
// Copyright 2017 National Technology & Engineering Solutions of Sandia, LLC (NTESS).
// Copyright 2017 UT-Battelle, LLC.
// Copyright 2017 Los Alamos National Security.
//
// Under the terms of Contract DE-NA0003525 with NTESS,
// the U.S. Government retains certain rights in this software.
//
// Under the terms of Contract DE-AC52-06NA25396 with Los Alamos National
// Laboratory (LANL), the U.S. Government retains certain rights in
// this software.
//============================================================================
#ifndef vtk_m_cont_ArrayRangeCompute_hxx
#define vtk_m_cont_ArrayRangeCompute_hxx
#include <vtkm/cont/ArrayRangeCompute.h>
#include <vtkm/BinaryOperators.h>
#include <vtkm/VecTraits.h>
#include <vtkm/cont/Algorithm.h>
#include <limits>
namespace vtkm
{
namespace cont
{
namespace detail
{
struct ArrayRangeComputeFunctor
{
template <typename Device, typename T, typename S>
VTKM_CONT bool operator()(Device,
const vtkm::cont::ArrayHandle<T, S>& handle,
const vtkm::Vec<T, 2>& initialValue,
vtkm::Vec<T, 2>& result) const
{
VTKM_IS_DEVICE_ADAPTER_TAG(Device);
using Algorithm = vtkm::cont::DeviceAdapterAlgorithm<Device>;
result = Algorithm::Reduce(handle, initialValue, vtkm::MinAndMax<T>());
return true;
}
};
template <typename T, typename S>
inline vtkm::cont::ArrayHandle<vtkm::Range> ArrayRangeComputeImpl(
const vtkm::cont::ArrayHandle<T, S>& input,
vtkm::cont::RuntimeDeviceTracker& tracker)
{
using VecTraits = vtkm::VecTraits<T>;
using CT = typename VecTraits::ComponentType;
//We want to minimize the amount of code that we do in try execute as
//it is repeated for each
vtkm::cont::ArrayHandle<vtkm::Range> range;
range.Allocate(VecTraits::NUM_COMPONENTS);
if (input.GetNumberOfValues() < 1)
{
auto portal = range.GetPortalControl();
for (vtkm::IdComponent i = 0; i < VecTraits::NUM_COMPONENTS; ++i)
{
portal.Set(i, vtkm::Range());
}
}
else
{
//We used the limits, so that we don't need to sync the array handle
//
vtkm::Vec<T, 2> result;
vtkm::Vec<T, 2> initial;
initial[0] = T(std::numeric_limits<CT>::max());
initial[1] = T(std::numeric_limits<CT>::lowest());
const bool rangeComputed =
vtkm::cont::TryExecute(detail::ArrayRangeComputeFunctor{}, tracker, input, initial, result);
if (!rangeComputed)
{
ThrowArrayRangeComputeFailed();
}
else
{
auto portal = range.GetPortalControl();
for (vtkm::IdComponent i = 0; i < VecTraits::NUM_COMPONENTS; ++i)
{
portal.Set(i,
vtkm::Range(VecTraits::GetComponent(result[0], i),
VecTraits::GetComponent(result[1], i)));
}
}
}
return range;
}
} // namespace detail
// VTKM_CONT
// inline vtkm::cont::ArrayHandle<vtkm::Range> ArrayRangeCompute(
// const vtkm::cont::ArrayHandleVirtualCoordinates& input,
// vtkm::cont::RuntimeDeviceTracker tracker)
// {
// auto array =
// static_cast<const vtkm::cont::ArrayHandleVirtual<vtkm::Vec<vtkm::FloatDefault, 3>>&>(input);
// return ArrayRangeCompute(array, tracker);
// }
VTKM_CONT
inline vtkm::cont::ArrayHandle<vtkm::Range> ArrayRangeCompute(
const vtkm::cont::ArrayHandleVirtual<vtkm::Vec<vtkm::FloatDefault, 3>>& input,
vtkm::cont::RuntimeDeviceTracker tracker)
{
using UniformHandleType = ArrayHandleUniformPointCoordinates;
using RectilinearHandleType =
vtkm::cont::ArrayHandleCartesianProduct<vtkm::cont::ArrayHandle<vtkm::FloatDefault>,
vtkm::cont::ArrayHandle<vtkm::FloatDefault>,
vtkm::cont::ArrayHandle<vtkm::FloatDefault>>;
if (input.IsType<UniformHandleType>())
{
using T = typename UniformHandleType::ValueType;
using S = typename UniformHandleType::StorageTag;
const vtkm::cont::internal::detail::StorageVirtual* storage =
input.GetStorage().GetStorageVirtual();
const auto* castStorage =
storage->Cast<vtkm::cont::internal::detail::StorageVirtualImpl<T, S>>();
return ArrayRangeCompute(castStorage->GetHandle(), tracker);
}
else if (input.IsType<RectilinearHandleType>())
{
using T = typename RectilinearHandleType::ValueType;
using S = typename RectilinearHandleType::StorageTag;
const vtkm::cont::internal::detail::StorageVirtual* storage =
input.GetStorage().GetStorageVirtual();
const auto* castStorage =
storage->Cast<vtkm::cont::internal::detail::StorageVirtualImpl<T, S>>();
return ArrayRangeCompute(castStorage->GetHandle(), tracker);
}
else
{
return detail::ArrayRangeComputeImpl(input, tracker);
}
}
template <typename ArrayHandleType>
inline vtkm::cont::ArrayHandle<vtkm::Range> ArrayRangeCompute(
const ArrayHandleType& input,
vtkm::cont::RuntimeDeviceTracker tracker)
{
VTKM_IS_ARRAY_HANDLE(ArrayHandleType);
return detail::ArrayRangeComputeImpl(input, tracker);
}
}
} // namespace vtkm::cont
#endif //vtk_m_cont_ArrayRangeCompute_hxx