Go to file
Kenneth Moreland 947178e7e4 Remove pixel and voxel cell types
These cell types are inherited from VTK, but they are basically the same
as quad and hexahedron, respectively. The only useful difference is that
pixel and voxel are supposed to be axis aligned, but you cannot
determine that by the cell shape alone (at least not just from the cell
set).

A big issue with these is that their indexing is different that of quad
and hex. The development team had a long discussion about the benefits
of the alternate indexing, but after consulting with Berk Geveci and
Will Schroder from the VTK team, that indexing is not really taken
advantage of at the cell level. Thus, it is really just a nuisance in
VTK-m.
2015-08-27 17:03:13 -06:00
CMake Suppress deprecation warnings about glut as we investigate our options. 2015-08-27 09:37:13 -04:00
docs The Copyright statement now has all the periods in the correct location. 2015-05-21 10:30:11 -04:00
vtkm Remove pixel and voxel cell types 2015-08-27 17:03:13 -06:00
CMakeLists.txt CMake configuration definitions to enable OpenGL Interop 2015-08-21 11:17:10 -07:00
CONTRIBUTING.md Add a contributing guide to vtk-m. 2015-07-29 17:33:30 -04:00
CTestConfig.cmake The Copyright statement now has all the periods in the correct location. 2015-05-21 10:30:11 -04:00
LICENSE.txt Fix compile time errors 2015-08-21 11:17:10 -07:00
README.md Update ReadMe to reference gitlab. 2015-05-13 08:45:52 -04:00

VTK-m

One of the biggest recent changes in high-performance computing is the increasing use of accelerators. Accelerators contain processing cores that independently are inferior to a core in a typical CPU, but these cores are replicated and grouped such that their aggregate execution provides a very high computation rate at a much lower power. Current and future CPU processors also require much more explicit parallelism. Each successive version of the hardware packs more cores into each processor, and technologies like hyperthreading and vector operations require even more parallel processing to leverage each cores full potential.

VTK-m is a toolkit of scientific visualization algorithms for emerging processor architectures. VTK-m supports the fine-grained concurrency for data analysis and visualization algorithms required to drive extreme scale computing by providing abstract models for data and execution that can be applied to a variety of algorithms across many different processor architectures.

Getting VTK-m

The VTK-m repository is located at https://gitlab.kitware.com/vtk/vtk-m

VTK-m dependencies are:

git clone https://gitlab.kitware.com/vtk/vtk-m.git vtkm
mkdir vtkm-build
cd vtkm-build
cmake-gui ../vtkm

A detailed walk-through of installing and building VTK-m can be found on our Contributing page