vtk-m2/vtkm/worklet/zfp/ZFPEncode1.h
2018-12-13 14:49:38 -05:00

142 lines
4.0 KiB
C++

#ifndef vtk_m_worklet_zfp_encode1_h
#define vtk_m_worklet_zfp_encode1_h
#include <vtkm/Types.h>
#include <vtkm/internal/ExportMacros.h>
#include <vtkm/worklet/WorkletMapField.h>
#include <vtkm/worklet/zfp/ZFPBlockWriter.h>
#include <vtkm/worklet/zfp/ZFPEncode.h>
#include <vtkm/worklet/zfp/ZFPFunctions.h>
#include <vtkm/worklet/zfp/ZFPStructs.h>
#include <vtkm/worklet/zfp/ZFPTypeInfo.h>
namespace vtkm
{
namespace worklet
{
namespace zfp
{
template <typename Scalar, typename PortalType>
VTKM_EXEC inline void GatherPartial1(Scalar* q,
const PortalType& scalars,
vtkm::Id offset,
int nx,
int sx)
{
vtkm::Id x;
for (x = 0; x < nx; x++, offset += sx)
q[x] = scalars.Get(offset);
PadBlock(q, nx, 1);
}
template <typename Scalar, typename PortalType>
VTKM_EXEC inline void Gather1(Scalar* fblock, const PortalType& scalars, vtkm::Id offset, int sx)
{
vtkm::Id counter = 0;
for (vtkm::Id x = 0; x < 4; x++, offset += sx)
{
fblock[counter] = scalars.Get(offset);
counter++;
}
}
struct Encode1 : public vtkm::worklet::WorkletMapField
{
protected:
vtkm::Id Dims; // field dims
vtkm::Id PaddedDims; // dims padded to a multiple of zfp block size
vtkm::Id ZFPDims; // zfp block dims
vtkm::UInt32 MaxBits; // bits per zfp block
public:
Encode1(const vtkm::Id dims, const vtkm::Id paddedDims, const vtkm::UInt32 maxbits)
: Dims(dims)
, PaddedDims(paddedDims)
, MaxBits(maxbits)
{
ZFPDims = PaddedDims / 4;
}
using ControlSignature = void(FieldIn<>, WholeArrayIn<>, AtomicArrayInOut<> bitstream);
using ExecutionSignature = void(_1, _2, _3);
template <class InputScalarPortal, typename BitstreamPortal>
VTKM_EXEC void operator()(const vtkm::Id blockIdx,
const InputScalarPortal& scalars,
BitstreamPortal& stream) const
{
using Scalar = typename InputScalarPortal::ValueType;
// typedef unsigned long long int ull;
// typedef long long int ll;
// const ull blockId = blockIdx.x +
// blockIdx.y * gridDim.x +
// gridDim.x * gridDim.y * blockIdx.z;
// // each thread gets a block so the block index is
// // the global thread index
// const uint block_idx = blockId * blockDim.x + threadIdx.x;
// if(block_idx >= tot_blocks)
// {
// // we can't launch the exact number of blocks
// // so just exit if this isn't real
// return;
// }
// uint2 block_dims;
// block_dims.x = padded_dims.x >> 2;
// block_dims.y = padded_dims.y >> 2;
// // logical pos in 3d array
// uint2 block;
// block.x = (block_idx % block_dims.x) * 4;
// block.y = ((block_idx/ block_dims.x) % block_dims.y) * 4;
// const ll offset = (ll)block.x * stride.x + (ll)block.y * stride.y;
vtkm::Id zfpBlock;
zfpBlock = blockIdx % ZFPDims;
vtkm::Id logicalStart = zfpBlock * vtkm::Id(4);
constexpr vtkm::Int32 BlockSize = 4;
Scalar fblock[BlockSize];
// bool partial = false;
// if(block.x + 4 > dims.x) partial = true;
// if(block.y + 4 > dims.y) partial = true;
bool partial = false;
if (logicalStart + 4 > Dims)
partial = true;
if (partial)
{
const vtkm::Int32 nx =
logicalStart + 4 > Dims ? vtkm::Int32(Dims - logicalStart) : vtkm::Int32(4);
GatherPartial1(fblock, scalars, logicalStart, nx, 1);
}
else
{
Gather1(fblock, scalars, logicalStart, 1);
}
for (int i = 0; i < 16; ++i)
{
std::cout << " " << fblock[i];
}
std::cout << "\n";
//zfp_encode_block<Scalar, ZFP_2D_BLOCK_SIZE>(fblock, maxbits, block_idx, stream);
zfp::ZFPBlockEncoder<BlockSize, Scalar, BitstreamPortal> encoder;
encoder.encode(fblock, MaxBits, vtkm::UInt32(blockIdx), stream);
}
};
}
}
}
#endif