vtk-m2/vtkm/worklet/testing/UnitTestCoordinateSystemTransform.cxx
Kenneth Moreland bddad9b386 Remove TryExecute from filters
Now that the dispatcher does its own TryExecute, filters do not need to
do that. This change requires all worklets called by filters to be able
to execute without knowing the device a priori.
2018-10-16 15:59:53 -06:00

216 lines
7.5 KiB
C++

//============================================================================
// Copyright (c) Kitware, Inc.
// All rights reserved.
// See LICENSE.txt for details.
// This software is distributed WITHOUT ANY WARRANTY; without even
// the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
// PURPOSE. See the above copyright notice for more information.
//
// Copyright 2014 National Technology & Engineering Solutions of Sandia, LLC (NTESS).
// Copyright 2014 UT-Battelle, LLC.
// Copyright 2014 Los Alamos National Security.
//
// Under the terms of Contract DE-NA0003525 with NTESS,
// the U.S. Government retains certain rights in this software.
//
// Under the terms of Contract DE-AC52-06NA25396 with Los Alamos National
// Laboratory (LANL), the U.S. Government retains certain rights in
// this software.
//============================================================================
#include <vtkm/cont/CellSetExplicit.h>
#include <vtkm/cont/DataSet.h>
#include <vtkm/cont/testing/Testing.h>
#include <vtkm/worklet/CoordinateSystemTransform.h>
#include <vtkm/worklet/DispatcherMapField.h>
#include <random>
#include <vector>
namespace
{
std::mt19937 randGenerator;
enum CoordinateType
{
CART = 0,
CYL,
SPH
};
vtkm::cont::DataSet MakeTestDataSet(const CoordinateType& cType)
{
vtkm::cont::DataSet dataSet;
std::vector<vtkm::Vec<vtkm::FloatDefault, 3>> coordinates;
const vtkm::Id dim = 5;
if (cType == CART)
{
for (vtkm::Id j = 0; j < dim; ++j)
{
vtkm::FloatDefault z =
static_cast<vtkm::FloatDefault>(j) / static_cast<vtkm::FloatDefault>(dim - 1);
for (vtkm::Id i = 0; i < dim; ++i)
{
vtkm::FloatDefault x =
static_cast<vtkm::FloatDefault>(i) / static_cast<vtkm::FloatDefault>(dim - 1);
vtkm::FloatDefault y = (x * x + z * z) / 2.0f;
coordinates.push_back(vtkm::make_Vec(x + 0, y + 0, z + 0));
}
}
}
else if (cType == CYL)
{
vtkm::FloatDefault R = 1.0f;
for (vtkm::Id j = 0; j < dim; j++)
{
vtkm::FloatDefault Z =
static_cast<vtkm::FloatDefault>(j) / static_cast<vtkm::FloatDefault>(dim - 1);
for (vtkm::Id i = 0; i < dim; i++)
{
vtkm::FloatDefault Theta = vtkm::TwoPif() *
(static_cast<vtkm::FloatDefault>(i) / static_cast<vtkm::FloatDefault>(dim - 1));
coordinates.push_back(vtkm::make_Vec(R, Theta, Z));
}
}
}
else if (cType == SPH)
{
//Spherical coordinates have some degenerate cases, so provide some good cases.
vtkm::FloatDefault R = 1.0f;
vtkm::FloatDefault eps = vtkm::Epsilon<float>();
std::vector<vtkm::FloatDefault> Thetas = {
eps, vtkm::Pif() / 4, vtkm::Pif() / 3, vtkm::Pif() / 2, vtkm::Pif() - eps
};
std::vector<vtkm::FloatDefault> Phis = {
eps, vtkm::TwoPif() / 4, vtkm::TwoPif() / 3, vtkm::TwoPif() / 2, vtkm::TwoPif() - eps
};
for (std::size_t i = 0; i < Thetas.size(); i++)
for (std::size_t j = 0; j < Phis.size(); j++)
coordinates.push_back(vtkm::make_Vec(R, Thetas[i], Phis[j]));
}
vtkm::Id numCells = (dim - 1) * (dim - 1);
dataSet.AddCoordinateSystem(
vtkm::cont::make_CoordinateSystem("coordinates", coordinates, vtkm::CopyFlag::On));
vtkm::cont::CellSetExplicit<> cellSet("cells");
cellSet.PrepareToAddCells(numCells, numCells * 4);
for (vtkm::Id j = 0; j < dim - 1; ++j)
{
for (vtkm::Id i = 0; i < dim - 1; ++i)
{
cellSet.AddCell(vtkm::CELL_SHAPE_QUAD,
4,
vtkm::make_Vec<vtkm::Id>(
j * dim + i, j * dim + i + 1, (j + 1) * dim + i + 1, (j + 1) * dim + i));
}
}
cellSet.CompleteAddingCells(vtkm::Id(coordinates.size()));
dataSet.AddCellSet(cellSet);
return dataSet;
}
void ValidateCoordTransform(
const vtkm::cont::CoordinateSystem& coords,
const vtkm::cont::ArrayHandle<vtkm::Vec<vtkm::FloatDefault, 3>>& transform,
const vtkm::cont::ArrayHandle<vtkm::Vec<vtkm::FloatDefault, 3>>& doubleTransform,
const std::vector<bool>& isAngle)
{
auto points = coords.GetData();
VTKM_TEST_ASSERT(points.GetNumberOfValues() == transform.GetNumberOfValues() &&
points.GetNumberOfValues() == doubleTransform.GetNumberOfValues(),
"Incorrect number of points in point transform");
//The double transform should produce the same result.
auto pointsPortal = points.GetPortalConstControl();
auto resultsPortal = doubleTransform.GetPortalConstControl();
for (vtkm::Id i = 0; i < points.GetNumberOfValues(); i++)
{
vtkm::Vec<vtkm::FloatDefault, 3> p = pointsPortal.Get(i);
vtkm::Vec<vtkm::FloatDefault, 3> r = resultsPortal.Get(i);
bool isEqual = true;
for (vtkm::IdComponent j = 0; j < 3; j++)
{
if (isAngle[static_cast<std::size_t>(j)])
isEqual &= (test_equal(p[j], r[j]) || test_equal(p[j] + vtkm::TwoPif(), r[j]) ||
test_equal(p[j], r[j] + vtkm::TwoPif()));
else
isEqual &= test_equal(p[j], r[j]);
}
VTKM_TEST_ASSERT(isEqual, "Wrong result for PointTransform worklet");
}
}
}
void TestCoordinateSystemTransform()
{
std::cout << "Testing CylindricalCoordinateTransform Worklet" << std::endl;
//Test cartesian to cyl
vtkm::cont::DataSet dsCart = MakeTestDataSet(CART);
vtkm::worklet::CylindricalCoordinateTransform cylTrn;
vtkm::cont::ArrayHandle<vtkm::Vec<vtkm::FloatDefault, 3>> carToCylPts;
vtkm::cont::ArrayHandle<vtkm::Vec<vtkm::FloatDefault, 3>> revResult;
cylTrn.SetCartesianToCylindrical();
cylTrn.Run(dsCart.GetCoordinateSystem(), carToCylPts);
cylTrn.SetCylindricalToCartesian();
cylTrn.Run(carToCylPts, revResult);
ValidateCoordTransform(
dsCart.GetCoordinateSystem(), carToCylPts, revResult, { false, false, false });
//Test cylindrical to cartesian
vtkm::cont::DataSet dsCyl = MakeTestDataSet(CYL);
vtkm::cont::ArrayHandle<vtkm::Vec<vtkm::FloatDefault, 3>> cylToCarPts;
cylTrn.SetCylindricalToCartesian();
cylTrn.Run(dsCyl.GetCoordinateSystem(), cylToCarPts);
cylTrn.SetCartesianToCylindrical();
cylTrn.Run(cylToCarPts, revResult);
ValidateCoordTransform(
dsCyl.GetCoordinateSystem(), cylToCarPts, revResult, { false, true, false });
//Spherical transform
//Test cartesian to sph
vtkm::worklet::SphericalCoordinateTransform sphTrn;
vtkm::cont::ArrayHandle<vtkm::Vec<vtkm::FloatDefault, 3>> carToSphPts;
sphTrn.SetCartesianToSpherical();
sphTrn.Run(dsCart.GetCoordinateSystem(), carToSphPts);
sphTrn.SetSphericalToCartesian();
sphTrn.Run(carToSphPts, revResult);
ValidateCoordTransform(
dsCart.GetCoordinateSystem(), carToSphPts, revResult, { false, true, true });
//Test spherical to cartesian
vtkm::cont::ArrayHandle<vtkm::Vec<vtkm::FloatDefault, 3>> sphToCarPts;
vtkm::cont::DataSet dsSph = MakeTestDataSet(SPH);
sphTrn.SetSphericalToCartesian();
sphTrn.Run(dsSph.GetCoordinateSystem(), sphToCarPts);
sphTrn.SetCartesianToSpherical();
sphTrn.Run(sphToCarPts, revResult);
ValidateCoordTransform(
dsSph.GetCoordinateSystem(), sphToCarPts, revResult, { false, true, true });
sphTrn.SetSphericalToCartesian();
sphTrn.Run(dsSph.GetCoordinateSystem(), sphToCarPts);
sphTrn.SetCartesianToSpherical();
sphTrn.Run(sphToCarPts, revResult);
ValidateCoordTransform(
dsSph.GetCoordinateSystem(), sphToCarPts, revResult, { false, true, true });
}
int UnitTestCoordinateSystemTransform(int, char* [])
{
vtkm::cont::GetGlobalRuntimeDeviceTracker().ForceDevice(VTKM_DEFAULT_DEVICE_ADAPTER_TAG());
return vtkm::cont::testing::Testing::Run(TestCoordinateSystemTransform);
}