exceptions: Moved callbacks to its own location. Added VideoHandlerThread callback exception handling. Added exception tests.

This commit is contained in:
SimLeek
2019-02-25 20:14:09 -07:00
parent afca15e824
commit cb3f3d7b10
6 changed files with 112 additions and 186 deletions

View File

@ -1 +1 @@
__version__ = '0.5.0'
__version__ = '0.6.0'

67
cvpubsubs/callbacks.py Normal file
View File

@ -0,0 +1,67 @@
from cvpubsubs.window_sub.winctrl import WinCtrl
import numpy as np
if False:
from typing import Union
def global_cv_display_callback(frame, # type: np.ndarray
cam_id # type: Union[int, str]
):
from cvpubsubs.window_sub import SubscriberWindows
"""Default callback for sending frames to the global frame dictionary.
:param frame: The video or image frame
:type frame: np.ndarray
:param cam_id: The video or image source
:type cam_id: Union[int, str]
"""
SubscriberWindows.frame_dict[str(cam_id) + "frame"] = frame
class function_display_callback(object): # NOSONAR
def __init__(self, display_function, finish_function=None):
"""Used for running arbitrary functions on pixels.
>>> import random
>>> from cvpubsubs.webcam_pub import VideoHandlerThread
>>> img = np.zeros((300, 300, 3))
>>> def fun(array, coords, finished):
... r,g,b = random.random()/20.0, random.random()/20.0, random.random()/20.0
... array[coords[0:2]] = (array[coords[0:2]] + [r,g,b])%1.0
>>> VideoHandlerThread(video_source=img, callbacks=function_display_callback(fun)).display()
:param display_function: a function to run on the input image.
:param finish_function: a function to run on the input image when the other function finishes.
"""
self.looping = True
self.first_call = True
def _run_finisher(self, frame, finished, *args, **kwargs):
if not callable(finish_function):
WinCtrl.quit()
else:
finished = finish_function(frame, Ellipsis, finished, *args, **kwargs)
if finished:
WinCtrl.quit()
def _display_internal(self, frame, cam_id, *args, **kwargs):
finished = True
if self.first_call:
# return to display initial frame
self.first_call = False
return
if self.looping:
it = np.nditer(frame, flags=['multi_index'])
while not it.finished:
x, y, c = it.multi_index
finished = display_function(frame, (x, y, c), finished, *args, **kwargs)
it.iternext()
if finished:
self.looping = False
_run_finisher(self, frame, finished, *args, **kwargs)
self.inner_function = _display_internal
def __call__(self, *args, **kwargs):
return self.inner_function(self, *args, **kwargs)

View File

@ -1,144 +0,0 @@
from cvpubsubs.window_sub.winctrl import WinCtrl
import numpy as np
if False:
from typing import Union
def global_cv_display_callback(frame, # type: np.ndarray
cam_id # type: Union[int, str]
):
from cvpubsubs.window_sub import SubscriberWindows
"""Default callback for sending frames to the global frame dictionary.
:param frame: The video or image frame
:type frame: np.ndarray
:param cam_id: The video or image source
:type cam_id: Union[int, str]
"""
SubscriberWindows.frame_dict[str(cam_id) + "frame"] = frame
class function_display_callback(object): # NOSONAR
def __init__(self, display_function, finish_function=None):
"""Used for running arbitrary functions on pixels.
>>> import random
>>> from cvpubsubs.webcam_pub import VideoHandlerThread
>>> img = np.zeros((300, 300, 3))
>>> def fun(array, coords, finished):
... r,g,b = random.random()/20.0, random.random()/20.0, random.random()/20.0
... array[coords[0:2]] = (array[coords[0:2]] + [r,g,b])%1.0
>>> VideoHandlerThread(video_source=img, callbacks=function_display_callback(fun)).display()
:param display_function:
:param finish_function:
"""
self.looping = True
self.first_call = True
def _run_finisher(self, frame, finished, *args, **kwargs):
if not callable(finish_function):
WinCtrl.quit()
else:
finished = finish_function(frame, Ellipsis, finished, *args, **kwargs)
if finished:
WinCtrl.quit()
def _display_internal(self, frame, cam_id, *args, **kwargs):
finished = True
if self.first_call:
# return to display initial frame
self.first_call = False
return
if self.looping:
it = np.nditer(frame, flags=['multi_index'])
while not it.finished:
x, y, c = it.multi_index
finished = display_function(frame, (x, y, c), finished, *args, **kwargs)
it.iternext()
if finished:
self.looping = False
_run_finisher(self, frame, finished, *args, **kwargs)
self.inner_function = _display_internal
def __call__(self, *args, **kwargs):
return self.inner_function(self, *args, **kwargs)
class pytorch_function_display_callback(object): # NOSONAR
def __init__(self, display_function, finish_function=None):
"""Used for running arbitrary functions on pixels.
>>> import random
>>> import torch
>>> from cvpubsubs.webcam_pub import VideoHandlerThread
>>> img = np.zeros((300, 300, 3))
>>> def fun(array, coords, finished):
... rgb = torch.empty(array.shape).uniform_(0,1).type(torch.DoubleTensor).to(array.device)/150.0
... trans = np.zeros_like(coords)
... trans[0,...] = 1
... array[coords] = (array[coords+trans] + rgb[coords])%1.0
>>> VideoHandlerThread(video_source=img, callbacks=pytorch_function_display_callback(fun)).display()
thanks: https://medium.com/@awildtaber/building-a-rendering-engine-in-tensorflow-262438b2e062
:param display_function:
:param finish_function:
"""
import torch
from torch.autograd import Variable
self.looping = True
self.first_call = True
def _run_finisher(self, frame, finished, *args, **kwargs):
if not callable(finish_function):
WinCtrl.quit()
else:
finished = finish_function(frame, Ellipsis, finished, *args, **kwargs)
if finished:
WinCtrl.quit()
def _setup(self, frame, cam_id, *args, **kwargs):
if "device" in kwargs:
self.device = torch.device(kwargs["device"])
else:
if torch.cuda.is_available():
self.device = torch.device("cuda")
else:
self.device = torch.device("cpu")
self.min_bounds = [0 for _ in frame.shape]
self.max_bounds = list(frame.shape)
grid_slices = [slice(self.min_bounds[d], self.max_bounds[d]) for d in range(len(frame.shape))]
self.space_grid = np.mgrid[grid_slices]
x_tens = torch.LongTensor(self.space_grid[0, ...]).to(self.device)
y_tens = torch.LongTensor(self.space_grid[1, ...]).to(self.device)
c_tens = torch.LongTensor(self.space_grid[2, ...]).to(self.device)
self.x = Variable(x_tens, requires_grad=False)
self.y = Variable(y_tens, requires_grad=False)
self.c = Variable(c_tens, requires_grad=False)
def _display_internal(self, frame, cam_id, *args, **kwargs):
finished = True
if self.first_call:
# return to display initial frame
_setup(self, frame, finished, *args, **kwargs)
self.first_call = False
return
if self.looping:
tor_frame = torch.from_numpy(frame).to(self.device)
finished = display_function(tor_frame, (self.x, self.y, self.c), finished, *args, **kwargs)
frame[...] = tor_frame.cpu().numpy()[...]
if finished:
self.looping = False
_run_finisher(self, frame, finished, *args, **kwargs)
self.inner_function = _display_internal
def __call__(self, *args, **kwargs):
return self.inner_function(self, *args, **kwargs)

View File

@ -4,13 +4,15 @@ import numpy as np
from cvpubsubs.webcam_pub.pub_cam import pub_cam_thread
from cvpubsubs.webcam_pub.camctrl import CamCtrl
from cvpubsubs.window_sub.winctrl import WinCtrl
if False:
from typing import Union, Tuple, Any, Callable, List, Optional
FrameCallable = Callable[[np.ndarray, int], Optional[np.ndarray]]
from cvpubsubs.webcam_pub.callbacks import global_cv_display_callback
from cvpubsubs.callbacks import global_cv_display_callback
display_callbacks = [global_cv_display_callback]
@ -53,6 +55,7 @@ class VideoHandlerThread(threading.Thread):
self.request_size = request_size
self.high_speed = high_speed
self.fps_limit = fps_limit
self.exception_raised = None
def loop(self):
"""Continually gets frames from the video publisher, runs callbacks on them, and listens to commands."""
@ -66,7 +69,14 @@ class VideoHandlerThread(threading.Thread):
frame = sub_cam.get(blocking=True, timeout=1.0) # type: np.ndarray
if frame is not None:
for c in self.callbacks:
frame_c = c(frame, self.cam_id)
try:
frame_c = c(frame, self.cam_id)
except Exception as e:
import traceback
CamCtrl.stop_cam(self.cam_id)
WinCtrl.quit()
self.exception_raised = e
frame_c = self.exception_raised
if frame_c is not None:
frame = frame_c
msg_owner = sub_owner.get()
@ -93,3 +103,5 @@ class VideoHandlerThread(threading.Thread):
self.start()
SubscriberWindows(video_sources=[self.cam_id], callbacks=callbacks).loop()
self.join()
if self.exception_raised is not None:
raise self.exception_raised

View File

@ -68,6 +68,8 @@ class SubscriberWindows(object):
)
def _display_frames(self, frames, win_num):
if isinstance(frames, Exception):
raise frames
for f in range(len(frames)):
# detect nested:
if isinstance(frames[f], (list, tuple)) or frames[f].dtype.num == 17 or len(frames[f].shape) > 3:

View File

@ -1,8 +1,6 @@
import threading
import unittest as ut
import numpy as np
import cvpubsubs.webcam_pub as w
from cvpubsubs.window_sub import SubscriberWindows
from cvpubsubs.window_sub.winctrl import WinCtrl
@ -61,6 +59,16 @@ class TestSubWin(ut.TestCase):
w.VideoHandlerThread(callbacks=redden_frame_print_spam).display()
def test_sub_with_callback_exception(self):
def redden_frame_print_spam(frame, cam_id):
frame[:, :, 0] = 0
frame[:, :, 2] = 1 / 0
with self.assertRaises(ZeroDivisionError) as e:
v = w.VideoHandlerThread(callbacks=redden_frame_print_spam)
v.display()
self.assertEqual(v.exception_raised, e)
def test_multi_cams_one_source(self):
def cam_handler(frame, cam_id):
SubscriberWindows.set_global_frame_dict(cam_id, frame, frame)
@ -108,9 +116,26 @@ class TestSubWin(ut.TestCase):
v.join()
def test_nested_frames_exception(self):
def nest_frame(frame, cam_id):
frame = np.asarray([[[[[[frame + 1 / 0]]]]], [[[[[frame]]], [[[frame]]]]]])
return frame
v = w.VideoHandlerThread(callbacks=[nest_frame] + w.display_callbacks)
v.start()
with self.assertRaises(ZeroDivisionError) as e:
SubscriberWindows(window_names=[str(i) for i in range(3)],
video_sources=[str(0)]
).loop()
self.assertEqual(v.exception_raised, e)
v.join()
def test_conway_life(self):
from cvpubsubs.webcam_pub import VideoHandlerThread
from cvpubsubs.webcam_pub.callbacks import function_display_callback
from cvpubsubs.callbacks import function_display_callback
import numpy as np
img = np.zeros((50, 50, 1))
img[0:5, 0:5, :] = 1
@ -128,39 +153,3 @@ class TestSubWin(ut.TestCase):
array[coords] = 1.0
VideoHandlerThread(video_source=img, callbacks=function_display_callback(conway)).display()
def test_conway_life_pytorch(self):
import torch
from torch import functional as F
from cvpubsubs.webcam_pub import VideoHandlerThread
from cvpubsubs.webcam_pub.callbacks import pytorch_function_display_callback
img = np.ones((600, 800, 1))
img[10:590, 10:790, :] = 0
def fun(frame, coords, finished):
array = frame
neighbor_weights = torch.ones(torch.Size([3, 3]))
neighbor_weights[1, 1, ...] = 0
neighbor_weights = torch.Tensor(neighbor_weights).type_as(array).to(array.device)
neighbor_weights = neighbor_weights.squeeze()[None, None, :, :]
array = array.permute(2, 1, 0)[None, ...]
neighbors = torch.nn.functional.conv2d(array, neighbor_weights, stride=1, padding=1)
live_array = torch.where((neighbors < 2) | (neighbors > 3),
torch.zeros_like(array),
torch.where((2 <= neighbors) & (neighbors <= 3),
torch.ones_like(array),
array
)
)
dead_array = torch.where(neighbors == 3,
torch.ones_like(array),
array)
array = torch.where(array == 1.0,
live_array,
dead_array
)
array = array.squeeze().permute(1, 0)[...,None]
frame[...] = array[...]
VideoHandlerThread(video_source=img, callbacks=pytorch_function_display_callback(fun)).display()