vtk-m2/vtkm/VectorAnalysis.h
Robert Maynard a9e64c4ba8 FloatPointReturnType is float if 'T' is < 32bytes instead of being double.
Previously FloatPointReturnType would always be double for types that
are not float, which caused Int8/Int16 types to promote to double instead
of float.
2018-01-04 13:22:31 -05:00

212 lines
7.2 KiB
C++

//=============================================================================
//
// Copyright (c) Kitware, Inc.
// All rights reserved.
// See LICENSE.txt for details.
//
// This software is distributed WITHOUT ANY WARRANTY; without even
// the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
// PURPOSE. See the above copyright notice for more information.
//
// Copyright 2015 National Technology & Engineering Solutions of Sandia, LLC (NTESS).
// Copyright 2015 UT-Battelle, LLC.
// Copyright 2015 Los Alamos National Security.
//
// Under the terms of Contract DE-NA0003525 with NTESS,
// the U.S. Government retains certain rights in this software.
// Under the terms of Contract DE-AC52-06NA25396 with Los Alamos National
// Laboratory (LANL), the U.S. Government retains certain rights in
// this software.
//
//=============================================================================
#ifndef vtk_m_VectorAnalysis_h
#define vtk_m_VectorAnalysis_h
// This header file defines math functions that deal with linear albegra funcitons
#include <vtkm/Math.h>
#include <vtkm/TypeTraits.h>
#include <vtkm/Types.h>
#include <vtkm/VecTraits.h>
namespace vtkm
{
// ----------------------------------------------------------------------------
/// \brief Returns the linear interpolation of two values based on weight
///
/// \c Lerp interpolates return the linerar interpolation of v0 and v1 based on w. v0
/// and v1 are scalars or vectors of same length. w can either be a scalar or a
/// vector of the same length as x and y. If w is outside [0,1] then lerp
/// extrapolates. If w=0 => v0 is returned if w=1 => v1 is returned.
///
template <typename ValueType, typename WeightType>
VTKM_EXEC_CONT ValueType Lerp(const ValueType& value0,
const ValueType& value1,
const WeightType& weight)
{
return static_cast<ValueType>((WeightType(1) - weight) * value0 + weight * value1);
}
template <typename ValueType, vtkm::IdComponent N, typename WeightType>
VTKM_EXEC_CONT vtkm::Vec<ValueType, N> Lerp(const vtkm::Vec<ValueType, N>& value0,
const vtkm::Vec<ValueType, N>& value1,
const WeightType& weight)
{
return (WeightType(1) - weight) * value0 + weight * value1;
}
template <typename ValueType, vtkm::IdComponent N>
VTKM_EXEC_CONT vtkm::Vec<ValueType, N> Lerp(const vtkm::Vec<ValueType, N>& value0,
const vtkm::Vec<ValueType, N>& value1,
const vtkm::Vec<ValueType, N>& weight)
{
static const vtkm::Vec<ValueType, N> One(ValueType(1));
return (One - weight) * value0 + weight * value1;
}
// ----------------------------------------------------------------------------
/// \brief Returns the square of the magnitude of a vector.
///
/// It is usually much faster to compute the square of the magnitude than the
/// square, so you should use this function in place of Magnitude or RMagnitude
/// when possible.
///
template <typename T>
VTKM_EXEC_CONT typename detail::FloatingPointReturnType<T>::Type MagnitudeSquared(const T& x)
{
using U = typename detail::FloatingPointReturnType<T>::Type;
return static_cast<U>(vtkm::dot(x, x));
}
// ----------------------------------------------------------------------------
namespace detail
{
template <typename T>
VTKM_EXEC_CONT typename detail::FloatingPointReturnType<T>::Type MagnitudeTemplate(
T x,
vtkm::TypeTraitsScalarTag)
{
return static_cast<typename detail::FloatingPointReturnType<T>::Type>(vtkm::Abs(x));
}
template <typename T>
VTKM_EXEC_CONT typename detail::FloatingPointReturnType<T>::Type MagnitudeTemplate(
const T& x,
vtkm::TypeTraitsVectorTag)
{
return vtkm::Sqrt(vtkm::MagnitudeSquared(x));
}
} // namespace detail
/// \brief Returns the magnitude of a vector.
///
/// It is usually much faster to compute MagnitudeSquared, so that should be
/// substituted when possible (unless you are just going to take the square
/// root, which would be besides the point). On some hardware it is also faster
/// to find the reciprocal magnitude, so RMagnitude should be used if you
/// actually plan to divide by the magnitude.
///
template <typename T>
VTKM_EXEC_CONT typename detail::FloatingPointReturnType<T>::Type Magnitude(const T& x)
{
return detail::MagnitudeTemplate(x, typename vtkm::TypeTraits<T>::DimensionalityTag());
}
// ----------------------------------------------------------------------------
namespace detail
{
template <typename T>
VTKM_EXEC_CONT typename detail::FloatingPointReturnType<T>::Type RMagnitudeTemplate(
T x,
vtkm::TypeTraitsScalarTag)
{
return T(1) / vtkm::Abs(x);
}
template <typename T>
VTKM_EXEC_CONT typename detail::FloatingPointReturnType<T>::Type RMagnitudeTemplate(
const T& x,
vtkm::TypeTraitsVectorTag)
{
return vtkm::RSqrt(vtkm::MagnitudeSquared(x));
}
} // namespace detail
/// \brief Returns the reciprocal magnitude of a vector.
///
/// On some hardware RMagnitude is faster than Magnitude, but neither is
/// as fast as MagnitudeSquared.
///
template <typename T>
VTKM_EXEC_CONT typename detail::FloatingPointReturnType<T>::Type RMagnitude(const T& x)
{
return detail::RMagnitudeTemplate(x, typename vtkm::TypeTraits<T>::DimensionalityTag());
}
// ----------------------------------------------------------------------------
namespace detail
{
template <typename T>
VTKM_EXEC_CONT T NormalTemplate(T x, vtkm::TypeTraitsScalarTag)
{
return vtkm::CopySign(T(1), x);
}
template <typename T>
VTKM_EXEC_CONT T NormalTemplate(const T& x, vtkm::TypeTraitsVectorTag)
{
return vtkm::RMagnitude(x) * x;
}
} // namespace detail
/// \brief Returns a normalized version of the given vector.
///
/// The resulting vector points in the same direction but has unit length.
///
template <typename T>
VTKM_EXEC_CONT T Normal(const T& x)
{
return detail::NormalTemplate(x, typename vtkm::TypeTraits<T>::DimensionalityTag());
}
// ----------------------------------------------------------------------------
/// \brief Changes a vector to be normal.
///
/// The given vector is scaled to be unit length.
///
template <typename T>
VTKM_EXEC_CONT void Normalize(T& x)
{
x = vtkm::Normal(x);
}
// ----------------------------------------------------------------------------
/// \brief Find the cross product of two vectors.
///
template <typename T>
VTKM_EXEC_CONT vtkm::Vec<typename detail::FloatingPointReturnType<T>::Type, 3> Cross(
const vtkm::Vec<T, 3>& x,
const vtkm::Vec<T, 3>& y)
{
return vtkm::Vec<typename detail::FloatingPointReturnType<T>::Type, 3>(
x[1] * y[2] - x[2] * y[1], x[2] * y[0] - x[0] * y[2], x[0] * y[1] - x[1] * y[0]);
}
//-----------------------------------------------------------------------------
/// \brief Find the normal of a triangle.
///
/// Given three coordinates in space, which, unless degenerate, uniquely define
/// a triangle and the plane the triangle is on, returns a vector perpendicular
/// to that triangle/plane.
///
template <typename T>
VTKM_EXEC_CONT vtkm::Vec<typename detail::FloatingPointReturnType<T>::Type, 3>
TriangleNormal(const vtkm::Vec<T, 3>& a, const vtkm::Vec<T, 3>& b, const vtkm::Vec<T, 3>& c)
{
return vtkm::Cross(b - a, c - a);
}
} // namespace vtkm
#endif //vtk_m_VectorAnalysis_h