forked from dark_thunder/immich
feat(ml): ARMNN acceleration (#5667)
* feat(ml): ARMNN acceleration for CLIP * wrap ANN as ONNX-Session * strict typing * normalize ARMNN CLIP embedding * mutex to handle concurrent execution * make inputs contiguous * fine-grained locking; concurrent network execution --------- Co-authored-by: mertalev <101130780+mertalev@users.noreply.github.com>
This commit is contained in:

committed by
GitHub

parent
29747437f6
commit
753292956e
162
machine-learning/ann/ann.py
Normal file
162
machine-learning/ann/ann.py
Normal file
@ -0,0 +1,162 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from ctypes import CDLL, Array, c_bool, c_char_p, c_int, c_ulong, c_void_p
|
||||
from os.path import exists
|
||||
from typing import Any, Generic, Protocol, Type, TypeVar
|
||||
|
||||
import numpy as np
|
||||
from numpy.typing import NDArray
|
||||
|
||||
from app.config import log
|
||||
|
||||
try:
|
||||
CDLL("libmali.so") # fail if libmali.so is not mounted into container
|
||||
libann = CDLL("libann.so")
|
||||
libann.init.argtypes = c_int, c_int, c_char_p
|
||||
libann.init.restype = c_void_p
|
||||
libann.load.argtypes = c_void_p, c_char_p, c_bool, c_bool, c_bool, c_char_p
|
||||
libann.load.restype = c_int
|
||||
libann.execute.argtypes = c_void_p, c_int, Array[c_void_p], Array[c_void_p]
|
||||
libann.unload.argtypes = c_void_p, c_int
|
||||
libann.destroy.argtypes = (c_void_p,)
|
||||
libann.shape.argtypes = c_void_p, c_int, c_bool, c_int
|
||||
libann.shape.restype = c_ulong
|
||||
libann.tensors.argtypes = c_void_p, c_int, c_bool
|
||||
libann.tensors.restype = c_int
|
||||
is_available = True
|
||||
except OSError as e:
|
||||
log.debug("Could not load ANN shared libraries, using ONNX: %s", e)
|
||||
is_available = False
|
||||
|
||||
T = TypeVar("T", covariant=True)
|
||||
|
||||
|
||||
class Newable(Protocol[T]):
|
||||
def new(self) -> None:
|
||||
...
|
||||
|
||||
|
||||
class _Singleton(type, Newable[T]):
|
||||
_instances: dict[_Singleton[T], Newable[T]] = {}
|
||||
|
||||
def __call__(cls, *args: Any, **kwargs: Any) -> Newable[T]:
|
||||
if cls not in cls._instances:
|
||||
obj: Newable[T] = super(_Singleton, cls).__call__(*args, **kwargs)
|
||||
cls._instances[cls] = obj
|
||||
else:
|
||||
obj = cls._instances[cls]
|
||||
obj.new()
|
||||
return obj
|
||||
|
||||
|
||||
class Ann(metaclass=_Singleton):
|
||||
def __init__(self, log_level: int = 3, tuning_level: int = 1, tuning_file: str | None = None) -> None:
|
||||
if not is_available:
|
||||
raise RuntimeError("libann is not available!")
|
||||
if tuning_file and not exists(tuning_file):
|
||||
raise ValueError("tuning_file must point to an existing (possibly empty) file!")
|
||||
if tuning_level == 0 and tuning_file is None:
|
||||
raise ValueError("tuning_level == 0 reads existing tuning information and requires a tuning_file")
|
||||
if tuning_level < 0 or tuning_level > 3:
|
||||
raise ValueError("tuning_level must be 0 (load from tuning_file), 1, 2 or 3.")
|
||||
if log_level < 0 or log_level > 5:
|
||||
raise ValueError("log_level must be 0 (trace), 1 (debug), 2 (info), 3 (warning), 4 (error) or 5 (fatal)")
|
||||
self.log_level = log_level
|
||||
self.tuning_level = tuning_level
|
||||
self.tuning_file = tuning_file
|
||||
self.output_shapes: dict[int, tuple[tuple[int], ...]] = {}
|
||||
self.input_shapes: dict[int, tuple[tuple[int], ...]] = {}
|
||||
self.ann: int | None = None
|
||||
self.new()
|
||||
|
||||
def new(self) -> None:
|
||||
if self.ann is None:
|
||||
self.ann = libann.init(
|
||||
self.log_level,
|
||||
self.tuning_level,
|
||||
self.tuning_file.encode() if self.tuning_file is not None else None,
|
||||
)
|
||||
self.ref_count = 0
|
||||
|
||||
self.ref_count += 1
|
||||
|
||||
def destroy(self) -> None:
|
||||
self.ref_count -= 1
|
||||
if self.ref_count <= 0 and self.ann is not None:
|
||||
libann.destroy(self.ann)
|
||||
self.ann = None
|
||||
|
||||
def __del__(self) -> None:
|
||||
if self.ann is not None:
|
||||
libann.destroy(self.ann)
|
||||
self.ann = None
|
||||
|
||||
def load(
|
||||
self,
|
||||
model_path: str,
|
||||
fast_math: bool = True,
|
||||
fp16: bool = False,
|
||||
save_cached_network: bool = False,
|
||||
cached_network_path: str | None = None,
|
||||
) -> int:
|
||||
if not model_path.endswith((".armnn", ".tflite", ".onnx")):
|
||||
raise ValueError("model_path must be a file with extension .armnn, .tflite or .onnx")
|
||||
if not exists(model_path):
|
||||
raise ValueError("model_path must point to an existing file!")
|
||||
if cached_network_path is not None and not exists(cached_network_path):
|
||||
raise ValueError("cached_network_path must point to an existing (possibly empty) file!")
|
||||
if save_cached_network and cached_network_path is None:
|
||||
raise ValueError("save_cached_network is True, cached_network_path must be specified!")
|
||||
net_id: int = libann.load(
|
||||
self.ann,
|
||||
model_path.encode(),
|
||||
fast_math,
|
||||
fp16,
|
||||
save_cached_network,
|
||||
cached_network_path.encode() if cached_network_path is not None else None,
|
||||
)
|
||||
|
||||
self.input_shapes[net_id] = tuple(
|
||||
self.shape(net_id, input=True, index=i) for i in range(self.tensors(net_id, input=True))
|
||||
)
|
||||
self.output_shapes[net_id] = tuple(
|
||||
self.shape(net_id, input=False, index=i) for i in range(self.tensors(net_id, input=False))
|
||||
)
|
||||
return net_id
|
||||
|
||||
def unload(self, network_id: int) -> None:
|
||||
libann.unload(self.ann, network_id)
|
||||
del self.output_shapes[network_id]
|
||||
|
||||
def execute(self, network_id: int, input_tensors: list[NDArray[np.float32]]) -> list[NDArray[np.float32]]:
|
||||
if not isinstance(input_tensors, list):
|
||||
raise ValueError("input_tensors needs to be a list!")
|
||||
net_input_shapes = self.input_shapes[network_id]
|
||||
if len(input_tensors) != len(net_input_shapes):
|
||||
raise ValueError(f"input_tensors lengths {len(input_tensors)} != network inputs {len(net_input_shapes)}")
|
||||
for net_input_shape, input_tensor in zip(net_input_shapes, input_tensors):
|
||||
if net_input_shape != input_tensor.shape:
|
||||
raise ValueError(f"input_tensor shape {input_tensor.shape} != network input shape {net_input_shape}")
|
||||
if not input_tensor.flags.c_contiguous:
|
||||
raise ValueError("input_tensors must be c_contiguous numpy ndarrays")
|
||||
output_tensors: list[NDArray[np.float32]] = [
|
||||
np.ndarray(s, dtype=np.float32) for s in self.output_shapes[network_id]
|
||||
]
|
||||
input_type = c_void_p * len(input_tensors)
|
||||
inputs = input_type(*[t.ctypes.data_as(c_void_p) for t in input_tensors])
|
||||
output_type = c_void_p * len(output_tensors)
|
||||
outputs = output_type(*[t.ctypes.data_as(c_void_p) for t in output_tensors])
|
||||
libann.execute(self.ann, network_id, inputs, outputs)
|
||||
return output_tensors
|
||||
|
||||
def shape(self, network_id: int, input: bool = False, index: int = 0) -> tuple[int]:
|
||||
s = libann.shape(self.ann, network_id, input, index)
|
||||
a = []
|
||||
while s != 0:
|
||||
a.append(s & 0xFFFF)
|
||||
s >>= 16
|
||||
return tuple(a)
|
||||
|
||||
def tensors(self, network_id: int, input: bool = False) -> int:
|
||||
tensors: int = libann.tensors(self.ann, network_id, input)
|
||||
return tensors
|
Reference in New Issue
Block a user