restores the API docs of AR::Fixtures, made a quick pass over them, revises link in fixture template [closes #2840]

This commit is contained in:
Xavier Noria 2011-09-03 15:20:18 -07:00
parent 510a9707d8
commit 0a38e2a5ce
3 changed files with 363 additions and 370 deletions

@ -24,375 +24,368 @@ class FixtureClassNotFound < StandardError #:nodoc:
class FixturesFileNotFound < StandardError; end
# Fixtures are a way of organizing data that you want to test against; in short, sample data.
#
# = Fixture formats
#
# Fixtures come in 1 flavor:
#
# 1. YAML fixtures
#
# == YAML fixtures
#
# This type of fixture is in YAML format and the preferred default. YAML is a file format which describes data structures
# in a non-verbose, human-readable format. It ships with Ruby 1.8.1+.
#
# Unlike single-file fixtures, YAML fixtures are stored in a single file per model, which are placed
# in the directory appointed by <tt>ActiveSupport::TestCase.fixture_path=(path)</tt> (this is
# automatically configured for Rails, so you can just put your files in <tt><your-rails-app>/test/fixtures/</tt>).
# The fixture file ends with the <tt>.yml</tt> file extension (Rails example:
# <tt><your-rails-app>/test/fixtures/web_sites.yml</tt>). The format of a YAML fixture file looks like this:
#
# rubyonrails:
# id: 1
# name: Ruby on Rails
# url: http://www.rubyonrails.org
#
# google:
# id: 2
# name: Google
# url: http://www.google.com
#
# This YAML fixture file includes two fixtures. Each YAML fixture (ie. record) is given a name and is followed by an
# indented list of key/value pairs in the "key: value" format. Records are separated by a blank line for your viewing
# pleasure.
#
# Note that YAML fixtures are unordered. If you want ordered fixtures, use the omap YAML type.
# See http://yaml.org/type/omap.html
# for the specification. You will need ordered fixtures when you have foreign key constraints on keys in the same table.
# This is commonly needed for tree structures. Example:
#
# --- !omap
# - parent:
# id: 1
# parent_id: NULL
# title: Parent
# - child:
# id: 2
# parent_id: 1
# title: Child
#
# = Using fixtures in testcases
#
# Since fixtures are a testing construct, we use them in our unit and functional tests. There are two ways to use the
# fixtures, but first let's take a look at a sample unit test:
#
# require 'test_helper'
#
# class WebSiteTest < ActiveSupport::TestCase
# test "web_site_count" do
# assert_equal 2, WebSite.count
# end
# end
#
# By default, the <tt>test_helper module</tt> will load all of your fixtures into your test database,
# so this test will succeed.
# The testing environment will automatically load the all fixtures into the database before each test.
# To ensure consistent data, the environment deletes the fixtures before running the load.
#
# In addition to being available in the database, the fixture's data may also be accessed by
# using a special dynamic method, which has the same name as the model, and accepts the
# name of the fixture to instantiate:
#
# test "find" do
# assert_equal "Ruby on Rails", web_sites(:rubyonrails).name
# end
#
# Alternatively, you may enable auto-instantiation of the fixture data. For instance, take the following tests:
#
# test "find_alt_method_1" do
# assert_equal "Ruby on Rails", @web_sites['rubyonrails']['name']
# end
#
# test "find_alt_method_2" do
# assert_equal "Ruby on Rails", @rubyonrails.news
# end
#
# In order to use these methods to access fixtured data within your testcases, you must specify one of the
# following in your <tt>ActiveSupport::TestCase</tt>-derived class:
#
# - to fully enable instantiated fixtures (enable alternate methods #1 and #2 above)
# self.use_instantiated_fixtures = true
#
# - create only the hash for the fixtures, do not 'find' each instance (enable alternate method #1 only)
# self.use_instantiated_fixtures = :no_instances
#
# Using either of these alternate methods incurs a performance hit, as the fixtured data must be fully
# traversed in the database to create the fixture hash and/or instance variables. This is expensive for
# large sets of fixtured data.
#
# = Dynamic fixtures with ERB
#
# Some times you don't care about the content of the fixtures as much as you care about the volume. In these cases, you can
# mix ERB in with your YAML fixtures to create a bunch of fixtures for load testing, like:
#
# <% (1..1000).each do |i| %>
# fix_<%= i %>:
# id: <%= i %>
# name: guy_<%= 1 %>
# <% end %>
#
# This will create 1000 very simple YAML fixtures.
#
# Using ERB, you can also inject dynamic values into your fixtures with inserts like <tt><%= Date.today.strftime("%Y-%m-%d") %></tt>.
# This is however a feature to be used with some caution. The point of fixtures are that they're
# stable units of predictable sample data. If you feel that you need to inject dynamic values, then
# perhaps you should reexamine whether your application is properly testable. Hence, dynamic values
# in fixtures are to be considered a code smell.
#
# = Transactional fixtures
#
# TestCases can use begin+rollback to isolate their changes to the database instead of having to
# delete+insert for every test case.
#
# class FooTest < ActiveSupport::TestCase
# self.use_transactional_fixtures = true
#
# test "godzilla" do
# assert !Foo.all.empty?
# Foo.destroy_all
# assert Foo.all.empty?
# end
#
# test "godzilla aftermath" do
# assert !Foo.all.empty?
# end
# end
#
# If you preload your test database with all fixture data (probably in the Rakefile task) and use transactional fixtures,
# then you may omit all fixtures declarations in your test cases since all the data's already there
# and every case rolls back its changes.
#
# In order to use instantiated fixtures with preloaded data, set +self.pre_loaded_fixtures+ to true. This will provide
# access to fixture data for every table that has been loaded through fixtures (depending on the
# value of +use_instantiated_fixtures+)
#
# When *not* to use transactional fixtures:
#
# 1. You're testing whether a transaction works correctly. Nested transactions don't commit until
# all parent transactions commit, particularly, the fixtures transaction which is begun in setup
# and rolled back in teardown. Thus, you won't be able to verify
# the results of your transaction until Active Record supports nested transactions or savepoints (in progress).
# 2. Your database does not support transactions. Every Active Record database supports transactions except MySQL MyISAM.
# Use InnoDB, MaxDB, or NDB instead.
#
# = Advanced YAML Fixtures
#
# YAML fixtures that don't specify an ID get some extra features:
#
# * Stable, autogenerated IDs
# * Label references for associations (belongs_to, has_one, has_many)
# * HABTM associations as inline lists
# * Autofilled timestamp columns
# * Fixture label interpolation
# * Support for YAML defaults
#
# == Stable, autogenerated IDs
#
# Here, have a monkey fixture:
#
# george:
# id: 1
# name: George the Monkey
#
# reginald:
# id: 2
# name: Reginald the Pirate
#
# Each of these fixtures has two unique identifiers: one for the database
# and one for the humans. Why don't we generate the primary key instead?
# Hashing each fixture's label yields a consistent ID:
#
# george: # generated id: 503576764
# name: George the Monkey
#
# reginald: # generated id: 324201669
# name: Reginald the Pirate
#
# Active Record looks at the fixture's model class, discovers the correct
# primary key, and generates it right before inserting the fixture
# into the database.
#
# The generated ID for a given label is constant, so we can discover
# any fixture's ID without loading anything, as long as we know the label.
#
# == Label references for associations (belongs_to, has_one, has_many)
#
# Specifying foreign keys in fixtures can be very fragile, not to
# mention difficult to read. Since Active Record can figure out the ID of
# any fixture from its label, you can specify FK's by label instead of ID.
#
# === belongs_to
#
# Let's break out some more monkeys and pirates.
#
# ### in pirates.yml
#
# reginald:
# id: 1
# name: Reginald the Pirate
# monkey_id: 1
#
# ### in monkeys.yml
#
# george:
# id: 1
# name: George the Monkey
# pirate_id: 1
#
# Add a few more monkeys and pirates and break this into multiple files,
# and it gets pretty hard to keep track of what's going on. Let's
# use labels instead of IDs:
#
# ### in pirates.yml
#
# reginald:
# name: Reginald the Pirate
# monkey: george
#
# ### in monkeys.yml
#
# george:
# name: George the Monkey
# pirate: reginald
#
# Pow! All is made clear. Active Record reflects on the fixture's model class,
# finds all the +belongs_to+ associations, and allows you to specify
# a target *label* for the *association* (monkey: george) rather than
# a target *id* for the *FK* (<tt>monkey_id: 1</tt>).
#
# ==== Polymorphic belongs_to
#
# Supporting polymorphic relationships is a little bit more complicated, since
# Active Record needs to know what type your association is pointing at. Something
# like this should look familiar:
#
# ### in fruit.rb
#
# belongs_to :eater, :polymorphic => true
#
# ### in fruits.yml
#
# apple:
# id: 1
# name: apple
# eater_id: 1
# eater_type: Monkey
#
# Can we do better? You bet!
#
# apple:
# eater: george (Monkey)
#
# Just provide the polymorphic target type and Active Record will take care of the rest.
#
# === has_and_belongs_to_many
#
# Time to give our monkey some fruit.
#
# ### in monkeys.yml
#
# george:
# id: 1
# name: George the Monkey
#
# ### in fruits.yml
#
# apple:
# id: 1
# name: apple
#
# orange:
# id: 2
# name: orange
#
# grape:
# id: 3
# name: grape
#
# ### in fruits_monkeys.yml
#
# apple_george:
# fruit_id: 1
# monkey_id: 1
#
# orange_george:
# fruit_id: 2
# monkey_id: 1
#
# grape_george:
# fruit_id: 3
# monkey_id: 1
#
# Let's make the HABTM fixture go away.
#
# ### in monkeys.yml
#
# george:
# id: 1
# name: George the Monkey
# fruits: apple, orange, grape
#
# ### in fruits.yml
#
# apple:
# name: apple
#
# orange:
# name: orange
#
# grape:
# name: grape
#
# Zap! No more fruits_monkeys.yml file. We've specified the list of fruits
# on George's fixture, but we could've just as easily specified a list
# of monkeys on each fruit. As with +belongs_to+, Active Record reflects on
# the fixture's model class and discovers the +has_and_belongs_to_many+
# associations.
#
# == Autofilled timestamp columns
#
# If your table/model specifies any of Active Record's
# standard timestamp columns (+created_at+, +created_on+, +updated_at+, +updated_on+),
# they will automatically be set to <tt>Time.now</tt>.
#
# If you've set specific values, they'll be left alone.
#
# == Fixture label interpolation
#
# The label of the current fixture is always available as a column value:
#
# geeksomnia:
# name: Geeksomnia's Account
# subdomain: $LABEL
#
# Also, sometimes (like when porting older join table fixtures) you'll need
# to be able to get a hold of the identifier for a given label. ERB
# to the rescue:
#
# george_reginald:
# monkey_id: <%= ActiveRecord::Fixtures.identify(:reginald) %>
# pirate_id: <%= ActiveRecord::Fixtures.identify(:george) %>
#
# == Support for YAML defaults
#
# You probably already know how to use YAML to set and reuse defaults in
# your <tt>database.yml</tt> file. You can use the same technique in your fixtures:
#
# DEFAULTS: &DEFAULTS
# created_on: <%= 3.weeks.ago.to_s(:db) %>
#
# first:
# name: Smurf
# *DEFAULTS
#
# second:
# name: Fraggle
# *DEFAULTS
#
# Any fixture labeled "DEFAULTS" is safely ignored.
module ActiveRecord
# \Fixtures are a way of organizing data that you want to test against; in short, sample data.
#
# They are stored in YAML files, one file per model, which are placed in the directory
# appointed by <tt>ActiveSupport::TestCase.fixture_path=(path)</tt> (this is automatically
# configured for Rails, so you can just put your files in <tt><your-rails-app>/test/fixtures/</tt>).
# The fixture file ends with the <tt>.yml</tt> file extension (Rails example:
# <tt><your-rails-app>/test/fixtures/web_sites.yml</tt>). The format of a fixture file looks
# like this:
#
# rubyonrails:
# id: 1
# name: Ruby on Rails
# url: http://www.rubyonrails.org
#
# google:
# id: 2
# name: Google
# url: http://www.google.com
#
# This fixture file includes two fixtures. Each YAML fixture (ie. record) is given a name and
# is followed by an indented list of key/value pairs in the "key: value" format. Records are
# separated by a blank line for your viewing pleasure.
#
# Note that fixtures are unordered. If you want ordered fixtures, use the omap YAML type.
# See http://yaml.org/type/omap.html
# for the specification. You will need ordered fixtures when you have foreign key constraints
# on keys in the same table. This is commonly needed for tree structures. Example:
#
# --- !omap
# - parent:
# id: 1
# parent_id: NULL
# title: Parent
# - child:
# id: 2
# parent_id: 1
# title: Child
#
# = Using Fixtures in Test Cases
#
# Since fixtures are a testing construct, we use them in our unit and functional tests. There
# are two ways to use the fixtures, but first let's take a look at a sample unit test:
#
# require 'test_helper'
#
# class WebSiteTest < ActiveSupport::TestCase
# test "web_site_count" do
# assert_equal 2, WebSite.count
# end
# end
#
# By default, <tt>test_helper.rb</tt> will load all of your fixtures into your test database,
# so this test will succeed.
#
# The testing environment will automatically load the all fixtures into the database before each
# test. To ensure consistent data, the environment deletes the fixtures before running the load.
#
# In addition to being available in the database, the fixture's data may also be accessed by
# using a special dynamic method, which has the same name as the model, and accepts the
# name of the fixture to instantiate:
#
# test "find" do
# assert_equal "Ruby on Rails", web_sites(:rubyonrails).name
# end
#
# Alternatively, you may enable auto-instantiation of the fixture data. For instance, take the
# following tests:
#
# test "find_alt_method_1" do
# assert_equal "Ruby on Rails", @web_sites['rubyonrails']['name']
# end
#
# test "find_alt_method_2" do
# assert_equal "Ruby on Rails", @rubyonrails.news
# end
#
# In order to use these methods to access fixtured data within your testcases, you must specify one of the
# following in your <tt>ActiveSupport::TestCase</tt>-derived class:
#
# - to fully enable instantiated fixtures (enable alternate methods #1 and #2 above)
# self.use_instantiated_fixtures = true
#
# - create only the hash for the fixtures, do not 'find' each instance (enable alternate method #1 only)
# self.use_instantiated_fixtures = :no_instances
#
# Using either of these alternate methods incurs a performance hit, as the fixtured data must be fully
# traversed in the database to create the fixture hash and/or instance variables. This is expensive for
# large sets of fixtured data.
#
# = Dynamic fixtures with ERB
#
# Some times you don't care about the content of the fixtures as much as you care about the volume.
# In these cases, you can mix ERB in with your YAML fixtures to create a bunch of fixtures for load
# testing, like:
#
# <% 1.upto(1000) do |i| %>
# fix_<%= i %>:
# id: <%= i %>
# name: guy_<%= 1 %>
# <% end %>
#
# This will create 1000 very simple fixtures.
#
# Using ERB, you can also inject dynamic values into your fixtures with inserts like
# <tt><%= Date.today.strftime("%Y-%m-%d") %></tt>.
# This is however a feature to be used with some caution. The point of fixtures are that they're
# stable units of predictable sample data. If you feel that you need to inject dynamic values, then
# perhaps you should reexamine whether your application is properly testable. Hence, dynamic values
# in fixtures are to be considered a code smell.
#
# = Transactional Fixtures
#
# Test cases can use begin+rollback to isolate their changes to the database instead of having to
# delete+insert for every test case.
#
# class FooTest < ActiveSupport::TestCase
# self.use_transactional_fixtures = true
#
# test "godzilla" do
# assert !Foo.all.empty?
# Foo.destroy_all
# assert Foo.all.empty?
# end
#
# test "godzilla aftermath" do
# assert !Foo.all.empty?
# end
# end
#
# If you preload your test database with all fixture data (probably in the rake task) and use
# transactional fixtures, then you may omit all fixtures declarations in your test cases since
# all the data's already there and every case rolls back its changes.
#
# In order to use instantiated fixtures with preloaded data, set +self.pre_loaded_fixtures+ to
# true. This will provide access to fixture data for every table that has been loaded through
# fixtures (depending on the value of +use_instantiated_fixtures+).
#
# When *not* to use transactional fixtures:
#
# 1. You're testing whether a transaction works correctly. Nested transactions don't commit until
# all parent transactions commit, particularly, the fixtures transaction which is begun in setup
# and rolled back in teardown. Thus, you won't be able to verify
# the results of your transaction until Active Record supports nested transactions or savepoints (in progress).
# 2. Your database does not support transactions. Every Active Record database supports transactions except MySQL MyISAM.
# Use InnoDB, MaxDB, or NDB instead.
#
# = Advanced Fixtures
#
# Fixtures that don't specify an ID get some extra features:
#
# * Stable, autogenerated IDs
# * Label references for associations (belongs_to, has_one, has_many)
# * HABTM associations as inline lists
# * Autofilled timestamp columns
# * Fixture label interpolation
# * Support for YAML defaults
#
# == Stable, Autogenerated IDs
#
# Here, have a monkey fixture:
#
# george:
# id: 1
# name: George the Monkey
#
# reginald:
# id: 2
# name: Reginald the Pirate
#
# Each of these fixtures has two unique identifiers: one for the database
# and one for the humans. Why don't we generate the primary key instead?
# Hashing each fixture's label yields a consistent ID:
#
# george: # generated id: 503576764
# name: George the Monkey
#
# reginald: # generated id: 324201669
# name: Reginald the Pirate
#
# Active Record looks at the fixture's model class, discovers the correct
# primary key, and generates it right before inserting the fixture
# into the database.
#
# The generated ID for a given label is constant, so we can discover
# any fixture's ID without loading anything, as long as we know the label.
#
# == Label references for associations (belongs_to, has_one, has_many)
#
# Specifying foreign keys in fixtures can be very fragile, not to
# mention difficult to read. Since Active Record can figure out the ID of
# any fixture from its label, you can specify FK's by label instead of ID.
#
# === belongs_to
#
# Let's break out some more monkeys and pirates.
#
# ### in pirates.yml
#
# reginald:
# id: 1
# name: Reginald the Pirate
# monkey_id: 1
#
# ### in monkeys.yml
#
# george:
# id: 1
# name: George the Monkey
# pirate_id: 1
#
# Add a few more monkeys and pirates and break this into multiple files,
# and it gets pretty hard to keep track of what's going on. Let's
# use labels instead of IDs:
#
# ### in pirates.yml
#
# reginald:
# name: Reginald the Pirate
# monkey: george
#
# ### in monkeys.yml
#
# george:
# name: George the Monkey
# pirate: reginald
#
# Pow! All is made clear. Active Record reflects on the fixture's model class,
# finds all the +belongs_to+ associations, and allows you to specify
# a target *label* for the *association* (monkey: george) rather than
# a target *id* for the *FK* (<tt>monkey_id: 1</tt>).
#
# ==== Polymorphic belongs_to
#
# Supporting polymorphic relationships is a little bit more complicated, since
# Active Record needs to know what type your association is pointing at. Something
# like this should look familiar:
#
# ### in fruit.rb
#
# belongs_to :eater, :polymorphic => true
#
# ### in fruits.yml
#
# apple:
# id: 1
# name: apple
# eater_id: 1
# eater_type: Monkey
#
# Can we do better? You bet!
#
# apple:
# eater: george (Monkey)
#
# Just provide the polymorphic target type and Active Record will take care of the rest.
#
# === has_and_belongs_to_many
#
# Time to give our monkey some fruit.
#
# ### in monkeys.yml
#
# george:
# id: 1
# name: George the Monkey
#
# ### in fruits.yml
#
# apple:
# id: 1
# name: apple
#
# orange:
# id: 2
# name: orange
#
# grape:
# id: 3
# name: grape
#
# ### in fruits_monkeys.yml
#
# apple_george:
# fruit_id: 1
# monkey_id: 1
#
# orange_george:
# fruit_id: 2
# monkey_id: 1
#
# grape_george:
# fruit_id: 3
# monkey_id: 1
#
# Let's make the HABTM fixture go away.
#
# ### in monkeys.yml
#
# george:
# id: 1
# name: George the Monkey
# fruits: apple, orange, grape
#
# ### in fruits.yml
#
# apple:
# name: apple
#
# orange:
# name: orange
#
# grape:
# name: grape
#
# Zap! No more fruits_monkeys.yml file. We've specified the list of fruits
# on George's fixture, but we could've just as easily specified a list
# of monkeys on each fruit. As with +belongs_to+, Active Record reflects on
# the fixture's model class and discovers the +has_and_belongs_to_many+
# associations.
#
# == Autofilled Timestamp Columns
#
# If your table/model specifies any of Active Record's
# standard timestamp columns (+created_at+, +created_on+, +updated_at+, +updated_on+),
# they will automatically be set to <tt>Time.now</tt>.
#
# If you've set specific values, they'll be left alone.
#
# == Fixture label interpolation
#
# The label of the current fixture is always available as a column value:
#
# geeksomnia:
# name: Geeksomnia's Account
# subdomain: $LABEL
#
# Also, sometimes (like when porting older join table fixtures) you'll need
# to be able to get a hold of the identifier for a given label. ERB
# to the rescue:
#
# george_reginald:
# monkey_id: <%= ActiveRecord::Fixtures.identify(:reginald) %>
# pirate_id: <%= ActiveRecord::Fixtures.identify(:george) %>
#
# == Support for YAML defaults
#
# You probably already know how to use YAML to set and reuse defaults in
# your <tt>database.yml</tt> file. You can use the same technique in your fixtures:
#
# DEFAULTS: &DEFAULTS
# created_on: <%= 3.weeks.ago.to_s(:db) %>
#
# first:
# name: Smurf
# *DEFAULTS
#
# second:
# name: Fraggle
# *DEFAULTS
#
# Any fixture labeled "DEFAULTS" is safely ignored.
class Fixtures
MAX_ID = 2 ** 30 - 1

@ -1,4 +1,4 @@
# Read about fixtures at http://api.rubyonrails.org/classes/Fixtures.html
# Read about fixtures at http://api.rubyonrails.org/classes/ActiveRecord/Fixtures.html
first_task:
id: 1
starting: 2005-03-30t06:30:00.00+01:00

@ -1,4 +1,4 @@
# Read about fixtures at http://api.rubyonrails.org/classes/Fixtures.html
# Read about fixtures at http://api.rubyonrails.org/classes/ActiveRecord/Fixtures.html
<% unless attributes.empty? -%>
one: