vtk-m2/vtkm/VectorAnalysis.h
Thomas J. Otahal 556b922733 Created a filter for the vector magnitude worklet.
Modified the vector magnitude worklet to accept VecAll instead
of Vec3 and return Scalar. Modified the Magnitude() and Sqrt() functions
to return FloatDefault for all inputs except for Float64.

Perhaps we should modify other functions in Math.h and VectorAnalysis.h to
return float types for intergral arguments instead of integral types?
2017-01-19 13:27:42 -07:00

236 lines
7.0 KiB
C++

//=============================================================================
//
// Copyright (c) Kitware, Inc.
// All rights reserved.
// See LICENSE.txt for details.
//
// This software is distributed WITHOUT ANY WARRANTY; without even
// the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
// PURPOSE. See the above copyright notice for more information.
//
// Copyright 2015 Sandia Corporation.
// Copyright 2015 UT-Battelle, LLC.
// Copyright 2015 Los Alamos National Security.
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
// Under the terms of Contract DE-AC52-06NA25396 with Los Alamos National
// Laboratory (LANL), the U.S. Government retains certain rights in
// this software.
//
//=============================================================================
#ifndef vtk_m_VectorAnalysis_h
#define vtk_m_VectorAnalysis_h
// This header file defines math functions that deal with linear albegra funcitons
#include <vtkm/Math.h>
#include <vtkm/Types.h>
#include <vtkm/TypeTraits.h>
#include <vtkm/VecTraits.h>
namespace vtkm {
// ----------------------------------------------------------------------------
/// \brief Returns the linear interpolation of two values based on weight
///
/// \c Lerp interpolates return the linerar interpolation of v0 and v1 based on w. v0
/// and v1 are scalars or vectors of same length. w can either be a scalar or a
/// vector of the same length as x and y. If w is outside [0,1] then lerp
/// extrapolates. If w=0 => v0 is returned if w=1 => v1 is returned.
///
template<typename ValueType, typename WeightType>
VTKM_EXEC_CONT
ValueType Lerp(const ValueType &value0,
const ValueType &value1,
const WeightType &weight)
{
return static_cast<ValueType>((WeightType(1)-weight)*value0+weight*value1);
}
template<typename ValueType, vtkm::IdComponent N, typename WeightType>
VTKM_EXEC_CONT
vtkm::Vec<ValueType,N> Lerp(const vtkm::Vec<ValueType,N> &value0,
const vtkm::Vec<ValueType,N> &value1,
const WeightType &weight)
{
return (WeightType(1)-weight)*value0+weight*value1;
}
template<typename ValueType, vtkm::IdComponent N>
VTKM_EXEC_CONT
vtkm::Vec<ValueType,N> Lerp(const vtkm::Vec<ValueType,N> &value0,
const vtkm::Vec<ValueType,N> &value1,
const vtkm::Vec<ValueType,N> &weight)
{
static const vtkm::Vec<ValueType,N> One(ValueType(1));
return (One-weight)*value0+weight*value1;
}
// ----------------------------------------------------------------------------
/// \brief Returns the square of the magnitude of a vector.
///
/// It is usually much faster to compute the square of the magnitude than the
/// square, so you should use this function in place of Magnitude or RMagnitude
/// when possible.
///
template<typename T>
VTKM_EXEC_CONT
typename vtkm::VecTraits<T>::ComponentType
MagnitudeSquared(const T &x)
{
return vtkm::dot(x,x);
}
// ----------------------------------------------------------------------------
namespace detail {
template<typename T>
VTKM_EXEC_CONT
T MagnitudeTemplate(T x, vtkm::TypeTraitsScalarTag)
{
return vtkm::Abs(x);
}
template<typename T>
VTKM_EXEC_CONT
vtkm::FloatDefault MagnitudeTemplate(const T &x, vtkm::TypeTraitsVectorTag)
{
return vtkm::Sqrt(vtkm::MagnitudeSquared(x));
}
template<vtkm::IdComponent Size>
VTKM_EXEC_CONT
vtkm::Float64 MagnitudeTemplate(const vtkm::Vec<vtkm::Float64, Size> &x)
{
return vtkm::Sqrt(vtkm::MagnitudeSquared(x));
}
} // namespace detail
/// \brief Returns the magnitude of a vector.
///
/// It is usually much faster to compute MagnitudeSquared, so that should be
/// substituted when possible (unless you are just going to take the square
/// root, which would be besides the point). On some hardware it is also faster
/// to find the reciprocal magnitude, so RMagnitude should be used if you
/// actually plan to divide by the magnitude.
///
template<typename T>
VTKM_EXEC_CONT
vtkm::FloatDefault Magnitude(const T &x)
{
return detail::MagnitudeTemplate(
x, typename vtkm::TypeTraits<T>::DimensionalityTag());
}
template<vtkm::IdComponent Size>
VTKM_EXEC_CONT
vtkm::Float64 Magnitude(const vtkm::Vec<vtkm::Float64, Size> &x)
{
return detail::MagnitudeTemplate(x);
}
// ----------------------------------------------------------------------------
namespace detail {
template<typename T>
VTKM_EXEC_CONT
T RMagnitudeTemplate(T x, vtkm::TypeTraitsScalarTag)
{
return T(1)/vtkm::Abs(x);
}
template<typename T>
VTKM_EXEC_CONT
typename vtkm::VecTraits<T>::ComponentType
RMagnitudeTemplate(const T &x, vtkm::TypeTraitsVectorTag)
{
return vtkm::RSqrt(vtkm::MagnitudeSquared(x));
}
} // namespace detail
/// \brief Returns the reciprocal magnitude of a vector.
///
/// On some hardware RMagnitude is faster than Magnitude, but neither is
/// as fast as MagnitudeSquared.
///
template<typename T>
VTKM_EXEC_CONT
typename vtkm::VecTraits<T>::ComponentType
RMagnitude(const T &x)
{
return detail::RMagnitudeTemplate(
x, typename vtkm::TypeTraits<T>::DimensionalityTag());
}
// ----------------------------------------------------------------------------
namespace detail {
template<typename T>
VTKM_EXEC_CONT
T NormalTemplate(T x, vtkm::TypeTraitsScalarTag)
{
return vtkm::CopySign(T(1), x);
}
template<typename T>
VTKM_EXEC_CONT
T NormalTemplate(const T &x, vtkm::TypeTraitsVectorTag)
{
return vtkm::RMagnitude(x)*x;
}
} // namespace detail
/// \brief Returns a normalized version of the given vector.
///
/// The resulting vector points in the same direction but has unit length.
///
template<typename T>
VTKM_EXEC_CONT
T Normal(const T &x)
{
return detail::NormalTemplate(
x, typename vtkm::TypeTraits<T>::DimensionalityTag());
}
// ----------------------------------------------------------------------------
/// \brief Changes a vector to be normal.
///
/// The given vector is scaled to be unit length.
///
template<typename T>
VTKM_EXEC_CONT
void Normalize(T &x)
{
x = vtkm::Normal(x);
}
// ----------------------------------------------------------------------------
/// \brief Find the cross product of two vectors.
///
template<typename T>
VTKM_EXEC_CONT
vtkm::Vec<T,3> Cross(const vtkm::Vec<T,3> &x, const vtkm::Vec<T,3> &y)
{
return vtkm::Vec<T,3>(x[1]*y[2] - x[2]*y[1],
x[2]*y[0] - x[0]*y[2],
x[0]*y[1] - x[1]*y[0]);
}
//-----------------------------------------------------------------------------
/// \brief Find the normal of a triangle.
///
/// Given three coordinates in space, which, unless degenerate, uniquely define
/// a triangle and the plane the triangle is on, returns a vector perpendicular
/// to that triangle/plane.
///
template<typename T>
VTKM_EXEC_CONT
vtkm::Vec<T,3> TriangleNormal(const vtkm::Vec<T,3> &a,
const vtkm::Vec<T,3> &b,
const vtkm::Vec<T,3> &c)
{
return vtkm::Cross(b-a, c-a);
}
} // namespace vtkm
#endif //vtk_m_VectorAnalysis_h