vtk-m2/vtkm/filter/Lagrangian.hxx
Kenneth Moreland bddad9b386 Remove TryExecute from filters
Now that the dispatcher does its own TryExecute, filters do not need to
do that. This change requires all worklets called by filters to be able
to execute without knowing the device a priori.
2018-10-16 15:59:53 -06:00

380 lines
13 KiB
C++

//============================================================================
// Copyright (c) Kitware, Inc.
// All rights reserved.
// See LICENSE.txt for details.
// This software is distributed WITHOUT ANY WARRANTY; without even
// the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
// PURPOSE. See the above copyright notice for more information.
//
// Copyright 2017 National Technology & Engineering Solutions of Sandia, LLC (NTESS).
// Copyright 2017 UT-Battelle, LLC.
// Copyright 2017 Los Alamos National Security.
//
// Under the terms of Contract DE-NA0003525 with NTESS,
// the U.S. Government retains certain rights in this software.
//
// Under the terms of Contract DE-AC52-06NA25396 with Los Alamos National
// Laboratory (LANL), the U.S. Government retains certain rights in
// this software.
//============================================================================
#include <vtkm/Types.h>
#include <vtkm/cont/ArrayCopy.h>
#include <vtkm/cont/ArrayHandle.h>
#include <vtkm/cont/ArrayHandleIndex.h>
#include <vtkm/cont/ArrayPortalToIterators.h>
#include <vtkm/cont/DataSet.h>
#include <vtkm/cont/DataSetBuilderExplicit.h>
#include <vtkm/cont/DeviceAdapter.h>
#include <vtkm/cont/ErrorFilterExecution.h>
#include <vtkm/io/writer/VTKDataSetWriter.h>
#include <vtkm/worklet/DispatcherMapField.h>
#include <vtkm/worklet/ParticleAdvection.h>
#include <vtkm/worklet/WorkletMapField.h>
#include <vtkm/worklet/particleadvection/GridEvaluators.h>
#include <vtkm/worklet/particleadvection/Integrators.h>
#include <vtkm/worklet/particleadvection/Particles.h>
#include <cstring>
#include <iostream>
#include <sstream>
#include <string.h>
static vtkm::Id cycle = 0;
static vtkm::cont::ArrayHandle<vtkm::Vec<vtkm::Float64, 3>> BasisParticles;
static vtkm::cont::ArrayHandle<vtkm::Vec<vtkm::Float64, 3>> BasisParticlesOriginal;
static vtkm::cont::ArrayHandle<vtkm::Id> BasisParticlesValidity;
class ValidityCheck : public vtkm::worklet::WorkletMapField
{
public:
using ControlSignature = void(FieldIn<> end_point, FieldIn<> steps, FieldInOut<> output);
using ExecutionSignature = void(_1, _2, _3);
using InputDomain = _1;
inline VTKM_CONT void SetBounds(vtkm::Bounds b) { bounds = b; }
template <typename PosType, typename StepType, typename ValidityType>
VTKM_EXEC void operator()(const PosType& end_point,
const StepType& steps,
ValidityType& res) const
{
if (steps > 0 && res == 1)
{
if (end_point[0] >= bounds.X.Min && end_point[0] <= bounds.X.Max &&
end_point[1] >= bounds.Y.Min && end_point[1] <= bounds.Y.Max &&
end_point[2] >= bounds.Z.Min && end_point[2] <= bounds.Z.Max)
{
res = 1;
}
else
{
res = 0;
}
}
else
{
res = 0;
}
}
private:
vtkm::Bounds bounds;
};
namespace vtkm
{
namespace filter
{
//-----------------------------------------------------------------------------
inline VTKM_CONT Lagrangian::Lagrangian()
: vtkm::filter::FilterDataSetWithField<Lagrangian>()
, rank(0)
, initFlag(true)
, extractFlows(false)
, resetParticles(true)
, stepSize(1.0f)
, x_res(0)
, y_res(0)
, z_res(0)
, cust_res(0)
, SeedRes(vtkm::Id3(1, 1, 1))
, writeFrequency(0)
{
}
//-----------------------------------------------------------------------------
inline void Lagrangian::WriteDataSet(vtkm::Id cycle,
std::string filename,
vtkm::cont::DataSet dataset)
{
std::stringstream file;
file << filename << cycle << ".vtk";
vtkm::io::writer::VTKDataSetWriter writer(file.str().c_str());
writer.WriteDataSet(dataset);
std::cout << "Number of flows in writedataset is : " << dataset.GetCellSet(0).GetNumberOfCells()
<< std::endl;
}
//-----------------------------------------------------------------------------
inline void Lagrangian::UpdateSeedResolution(const vtkm::cont::DataSet input)
{
vtkm::cont::DynamicCellSet cell_set = input.GetCellSet();
if (cell_set.IsSameType(vtkm::cont::CellSetStructured<1>()))
{
vtkm::cont::CellSetStructured<1> cell_set1 = cell_set.Cast<vtkm::cont::CellSetStructured<1>>();
vtkm::Id dims1 = cell_set1.GetPointDimensions();
this->SeedRes[0] = dims1;
if (this->cust_res)
{
this->SeedRes[0] = dims1 / this->x_res;
}
}
else if (cell_set.IsSameType(vtkm::cont::CellSetStructured<2>()))
{
vtkm::cont::CellSetStructured<2> cell_set2 = cell_set.Cast<vtkm::cont::CellSetStructured<2>>();
vtkm::Id2 dims2 = cell_set2.GetPointDimensions();
this->SeedRes[0] = dims2[0];
this->SeedRes[1] = dims2[1];
if (this->cust_res)
{
this->SeedRes[0] = dims2[0] / this->x_res;
this->SeedRes[1] = dims2[1] / this->y_res;
}
}
else if (cell_set.IsSameType(vtkm::cont::CellSetStructured<3>()))
{
vtkm::cont::CellSetStructured<3> cell_set3 = cell_set.Cast<vtkm::cont::CellSetStructured<3>>();
vtkm::Id3 dims3 = cell_set3.GetPointDimensions();
this->SeedRes[0] = dims3[0];
this->SeedRes[1] = dims3[1];
this->SeedRes[2] = dims3[2];
if (this->cust_res)
{
this->SeedRes[0] = dims3[0] / this->x_res;
this->SeedRes[1] = dims3[1] / this->y_res;
this->SeedRes[2] = dims3[2] / this->z_res;
}
}
}
//-----------------------------------------------------------------------------
inline void Lagrangian::InitializeUniformSeeds(const vtkm::cont::DataSet& input)
{
vtkm::Bounds bounds = input.GetCoordinateSystem().GetBounds();
Lagrangian::UpdateSeedResolution(input);
vtkm::Float64 x_spacing = 0.0, y_spacing = 0.0, z_spacing = 0.0;
if (this->SeedRes[0] > 1)
x_spacing = (double)(bounds.X.Max - bounds.X.Min) / (double)(this->SeedRes[0] - 1);
if (this->SeedRes[1] > 1)
y_spacing = (double)(bounds.Y.Max - bounds.Y.Min) / (double)(this->SeedRes[1] - 1);
if (this->SeedRes[2] > 1)
z_spacing = (double)(bounds.Z.Max - bounds.Z.Min) / (double)(this->SeedRes[2] - 1);
// Divide by zero handling for 2D data set. How is this handled
BasisParticles.Allocate(this->SeedRes[0] * this->SeedRes[1] * this->SeedRes[2]);
BasisParticlesValidity.Allocate(this->SeedRes[0] * this->SeedRes[1] * this->SeedRes[2]);
auto portal1 = BasisParticles.GetPortalControl();
auto portal2 = BasisParticlesValidity.GetPortalControl();
vtkm::Id count = 0;
for (int x = 0; x < this->SeedRes[0]; x++)
{
for (int y = 0; y < this->SeedRes[1]; y++)
{
for (int z = 0; z < this->SeedRes[2]; z++)
{
portal1.Set(count,
vtkm::Vec<vtkm::Float64, 3>(bounds.X.Min + (x * x_spacing),
bounds.Y.Min + (y * y_spacing),
bounds.Z.Min + (z * z_spacing)));
portal2.Set(count, 1);
count++;
}
}
}
}
//-----------------------------------------------------------------------------
template <typename T, typename StorageType, typename DerivedPolicy>
inline VTKM_CONT vtkm::cont::DataSet Lagrangian::DoExecute(
const vtkm::cont::DataSet& input,
const vtkm::cont::ArrayHandle<vtkm::Vec<T, 3>, StorageType>& field,
const vtkm::filter::FieldMetadata& fieldMeta,
vtkm::filter::PolicyBase<DerivedPolicy>)
{
if (cycle == 0)
{
InitializeUniformSeeds(input);
BasisParticlesOriginal.Allocate(this->SeedRes[0] * this->SeedRes[1] * this->SeedRes[2]);
vtkm::cont::ArrayCopy(BasisParticles, BasisParticlesOriginal);
}
if (!fieldMeta.IsPointField())
{
throw vtkm::cont::ErrorFilterExecution("Point field expected.");
}
if (this->writeFrequency == 0)
{
throw vtkm::cont::ErrorFilterExecution(
"Write frequency can not be 0. Use SetWriteFrequency().");
}
vtkm::cont::ArrayHandle<vtkm::Vec<T, 3>> basisParticleArray;
vtkm::cont::ArrayCopy(BasisParticles, basisParticleArray);
cycle += 1;
std::cout << "Cycle : " << cycle << std::endl;
const vtkm::cont::DynamicCellSet& cells = input.GetCellSet(0);
const vtkm::cont::CoordinateSystem& coords =
input.GetCoordinateSystem(this->GetActiveCoordinateSystemIndex());
vtkm::Bounds bounds = input.GetCoordinateSystem().GetBounds();
using AxisHandle = vtkm::cont::ArrayHandle<vtkm::FloatDefault>;
using RectilinearType =
vtkm::cont::ArrayHandleCartesianProduct<AxisHandle, AxisHandle, AxisHandle>;
using UniformType = vtkm::cont::ArrayHandleUniformPointCoordinates;
using FieldHandle = vtkm::cont::ArrayHandle<vtkm::Vec<T, 3>, StorageType>;
vtkm::worklet::ParticleAdvection particleadvection;
vtkm::worklet::ParticleAdvectionResult res;
if (coords.GetData().IsType<RectilinearType>())
{
using RectilinearGridEvalType =
vtkm::worklet::particleadvection::RectilinearGridEvaluate<FieldHandle>;
using RK4IntegratorType =
vtkm::worklet::particleadvection::RK4Integrator<RectilinearGridEvalType>;
/*
* If Euler step is preferred.
using EulerIntegratorType = vtkm::worklet::particleadvection::EulerIntegrator<RectilinearGridEvalType, T>;
*/
RectilinearGridEvalType eval(coords, cells, field);
RK4IntegratorType rk4(eval, static_cast<vtkm::Float32>(this->stepSize));
/*
* If Euler step is preferred.
EulerIntegratorType euler(eval, static_cast<vtkm::FloatDefault>(this->stepSize));
*/
res = particleadvection.Run(rk4, basisParticleArray, 1); // Taking a single step
}
else if (coords.GetData().IsType<UniformType>())
{
using UniformGridEvalType = vtkm::worklet::particleadvection::UniformGridEvaluate<FieldHandle>;
using RK4IntegratorType = vtkm::worklet::particleadvection::RK4Integrator<UniformGridEvalType>;
/*
* If Euler step is preferred.
using EulerIntegratorType = vtkm::worklet::particleadvection::EulerIntegrator<UniformGridEvalType, T>;
*/
UniformGridEvalType eval(coords, cells, field);
RK4IntegratorType rk4(eval, static_cast<vtkm::Float32>(this->stepSize));
/*
* If Euler step is preferred.
EulerIntegratorType euler(eval, static_cast<vtkm::FloatDefault>(this->stepSize));
*/
res = particleadvection.Run(rk4, basisParticleArray, 1); // Taking a single step
}
else
{
std::cout << "Data set type is not rectilinear or uniform." << std::endl;
}
auto particle_positions = res.positions;
auto particle_stepstaken = res.stepsTaken;
auto start_position = BasisParticlesOriginal.GetPortalControl();
auto end_position = particle_positions.GetPortalControl();
auto portal_stepstaken = particle_stepstaken.GetPortalControl();
auto portal_validity = BasisParticlesValidity.GetPortalControl();
vtkm::cont::DataSet outputData;
vtkm::cont::DataSetBuilderExplicit dataSetBuilder;
if (cycle % this->writeFrequency == 0)
{
int connectivity_index = 0;
std::vector<vtkm::Id> connectivity;
std::vector<vtkm::Vec<T, 3>> pointCoordinates;
std::vector<vtkm::UInt8> shapes;
std::vector<vtkm::IdComponent> numIndices;
for (vtkm::Id index = 0; index < res.positions.GetNumberOfValues(); index++)
{
auto start_point = start_position.Get(index);
auto end_point = end_position.Get(index);
auto steps = portal_stepstaken.Get(index);
if (steps > 0 && portal_validity.Get(index) == 1)
{
if (end_point[0] >= bounds.X.Min && end_point[0] <= bounds.X.Max &&
end_point[1] >= bounds.Y.Min && end_point[1] <= bounds.Y.Max &&
end_point[2] >= bounds.Z.Min && end_point[2] <= bounds.Z.Max)
{
connectivity.push_back(connectivity_index);
connectivity.push_back(connectivity_index + 1);
connectivity_index += 2;
pointCoordinates.push_back(
vtkm::Vec<T, 3>((float)start_point[0], (float)start_point[1], (float)start_point[2]));
pointCoordinates.push_back(
vtkm::Vec<T, 3>((float)end_point[0], (float)end_point[1], (float)end_point[2]));
shapes.push_back(vtkm::CELL_SHAPE_LINE);
numIndices.push_back(2);
}
else
{
portal_validity.Set(index, 0);
}
}
else
{
portal_validity.Set(index, 0);
}
}
outputData = dataSetBuilder.Create(pointCoordinates, shapes, numIndices, connectivity);
std::stringstream file_path;
file_path << "output/basisflows_" << this->rank << "_";
std::cout << "Writing basis flows to output/" << std::endl;
WriteDataSet(cycle, file_path.str().c_str(), outputData);
if (this->resetParticles)
{
InitializeUniformSeeds(input);
BasisParticlesOriginal.Allocate(this->SeedRes[0] * this->SeedRes[1] * this->SeedRes[2]);
vtkm::cont::ArrayCopy(BasisParticles, BasisParticlesOriginal);
}
else
{
vtkm::cont::ArrayCopy(particle_positions, BasisParticles);
}
}
else
{
ValidityCheck check;
check.SetBounds(bounds);
vtkm::worklet::DispatcherMapField<ValidityCheck> dispatcher(check);
dispatcher.Invoke(particle_positions, particle_stepstaken, BasisParticlesValidity);
vtkm::cont::ArrayCopy(particle_positions, BasisParticles);
}
return outputData;
}
//---------------------------------------------------------------------------
template <typename T, typename StorageType, typename DerivedPolicy>
inline VTKM_CONT bool Lagrangian::DoMapField(vtkm::cont::DataSet&,
const vtkm::cont::ArrayHandle<T, StorageType>&,
const vtkm::filter::FieldMetadata&,
const vtkm::filter::PolicyBase<DerivedPolicy>)
{
return false;
}
}
} // namespace vtkm::filter