blender/scripts/modules/nodeitems_utils.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

168 lines
4.8 KiB
Python
Raw Permalink Normal View History

# SPDX-FileCopyrightText: 2013-2023 Blender Authors
#
# SPDX-License-Identifier: GPL-2.0-or-later
Replacing the node Add menu and making the toolbar useful As some people have already noticed, the "Add" menu for nodes is a bit messy since pynodes merge. The reason for this is that the order of nodes in submenus (categories) was previously defined by the order in which all nodes are registered (at the bottom of blenkernel/intern/node.c). For the dynamic registration of node types now possible this system of defining node order along with registration is no longer viable: while it would still sort of work for C nodes, it is completely meaningless for dynamic (python) nodes, which are basically registered automatically in whatever order modules and addons are loaded, with the added complexity of unloading and reloading. To fix this problem and add a bunch of desirable features this commit replaces the C menu with a python implementation. The new menu does not rely on any particular order of types in the node registry, but instead uses a simple explicit list of all the available nodes, grouped by categories (in scripts/nodeitems_builtins.py). There are a number of additional features that become possible with this implementation: 1) Node Toolbar can be populated! The list of nodes is used to create 2 UI items for each node: 1 entry in a submenu of "Add" menu and 1 item in a node toolbar panel with basically the same functionality. Clicking a button in the toolbar will add a new node of this type, just like selecting an item in the menu. The toolbar has the advantage of having collapsible panels for each category, so users can decide if they don't need certain nodes categories and have the rest more easily accessible. 2) Each node item is a true operator call. The old Add menu is a pretty old piece of C code which doesn't even use proper operator buttons. Now there is a generic node_add operator which can be used very flexibly for adding any of the available nodes. 3) Node Items support additional settings. Each "NodeItem" consists of the basic node type plus an optional list of initial settings that shall be applied to a new instance. This gives additional flexibility for creating variants of the same node or for defining preferred initial settings. E.g. it has been requested to disable previews for all nodes except inputs, this would be simple change in the py code and much less intrusive than in C. 4) Node items can be generated with a function. A callback can be used in any category instead of the fixed list, which generates a set of items based on the context (much like dynamic enum items in bpy.props). Originally this was implemented for group nodes, because these nodes only make sense when linked to a node tree from the library data. This principle could come in handy for a number of other nodes, e.g. Image nodes could provide a similar list of node variants based on images in the library - no need to first add node, then select an image. WARNING: pynodes scripters will have to rework their "draw_add_menu" callback in node tree types, this has been removed now! It was already pretty redundant, since one can add draw functions to the Add menu just like for any other menu. In the future i'd like to improve the categories system further so scripters can use it for custom node systems too, for now just make a draw callback and attach it to the Add menu.
2013-04-13 15:38:02 +00:00
import bpy
class NodeCategory:
Replacing the node Add menu and making the toolbar useful As some people have already noticed, the "Add" menu for nodes is a bit messy since pynodes merge. The reason for this is that the order of nodes in submenus (categories) was previously defined by the order in which all nodes are registered (at the bottom of blenkernel/intern/node.c). For the dynamic registration of node types now possible this system of defining node order along with registration is no longer viable: while it would still sort of work for C nodes, it is completely meaningless for dynamic (python) nodes, which are basically registered automatically in whatever order modules and addons are loaded, with the added complexity of unloading and reloading. To fix this problem and add a bunch of desirable features this commit replaces the C menu with a python implementation. The new menu does not rely on any particular order of types in the node registry, but instead uses a simple explicit list of all the available nodes, grouped by categories (in scripts/nodeitems_builtins.py). There are a number of additional features that become possible with this implementation: 1) Node Toolbar can be populated! The list of nodes is used to create 2 UI items for each node: 1 entry in a submenu of "Add" menu and 1 item in a node toolbar panel with basically the same functionality. Clicking a button in the toolbar will add a new node of this type, just like selecting an item in the menu. The toolbar has the advantage of having collapsible panels for each category, so users can decide if they don't need certain nodes categories and have the rest more easily accessible. 2) Each node item is a true operator call. The old Add menu is a pretty old piece of C code which doesn't even use proper operator buttons. Now there is a generic node_add operator which can be used very flexibly for adding any of the available nodes. 3) Node Items support additional settings. Each "NodeItem" consists of the basic node type plus an optional list of initial settings that shall be applied to a new instance. This gives additional flexibility for creating variants of the same node or for defining preferred initial settings. E.g. it has been requested to disable previews for all nodes except inputs, this would be simple change in the py code and much less intrusive than in C. 4) Node items can be generated with a function. A callback can be used in any category instead of the fixed list, which generates a set of items based on the context (much like dynamic enum items in bpy.props). Originally this was implemented for group nodes, because these nodes only make sense when linked to a node tree from the library data. This principle could come in handy for a number of other nodes, e.g. Image nodes could provide a similar list of node variants based on images in the library - no need to first add node, then select an image. WARNING: pynodes scripters will have to rework their "draw_add_menu" callback in node tree types, this has been removed now! It was already pretty redundant, since one can add draw functions to the Add menu just like for any other menu. In the future i'd like to improve the categories system further so scripters can use it for custom node systems too, for now just make a draw callback and attach it to the Add menu.
2013-04-13 15:38:02 +00:00
@classmethod
def poll(cls, _context):
Replacing the node Add menu and making the toolbar useful As some people have already noticed, the "Add" menu for nodes is a bit messy since pynodes merge. The reason for this is that the order of nodes in submenus (categories) was previously defined by the order in which all nodes are registered (at the bottom of blenkernel/intern/node.c). For the dynamic registration of node types now possible this system of defining node order along with registration is no longer viable: while it would still sort of work for C nodes, it is completely meaningless for dynamic (python) nodes, which are basically registered automatically in whatever order modules and addons are loaded, with the added complexity of unloading and reloading. To fix this problem and add a bunch of desirable features this commit replaces the C menu with a python implementation. The new menu does not rely on any particular order of types in the node registry, but instead uses a simple explicit list of all the available nodes, grouped by categories (in scripts/nodeitems_builtins.py). There are a number of additional features that become possible with this implementation: 1) Node Toolbar can be populated! The list of nodes is used to create 2 UI items for each node: 1 entry in a submenu of "Add" menu and 1 item in a node toolbar panel with basically the same functionality. Clicking a button in the toolbar will add a new node of this type, just like selecting an item in the menu. The toolbar has the advantage of having collapsible panels for each category, so users can decide if they don't need certain nodes categories and have the rest more easily accessible. 2) Each node item is a true operator call. The old Add menu is a pretty old piece of C code which doesn't even use proper operator buttons. Now there is a generic node_add operator which can be used very flexibly for adding any of the available nodes. 3) Node Items support additional settings. Each "NodeItem" consists of the basic node type plus an optional list of initial settings that shall be applied to a new instance. This gives additional flexibility for creating variants of the same node or for defining preferred initial settings. E.g. it has been requested to disable previews for all nodes except inputs, this would be simple change in the py code and much less intrusive than in C. 4) Node items can be generated with a function. A callback can be used in any category instead of the fixed list, which generates a set of items based on the context (much like dynamic enum items in bpy.props). Originally this was implemented for group nodes, because these nodes only make sense when linked to a node tree from the library data. This principle could come in handy for a number of other nodes, e.g. Image nodes could provide a similar list of node variants based on images in the library - no need to first add node, then select an image. WARNING: pynodes scripters will have to rework their "draw_add_menu" callback in node tree types, this has been removed now! It was already pretty redundant, since one can add draw functions to the Add menu just like for any other menu. In the future i'd like to improve the categories system further so scripters can use it for custom node systems too, for now just make a draw callback and attach it to the Add menu.
2013-04-13 15:38:02 +00:00
return True
PyAPI: use keyword only arguments Use keyword only arguments for the following functions. - addon_utils.module_bl_info 2nd arg `info_basis`. - addon_utils.modules 1st `module_cache`, 2nd arg `refresh`. - addon_utils.modules_refresh 1st arg `module_cache`. - bl_app_template_utils.activate 1nd arg `template_id`. - bl_app_template_utils.import_from_id 2nd arg `ignore_not_found`. - bl_app_template_utils.import_from_path 2nd arg `ignore_not_found`. - bl_keymap_utils.keymap_from_toolbar.generate 2nd & 3rd args `use_fallback_keys` & `use_reset`. - bl_keymap_utils.platform_helpers.keyconfig_data_oskey_from_ctrl 2nd arg `filter_fn`. - bl_ui_utils.bug_report_url.url_prefill_from_blender 1st arg `addon_info`. - bmesh.types.BMFace.copy 1st & 2nd args `verts`, `edges`. - bmesh.types.BMesh.calc_volume 1st arg `signed`. - bmesh.types.BMesh.from_mesh 2nd..4th args `face_normals`, `use_shape_key`, `shape_key_index`. - bmesh.types.BMesh.from_object 3rd & 4th args `cage`, `face_normals`. - bmesh.types.BMesh.transform 2nd arg `filter`. - bmesh.types.BMesh.update_edit_mesh 2nd & 3rd args `loop_triangles`, `destructive`. - bmesh.types.{BMVertSeq,BMEdgeSeq,BMFaceSeq}.sort 1st & 2nd arg `key`, `reverse`. - bmesh.utils.face_split 4th..6th args `coords`, `use_exist`, `example`. - bpy.data.libraries.load 2nd..4th args `link`, `relative`, `assets_only`. - bpy.data.user_map 1st..3rd args `subset`, `key_types, `value_types`. - bpy.msgbus.subscribe_rna 5th arg `options`. - bpy.path.abspath 2nd & 3rd args `start` & `library`. - bpy.path.clean_name 2nd arg `replace`. - bpy.path.ensure_ext 3rd arg `case_sensitive`. - bpy.path.module_names 2nd arg `recursive`. - bpy.path.relpath 2nd arg `start`. - bpy.types.EditBone.transform 2nd & 3rd arg `scale`, `roll`. - bpy.types.Operator.as_keywords 1st arg `ignore`. - bpy.types.Struct.{keyframe_insert,keyframe_delete} 2nd..5th args `index`, `frame`, `group`, `options`. - bpy.types.WindowManager.popup_menu 2nd & 3rd arg `title`, `icon`. - bpy.types.WindowManager.popup_menu_pie 3rd & 4th arg `title`, `icon`. - bpy.utils.app_template_paths 1st arg `subdir`. - bpy.utils.app_template_paths 1st arg `subdir`. - bpy.utils.blend_paths 1st..3rd args `absolute`, `packed`, `local`. - bpy.utils.execfile 2nd arg `mod`. - bpy.utils.keyconfig_set 2nd arg `report`. - bpy.utils.load_scripts 1st & 2nd `reload_scripts` & `refresh_scripts`. - bpy.utils.preset_find 3rd & 4th args `display_name`, `ext`. - bpy.utils.resource_path 2nd & 3rd arg `major`, `minor`. - bpy.utils.script_paths 1st..4th args `subdir`, `user_pref`, `check_all`, `use_user`. - bpy.utils.smpte_from_frame 2nd & 3rd args `fps`, `fps_base`. - bpy.utils.smpte_from_seconds 2nd & 3rd args `fps`, `fps_base`. - bpy.utils.system_resource 2nd arg `subdir`. - bpy.utils.time_from_frame 2nd & 3rd args `fps`, `fps_base`. - bpy.utils.time_to_frame 2nd & 3rd args `fps`, `fps_base`. - bpy.utils.units.to_string 4th..6th `precision`, `split_unit`, `compatible_unit`. - bpy.utils.units.to_value 4th arg `str_ref_unit`. - bpy.utils.user_resource 2nd & 3rd args `subdir`, `create` - bpy_extras.view3d_utils.location_3d_to_region_2d 4th arg `default`. - bpy_extras.view3d_utils.region_2d_to_origin_3d 4th arg `clamp`. - gpu.offscreen.unbind 1st arg `restore`. - gpu_extras.batch.batch_for_shader 4th arg `indices`. - gpu_extras.batch.presets.draw_circle_2d 4th arg `segments`. - gpu_extras.presets.draw_circle_2d 4th arg `segments`. - imbuf.types.ImBuf.resize 2nd arg `resize`. - imbuf.write 2nd arg `filepath`. - mathutils.kdtree.KDTree.find 2nd arg `filter`. - nodeitems_utils.NodeCategory 3rd & 4th arg `descriptions`, `items`. - nodeitems_utils.NodeItem 2nd..4th args `label`, `settings`, `poll`. - nodeitems_utils.NodeItemCustom 1st & 2nd arg `poll`, `draw`. - rna_prop_ui.draw 5th arg `use_edit`. - rna_prop_ui.rna_idprop_ui_get 2nd arg `create`. - rna_prop_ui.rna_idprop_ui_prop_clear 3rd arg `remove`. - rna_prop_ui.rna_idprop_ui_prop_get 3rd arg `create`. - rna_xml.xml2rna 2nd arg `root_rna`. - rna_xml.xml_file_write 4th arg `skip_typemap`.
2021-06-08 08:03:14 +00:00
def __init__(self, identifier, name, *, description="", items=None):
Replacing the node Add menu and making the toolbar useful As some people have already noticed, the "Add" menu for nodes is a bit messy since pynodes merge. The reason for this is that the order of nodes in submenus (categories) was previously defined by the order in which all nodes are registered (at the bottom of blenkernel/intern/node.c). For the dynamic registration of node types now possible this system of defining node order along with registration is no longer viable: while it would still sort of work for C nodes, it is completely meaningless for dynamic (python) nodes, which are basically registered automatically in whatever order modules and addons are loaded, with the added complexity of unloading and reloading. To fix this problem and add a bunch of desirable features this commit replaces the C menu with a python implementation. The new menu does not rely on any particular order of types in the node registry, but instead uses a simple explicit list of all the available nodes, grouped by categories (in scripts/nodeitems_builtins.py). There are a number of additional features that become possible with this implementation: 1) Node Toolbar can be populated! The list of nodes is used to create 2 UI items for each node: 1 entry in a submenu of "Add" menu and 1 item in a node toolbar panel with basically the same functionality. Clicking a button in the toolbar will add a new node of this type, just like selecting an item in the menu. The toolbar has the advantage of having collapsible panels for each category, so users can decide if they don't need certain nodes categories and have the rest more easily accessible. 2) Each node item is a true operator call. The old Add menu is a pretty old piece of C code which doesn't even use proper operator buttons. Now there is a generic node_add operator which can be used very flexibly for adding any of the available nodes. 3) Node Items support additional settings. Each "NodeItem" consists of the basic node type plus an optional list of initial settings that shall be applied to a new instance. This gives additional flexibility for creating variants of the same node or for defining preferred initial settings. E.g. it has been requested to disable previews for all nodes except inputs, this would be simple change in the py code and much less intrusive than in C. 4) Node items can be generated with a function. A callback can be used in any category instead of the fixed list, which generates a set of items based on the context (much like dynamic enum items in bpy.props). Originally this was implemented for group nodes, because these nodes only make sense when linked to a node tree from the library data. This principle could come in handy for a number of other nodes, e.g. Image nodes could provide a similar list of node variants based on images in the library - no need to first add node, then select an image. WARNING: pynodes scripters will have to rework their "draw_add_menu" callback in node tree types, this has been removed now! It was already pretty redundant, since one can add draw functions to the Add menu just like for any other menu. In the future i'd like to improve the categories system further so scripters can use it for custom node systems too, for now just make a draw callback and attach it to the Add menu.
2013-04-13 15:38:02 +00:00
self.identifier = identifier
self.name = name
self.description = description
if items is None:
self.items = lambda context: []
elif callable(items):
self.items = items
Replacing the node Add menu and making the toolbar useful As some people have already noticed, the "Add" menu for nodes is a bit messy since pynodes merge. The reason for this is that the order of nodes in submenus (categories) was previously defined by the order in which all nodes are registered (at the bottom of blenkernel/intern/node.c). For the dynamic registration of node types now possible this system of defining node order along with registration is no longer viable: while it would still sort of work for C nodes, it is completely meaningless for dynamic (python) nodes, which are basically registered automatically in whatever order modules and addons are loaded, with the added complexity of unloading and reloading. To fix this problem and add a bunch of desirable features this commit replaces the C menu with a python implementation. The new menu does not rely on any particular order of types in the node registry, but instead uses a simple explicit list of all the available nodes, grouped by categories (in scripts/nodeitems_builtins.py). There are a number of additional features that become possible with this implementation: 1) Node Toolbar can be populated! The list of nodes is used to create 2 UI items for each node: 1 entry in a submenu of "Add" menu and 1 item in a node toolbar panel with basically the same functionality. Clicking a button in the toolbar will add a new node of this type, just like selecting an item in the menu. The toolbar has the advantage of having collapsible panels for each category, so users can decide if they don't need certain nodes categories and have the rest more easily accessible. 2) Each node item is a true operator call. The old Add menu is a pretty old piece of C code which doesn't even use proper operator buttons. Now there is a generic node_add operator which can be used very flexibly for adding any of the available nodes. 3) Node Items support additional settings. Each "NodeItem" consists of the basic node type plus an optional list of initial settings that shall be applied to a new instance. This gives additional flexibility for creating variants of the same node or for defining preferred initial settings. E.g. it has been requested to disable previews for all nodes except inputs, this would be simple change in the py code and much less intrusive than in C. 4) Node items can be generated with a function. A callback can be used in any category instead of the fixed list, which generates a set of items based on the context (much like dynamic enum items in bpy.props). Originally this was implemented for group nodes, because these nodes only make sense when linked to a node tree from the library data. This principle could come in handy for a number of other nodes, e.g. Image nodes could provide a similar list of node variants based on images in the library - no need to first add node, then select an image. WARNING: pynodes scripters will have to rework their "draw_add_menu" callback in node tree types, this has been removed now! It was already pretty redundant, since one can add draw functions to the Add menu just like for any other menu. In the future i'd like to improve the categories system further so scripters can use it for custom node systems too, for now just make a draw callback and attach it to the Add menu.
2013-04-13 15:38:02 +00:00
else:
def items_gen(context):
for item in items:
if item.poll is None or context is None or item.poll(context):
yield item
self.items = items_gen
Replacing the node Add menu and making the toolbar useful As some people have already noticed, the "Add" menu for nodes is a bit messy since pynodes merge. The reason for this is that the order of nodes in submenus (categories) was previously defined by the order in which all nodes are registered (at the bottom of blenkernel/intern/node.c). For the dynamic registration of node types now possible this system of defining node order along with registration is no longer viable: while it would still sort of work for C nodes, it is completely meaningless for dynamic (python) nodes, which are basically registered automatically in whatever order modules and addons are loaded, with the added complexity of unloading and reloading. To fix this problem and add a bunch of desirable features this commit replaces the C menu with a python implementation. The new menu does not rely on any particular order of types in the node registry, but instead uses a simple explicit list of all the available nodes, grouped by categories (in scripts/nodeitems_builtins.py). There are a number of additional features that become possible with this implementation: 1) Node Toolbar can be populated! The list of nodes is used to create 2 UI items for each node: 1 entry in a submenu of "Add" menu and 1 item in a node toolbar panel with basically the same functionality. Clicking a button in the toolbar will add a new node of this type, just like selecting an item in the menu. The toolbar has the advantage of having collapsible panels for each category, so users can decide if they don't need certain nodes categories and have the rest more easily accessible. 2) Each node item is a true operator call. The old Add menu is a pretty old piece of C code which doesn't even use proper operator buttons. Now there is a generic node_add operator which can be used very flexibly for adding any of the available nodes. 3) Node Items support additional settings. Each "NodeItem" consists of the basic node type plus an optional list of initial settings that shall be applied to a new instance. This gives additional flexibility for creating variants of the same node or for defining preferred initial settings. E.g. it has been requested to disable previews for all nodes except inputs, this would be simple change in the py code and much less intrusive than in C. 4) Node items can be generated with a function. A callback can be used in any category instead of the fixed list, which generates a set of items based on the context (much like dynamic enum items in bpy.props). Originally this was implemented for group nodes, because these nodes only make sense when linked to a node tree from the library data. This principle could come in handy for a number of other nodes, e.g. Image nodes could provide a similar list of node variants based on images in the library - no need to first add node, then select an image. WARNING: pynodes scripters will have to rework their "draw_add_menu" callback in node tree types, this has been removed now! It was already pretty redundant, since one can add draw functions to the Add menu just like for any other menu. In the future i'd like to improve the categories system further so scripters can use it for custom node systems too, for now just make a draw callback and attach it to the Add menu.
2013-04-13 15:38:02 +00:00
2013-06-27 03:05:19 +00:00
class NodeItem:
PyAPI: use keyword only arguments Use keyword only arguments for the following functions. - addon_utils.module_bl_info 2nd arg `info_basis`. - addon_utils.modules 1st `module_cache`, 2nd arg `refresh`. - addon_utils.modules_refresh 1st arg `module_cache`. - bl_app_template_utils.activate 1nd arg `template_id`. - bl_app_template_utils.import_from_id 2nd arg `ignore_not_found`. - bl_app_template_utils.import_from_path 2nd arg `ignore_not_found`. - bl_keymap_utils.keymap_from_toolbar.generate 2nd & 3rd args `use_fallback_keys` & `use_reset`. - bl_keymap_utils.platform_helpers.keyconfig_data_oskey_from_ctrl 2nd arg `filter_fn`. - bl_ui_utils.bug_report_url.url_prefill_from_blender 1st arg `addon_info`. - bmesh.types.BMFace.copy 1st & 2nd args `verts`, `edges`. - bmesh.types.BMesh.calc_volume 1st arg `signed`. - bmesh.types.BMesh.from_mesh 2nd..4th args `face_normals`, `use_shape_key`, `shape_key_index`. - bmesh.types.BMesh.from_object 3rd & 4th args `cage`, `face_normals`. - bmesh.types.BMesh.transform 2nd arg `filter`. - bmesh.types.BMesh.update_edit_mesh 2nd & 3rd args `loop_triangles`, `destructive`. - bmesh.types.{BMVertSeq,BMEdgeSeq,BMFaceSeq}.sort 1st & 2nd arg `key`, `reverse`. - bmesh.utils.face_split 4th..6th args `coords`, `use_exist`, `example`. - bpy.data.libraries.load 2nd..4th args `link`, `relative`, `assets_only`. - bpy.data.user_map 1st..3rd args `subset`, `key_types, `value_types`. - bpy.msgbus.subscribe_rna 5th arg `options`. - bpy.path.abspath 2nd & 3rd args `start` & `library`. - bpy.path.clean_name 2nd arg `replace`. - bpy.path.ensure_ext 3rd arg `case_sensitive`. - bpy.path.module_names 2nd arg `recursive`. - bpy.path.relpath 2nd arg `start`. - bpy.types.EditBone.transform 2nd & 3rd arg `scale`, `roll`. - bpy.types.Operator.as_keywords 1st arg `ignore`. - bpy.types.Struct.{keyframe_insert,keyframe_delete} 2nd..5th args `index`, `frame`, `group`, `options`. - bpy.types.WindowManager.popup_menu 2nd & 3rd arg `title`, `icon`. - bpy.types.WindowManager.popup_menu_pie 3rd & 4th arg `title`, `icon`. - bpy.utils.app_template_paths 1st arg `subdir`. - bpy.utils.app_template_paths 1st arg `subdir`. - bpy.utils.blend_paths 1st..3rd args `absolute`, `packed`, `local`. - bpy.utils.execfile 2nd arg `mod`. - bpy.utils.keyconfig_set 2nd arg `report`. - bpy.utils.load_scripts 1st & 2nd `reload_scripts` & `refresh_scripts`. - bpy.utils.preset_find 3rd & 4th args `display_name`, `ext`. - bpy.utils.resource_path 2nd & 3rd arg `major`, `minor`. - bpy.utils.script_paths 1st..4th args `subdir`, `user_pref`, `check_all`, `use_user`. - bpy.utils.smpte_from_frame 2nd & 3rd args `fps`, `fps_base`. - bpy.utils.smpte_from_seconds 2nd & 3rd args `fps`, `fps_base`. - bpy.utils.system_resource 2nd arg `subdir`. - bpy.utils.time_from_frame 2nd & 3rd args `fps`, `fps_base`. - bpy.utils.time_to_frame 2nd & 3rd args `fps`, `fps_base`. - bpy.utils.units.to_string 4th..6th `precision`, `split_unit`, `compatible_unit`. - bpy.utils.units.to_value 4th arg `str_ref_unit`. - bpy.utils.user_resource 2nd & 3rd args `subdir`, `create` - bpy_extras.view3d_utils.location_3d_to_region_2d 4th arg `default`. - bpy_extras.view3d_utils.region_2d_to_origin_3d 4th arg `clamp`. - gpu.offscreen.unbind 1st arg `restore`. - gpu_extras.batch.batch_for_shader 4th arg `indices`. - gpu_extras.batch.presets.draw_circle_2d 4th arg `segments`. - gpu_extras.presets.draw_circle_2d 4th arg `segments`. - imbuf.types.ImBuf.resize 2nd arg `resize`. - imbuf.write 2nd arg `filepath`. - mathutils.kdtree.KDTree.find 2nd arg `filter`. - nodeitems_utils.NodeCategory 3rd & 4th arg `descriptions`, `items`. - nodeitems_utils.NodeItem 2nd..4th args `label`, `settings`, `poll`. - nodeitems_utils.NodeItemCustom 1st & 2nd arg `poll`, `draw`. - rna_prop_ui.draw 5th arg `use_edit`. - rna_prop_ui.rna_idprop_ui_get 2nd arg `create`. - rna_prop_ui.rna_idprop_ui_prop_clear 3rd arg `remove`. - rna_prop_ui.rna_idprop_ui_prop_get 3rd arg `create`. - rna_xml.xml2rna 2nd arg `root_rna`. - rna_xml.xml_file_write 4th arg `skip_typemap`.
2021-06-08 08:03:14 +00:00
def __init__(self, nodetype, *, label=None, settings=None, poll=None):
if settings is None:
settings = {}
Replacing the node Add menu and making the toolbar useful As some people have already noticed, the "Add" menu for nodes is a bit messy since pynodes merge. The reason for this is that the order of nodes in submenus (categories) was previously defined by the order in which all nodes are registered (at the bottom of blenkernel/intern/node.c). For the dynamic registration of node types now possible this system of defining node order along with registration is no longer viable: while it would still sort of work for C nodes, it is completely meaningless for dynamic (python) nodes, which are basically registered automatically in whatever order modules and addons are loaded, with the added complexity of unloading and reloading. To fix this problem and add a bunch of desirable features this commit replaces the C menu with a python implementation. The new menu does not rely on any particular order of types in the node registry, but instead uses a simple explicit list of all the available nodes, grouped by categories (in scripts/nodeitems_builtins.py). There are a number of additional features that become possible with this implementation: 1) Node Toolbar can be populated! The list of nodes is used to create 2 UI items for each node: 1 entry in a submenu of "Add" menu and 1 item in a node toolbar panel with basically the same functionality. Clicking a button in the toolbar will add a new node of this type, just like selecting an item in the menu. The toolbar has the advantage of having collapsible panels for each category, so users can decide if they don't need certain nodes categories and have the rest more easily accessible. 2) Each node item is a true operator call. The old Add menu is a pretty old piece of C code which doesn't even use proper operator buttons. Now there is a generic node_add operator which can be used very flexibly for adding any of the available nodes. 3) Node Items support additional settings. Each "NodeItem" consists of the basic node type plus an optional list of initial settings that shall be applied to a new instance. This gives additional flexibility for creating variants of the same node or for defining preferred initial settings. E.g. it has been requested to disable previews for all nodes except inputs, this would be simple change in the py code and much less intrusive than in C. 4) Node items can be generated with a function. A callback can be used in any category instead of the fixed list, which generates a set of items based on the context (much like dynamic enum items in bpy.props). Originally this was implemented for group nodes, because these nodes only make sense when linked to a node tree from the library data. This principle could come in handy for a number of other nodes, e.g. Image nodes could provide a similar list of node variants based on images in the library - no need to first add node, then select an image. WARNING: pynodes scripters will have to rework their "draw_add_menu" callback in node tree types, this has been removed now! It was already pretty redundant, since one can add draw functions to the Add menu just like for any other menu. In the future i'd like to improve the categories system further so scripters can use it for custom node systems too, for now just make a draw callback and attach it to the Add menu.
2013-04-13 15:38:02 +00:00
self.nodetype = nodetype
self._label = label
self.settings = settings
self.poll = poll
Replacing the node Add menu and making the toolbar useful As some people have already noticed, the "Add" menu for nodes is a bit messy since pynodes merge. The reason for this is that the order of nodes in submenus (categories) was previously defined by the order in which all nodes are registered (at the bottom of blenkernel/intern/node.c). For the dynamic registration of node types now possible this system of defining node order along with registration is no longer viable: while it would still sort of work for C nodes, it is completely meaningless for dynamic (python) nodes, which are basically registered automatically in whatever order modules and addons are loaded, with the added complexity of unloading and reloading. To fix this problem and add a bunch of desirable features this commit replaces the C menu with a python implementation. The new menu does not rely on any particular order of types in the node registry, but instead uses a simple explicit list of all the available nodes, grouped by categories (in scripts/nodeitems_builtins.py). There are a number of additional features that become possible with this implementation: 1) Node Toolbar can be populated! The list of nodes is used to create 2 UI items for each node: 1 entry in a submenu of "Add" menu and 1 item in a node toolbar panel with basically the same functionality. Clicking a button in the toolbar will add a new node of this type, just like selecting an item in the menu. The toolbar has the advantage of having collapsible panels for each category, so users can decide if they don't need certain nodes categories and have the rest more easily accessible. 2) Each node item is a true operator call. The old Add menu is a pretty old piece of C code which doesn't even use proper operator buttons. Now there is a generic node_add operator which can be used very flexibly for adding any of the available nodes. 3) Node Items support additional settings. Each "NodeItem" consists of the basic node type plus an optional list of initial settings that shall be applied to a new instance. This gives additional flexibility for creating variants of the same node or for defining preferred initial settings. E.g. it has been requested to disable previews for all nodes except inputs, this would be simple change in the py code and much less intrusive than in C. 4) Node items can be generated with a function. A callback can be used in any category instead of the fixed list, which generates a set of items based on the context (much like dynamic enum items in bpy.props). Originally this was implemented for group nodes, because these nodes only make sense when linked to a node tree from the library data. This principle could come in handy for a number of other nodes, e.g. Image nodes could provide a similar list of node variants based on images in the library - no need to first add node, then select an image. WARNING: pynodes scripters will have to rework their "draw_add_menu" callback in node tree types, this has been removed now! It was already pretty redundant, since one can add draw functions to the Add menu just like for any other menu. In the future i'd like to improve the categories system further so scripters can use it for custom node systems too, for now just make a draw callback and attach it to the Add menu.
2013-04-13 15:38:02 +00:00
@property
def label(self):
if self._label:
return self._label
else:
# if no custom label is defined, fall back to the node type UI name
bl_rna = bpy.types.Node.bl_rna_get_subclass(self.nodetype)
if bl_rna is not None:
return bl_rna.name
else:
return "Unknown"
Replacing the node Add menu and making the toolbar useful As some people have already noticed, the "Add" menu for nodes is a bit messy since pynodes merge. The reason for this is that the order of nodes in submenus (categories) was previously defined by the order in which all nodes are registered (at the bottom of blenkernel/intern/node.c). For the dynamic registration of node types now possible this system of defining node order along with registration is no longer viable: while it would still sort of work for C nodes, it is completely meaningless for dynamic (python) nodes, which are basically registered automatically in whatever order modules and addons are loaded, with the added complexity of unloading and reloading. To fix this problem and add a bunch of desirable features this commit replaces the C menu with a python implementation. The new menu does not rely on any particular order of types in the node registry, but instead uses a simple explicit list of all the available nodes, grouped by categories (in scripts/nodeitems_builtins.py). There are a number of additional features that become possible with this implementation: 1) Node Toolbar can be populated! The list of nodes is used to create 2 UI items for each node: 1 entry in a submenu of "Add" menu and 1 item in a node toolbar panel with basically the same functionality. Clicking a button in the toolbar will add a new node of this type, just like selecting an item in the menu. The toolbar has the advantage of having collapsible panels for each category, so users can decide if they don't need certain nodes categories and have the rest more easily accessible. 2) Each node item is a true operator call. The old Add menu is a pretty old piece of C code which doesn't even use proper operator buttons. Now there is a generic node_add operator which can be used very flexibly for adding any of the available nodes. 3) Node Items support additional settings. Each "NodeItem" consists of the basic node type plus an optional list of initial settings that shall be applied to a new instance. This gives additional flexibility for creating variants of the same node or for defining preferred initial settings. E.g. it has been requested to disable previews for all nodes except inputs, this would be simple change in the py code and much less intrusive than in C. 4) Node items can be generated with a function. A callback can be used in any category instead of the fixed list, which generates a set of items based on the context (much like dynamic enum items in bpy.props). Originally this was implemented for group nodes, because these nodes only make sense when linked to a node tree from the library data. This principle could come in handy for a number of other nodes, e.g. Image nodes could provide a similar list of node variants based on images in the library - no need to first add node, then select an image. WARNING: pynodes scripters will have to rework their "draw_add_menu" callback in node tree types, this has been removed now! It was already pretty redundant, since one can add draw functions to the Add menu just like for any other menu. In the future i'd like to improve the categories system further so scripters can use it for custom node systems too, for now just make a draw callback and attach it to the Add menu.
2013-04-13 15:38:02 +00:00
@property
def translation_context(self):
if self._label:
return bpy.app.translations.contexts.default
else:
# if no custom label is defined, fall back to the node type UI name
bl_rna = bpy.types.Node.bl_rna_get_subclass(self.nodetype)
if bl_rna is not None:
return bl_rna.translation_context
else:
return bpy.app.translations.contexts.default
# NOTE: is a staticmethod because called with an explicit self argument
# NodeItemCustom sets this as a variable attribute in __init__
@staticmethod
def draw(self, layout, _context):
props = layout.operator("node.add_node", text=self.label, text_ctxt=self.translation_context)
props.type = self.nodetype
props.use_transform = True
for setting in self.settings.items():
ops = props.settings.add()
ops.name = setting[0]
ops.value = setting[1]
class NodeItemCustom:
PyAPI: use keyword only arguments Use keyword only arguments for the following functions. - addon_utils.module_bl_info 2nd arg `info_basis`. - addon_utils.modules 1st `module_cache`, 2nd arg `refresh`. - addon_utils.modules_refresh 1st arg `module_cache`. - bl_app_template_utils.activate 1nd arg `template_id`. - bl_app_template_utils.import_from_id 2nd arg `ignore_not_found`. - bl_app_template_utils.import_from_path 2nd arg `ignore_not_found`. - bl_keymap_utils.keymap_from_toolbar.generate 2nd & 3rd args `use_fallback_keys` & `use_reset`. - bl_keymap_utils.platform_helpers.keyconfig_data_oskey_from_ctrl 2nd arg `filter_fn`. - bl_ui_utils.bug_report_url.url_prefill_from_blender 1st arg `addon_info`. - bmesh.types.BMFace.copy 1st & 2nd args `verts`, `edges`. - bmesh.types.BMesh.calc_volume 1st arg `signed`. - bmesh.types.BMesh.from_mesh 2nd..4th args `face_normals`, `use_shape_key`, `shape_key_index`. - bmesh.types.BMesh.from_object 3rd & 4th args `cage`, `face_normals`. - bmesh.types.BMesh.transform 2nd arg `filter`. - bmesh.types.BMesh.update_edit_mesh 2nd & 3rd args `loop_triangles`, `destructive`. - bmesh.types.{BMVertSeq,BMEdgeSeq,BMFaceSeq}.sort 1st & 2nd arg `key`, `reverse`. - bmesh.utils.face_split 4th..6th args `coords`, `use_exist`, `example`. - bpy.data.libraries.load 2nd..4th args `link`, `relative`, `assets_only`. - bpy.data.user_map 1st..3rd args `subset`, `key_types, `value_types`. - bpy.msgbus.subscribe_rna 5th arg `options`. - bpy.path.abspath 2nd & 3rd args `start` & `library`. - bpy.path.clean_name 2nd arg `replace`. - bpy.path.ensure_ext 3rd arg `case_sensitive`. - bpy.path.module_names 2nd arg `recursive`. - bpy.path.relpath 2nd arg `start`. - bpy.types.EditBone.transform 2nd & 3rd arg `scale`, `roll`. - bpy.types.Operator.as_keywords 1st arg `ignore`. - bpy.types.Struct.{keyframe_insert,keyframe_delete} 2nd..5th args `index`, `frame`, `group`, `options`. - bpy.types.WindowManager.popup_menu 2nd & 3rd arg `title`, `icon`. - bpy.types.WindowManager.popup_menu_pie 3rd & 4th arg `title`, `icon`. - bpy.utils.app_template_paths 1st arg `subdir`. - bpy.utils.app_template_paths 1st arg `subdir`. - bpy.utils.blend_paths 1st..3rd args `absolute`, `packed`, `local`. - bpy.utils.execfile 2nd arg `mod`. - bpy.utils.keyconfig_set 2nd arg `report`. - bpy.utils.load_scripts 1st & 2nd `reload_scripts` & `refresh_scripts`. - bpy.utils.preset_find 3rd & 4th args `display_name`, `ext`. - bpy.utils.resource_path 2nd & 3rd arg `major`, `minor`. - bpy.utils.script_paths 1st..4th args `subdir`, `user_pref`, `check_all`, `use_user`. - bpy.utils.smpte_from_frame 2nd & 3rd args `fps`, `fps_base`. - bpy.utils.smpte_from_seconds 2nd & 3rd args `fps`, `fps_base`. - bpy.utils.system_resource 2nd arg `subdir`. - bpy.utils.time_from_frame 2nd & 3rd args `fps`, `fps_base`. - bpy.utils.time_to_frame 2nd & 3rd args `fps`, `fps_base`. - bpy.utils.units.to_string 4th..6th `precision`, `split_unit`, `compatible_unit`. - bpy.utils.units.to_value 4th arg `str_ref_unit`. - bpy.utils.user_resource 2nd & 3rd args `subdir`, `create` - bpy_extras.view3d_utils.location_3d_to_region_2d 4th arg `default`. - bpy_extras.view3d_utils.region_2d_to_origin_3d 4th arg `clamp`. - gpu.offscreen.unbind 1st arg `restore`. - gpu_extras.batch.batch_for_shader 4th arg `indices`. - gpu_extras.batch.presets.draw_circle_2d 4th arg `segments`. - gpu_extras.presets.draw_circle_2d 4th arg `segments`. - imbuf.types.ImBuf.resize 2nd arg `resize`. - imbuf.write 2nd arg `filepath`. - mathutils.kdtree.KDTree.find 2nd arg `filter`. - nodeitems_utils.NodeCategory 3rd & 4th arg `descriptions`, `items`. - nodeitems_utils.NodeItem 2nd..4th args `label`, `settings`, `poll`. - nodeitems_utils.NodeItemCustom 1st & 2nd arg `poll`, `draw`. - rna_prop_ui.draw 5th arg `use_edit`. - rna_prop_ui.rna_idprop_ui_get 2nd arg `create`. - rna_prop_ui.rna_idprop_ui_prop_clear 3rd arg `remove`. - rna_prop_ui.rna_idprop_ui_prop_get 3rd arg `create`. - rna_xml.xml2rna 2nd arg `root_rna`. - rna_xml.xml_file_write 4th arg `skip_typemap`.
2021-06-08 08:03:14 +00:00
def __init__(self, *, poll=None, draw=None):
self.poll = poll
self.draw = draw
Replacing the node Add menu and making the toolbar useful As some people have already noticed, the "Add" menu for nodes is a bit messy since pynodes merge. The reason for this is that the order of nodes in submenus (categories) was previously defined by the order in which all nodes are registered (at the bottom of blenkernel/intern/node.c). For the dynamic registration of node types now possible this system of defining node order along with registration is no longer viable: while it would still sort of work for C nodes, it is completely meaningless for dynamic (python) nodes, which are basically registered automatically in whatever order modules and addons are loaded, with the added complexity of unloading and reloading. To fix this problem and add a bunch of desirable features this commit replaces the C menu with a python implementation. The new menu does not rely on any particular order of types in the node registry, but instead uses a simple explicit list of all the available nodes, grouped by categories (in scripts/nodeitems_builtins.py). There are a number of additional features that become possible with this implementation: 1) Node Toolbar can be populated! The list of nodes is used to create 2 UI items for each node: 1 entry in a submenu of "Add" menu and 1 item in a node toolbar panel with basically the same functionality. Clicking a button in the toolbar will add a new node of this type, just like selecting an item in the menu. The toolbar has the advantage of having collapsible panels for each category, so users can decide if they don't need certain nodes categories and have the rest more easily accessible. 2) Each node item is a true operator call. The old Add menu is a pretty old piece of C code which doesn't even use proper operator buttons. Now there is a generic node_add operator which can be used very flexibly for adding any of the available nodes. 3) Node Items support additional settings. Each "NodeItem" consists of the basic node type plus an optional list of initial settings that shall be applied to a new instance. This gives additional flexibility for creating variants of the same node or for defining preferred initial settings. E.g. it has been requested to disable previews for all nodes except inputs, this would be simple change in the py code and much less intrusive than in C. 4) Node items can be generated with a function. A callback can be used in any category instead of the fixed list, which generates a set of items based on the context (much like dynamic enum items in bpy.props). Originally this was implemented for group nodes, because these nodes only make sense when linked to a node tree from the library data. This principle could come in handy for a number of other nodes, e.g. Image nodes could provide a similar list of node variants based on images in the library - no need to first add node, then select an image. WARNING: pynodes scripters will have to rework their "draw_add_menu" callback in node tree types, this has been removed now! It was already pretty redundant, since one can add draw functions to the Add menu just like for any other menu. In the future i'd like to improve the categories system further so scripters can use it for custom node systems too, for now just make a draw callback and attach it to the Add menu.
2013-04-13 15:38:02 +00:00
_node_categories = {}
Replacing the node Add menu and making the toolbar useful As some people have already noticed, the "Add" menu for nodes is a bit messy since pynodes merge. The reason for this is that the order of nodes in submenus (categories) was previously defined by the order in which all nodes are registered (at the bottom of blenkernel/intern/node.c). For the dynamic registration of node types now possible this system of defining node order along with registration is no longer viable: while it would still sort of work for C nodes, it is completely meaningless for dynamic (python) nodes, which are basically registered automatically in whatever order modules and addons are loaded, with the added complexity of unloading and reloading. To fix this problem and add a bunch of desirable features this commit replaces the C menu with a python implementation. The new menu does not rely on any particular order of types in the node registry, but instead uses a simple explicit list of all the available nodes, grouped by categories (in scripts/nodeitems_builtins.py). There are a number of additional features that become possible with this implementation: 1) Node Toolbar can be populated! The list of nodes is used to create 2 UI items for each node: 1 entry in a submenu of "Add" menu and 1 item in a node toolbar panel with basically the same functionality. Clicking a button in the toolbar will add a new node of this type, just like selecting an item in the menu. The toolbar has the advantage of having collapsible panels for each category, so users can decide if they don't need certain nodes categories and have the rest more easily accessible. 2) Each node item is a true operator call. The old Add menu is a pretty old piece of C code which doesn't even use proper operator buttons. Now there is a generic node_add operator which can be used very flexibly for adding any of the available nodes. 3) Node Items support additional settings. Each "NodeItem" consists of the basic node type plus an optional list of initial settings that shall be applied to a new instance. This gives additional flexibility for creating variants of the same node or for defining preferred initial settings. E.g. it has been requested to disable previews for all nodes except inputs, this would be simple change in the py code and much less intrusive than in C. 4) Node items can be generated with a function. A callback can be used in any category instead of the fixed list, which generates a set of items based on the context (much like dynamic enum items in bpy.props). Originally this was implemented for group nodes, because these nodes only make sense when linked to a node tree from the library data. This principle could come in handy for a number of other nodes, e.g. Image nodes could provide a similar list of node variants based on images in the library - no need to first add node, then select an image. WARNING: pynodes scripters will have to rework their "draw_add_menu" callback in node tree types, this has been removed now! It was already pretty redundant, since one can add draw functions to the Add menu just like for any other menu. In the future i'd like to improve the categories system further so scripters can use it for custom node systems too, for now just make a draw callback and attach it to the Add menu.
2013-04-13 15:38:02 +00:00
2015-08-31 17:51:50 +00:00
def register_node_categories(identifier, cat_list):
if identifier in _node_categories:
raise KeyError("Node categories list '{:s}' already registered".format(identifier))
return
Replacing the node Add menu and making the toolbar useful As some people have already noticed, the "Add" menu for nodes is a bit messy since pynodes merge. The reason for this is that the order of nodes in submenus (categories) was previously defined by the order in which all nodes are registered (at the bottom of blenkernel/intern/node.c). For the dynamic registration of node types now possible this system of defining node order along with registration is no longer viable: while it would still sort of work for C nodes, it is completely meaningless for dynamic (python) nodes, which are basically registered automatically in whatever order modules and addons are loaded, with the added complexity of unloading and reloading. To fix this problem and add a bunch of desirable features this commit replaces the C menu with a python implementation. The new menu does not rely on any particular order of types in the node registry, but instead uses a simple explicit list of all the available nodes, grouped by categories (in scripts/nodeitems_builtins.py). There are a number of additional features that become possible with this implementation: 1) Node Toolbar can be populated! The list of nodes is used to create 2 UI items for each node: 1 entry in a submenu of "Add" menu and 1 item in a node toolbar panel with basically the same functionality. Clicking a button in the toolbar will add a new node of this type, just like selecting an item in the menu. The toolbar has the advantage of having collapsible panels for each category, so users can decide if they don't need certain nodes categories and have the rest more easily accessible. 2) Each node item is a true operator call. The old Add menu is a pretty old piece of C code which doesn't even use proper operator buttons. Now there is a generic node_add operator which can be used very flexibly for adding any of the available nodes. 3) Node Items support additional settings. Each "NodeItem" consists of the basic node type plus an optional list of initial settings that shall be applied to a new instance. This gives additional flexibility for creating variants of the same node or for defining preferred initial settings. E.g. it has been requested to disable previews for all nodes except inputs, this would be simple change in the py code and much less intrusive than in C. 4) Node items can be generated with a function. A callback can be used in any category instead of the fixed list, which generates a set of items based on the context (much like dynamic enum items in bpy.props). Originally this was implemented for group nodes, because these nodes only make sense when linked to a node tree from the library data. This principle could come in handy for a number of other nodes, e.g. Image nodes could provide a similar list of node variants based on images in the library - no need to first add node, then select an image. WARNING: pynodes scripters will have to rework their "draw_add_menu" callback in node tree types, this has been removed now! It was already pretty redundant, since one can add draw functions to the Add menu just like for any other menu. In the future i'd like to improve the categories system further so scripters can use it for custom node systems too, for now just make a draw callback and attach it to the Add menu.
2013-04-13 15:38:02 +00:00
# works as draw function for menus
Replacing the node Add menu and making the toolbar useful As some people have already noticed, the "Add" menu for nodes is a bit messy since pynodes merge. The reason for this is that the order of nodes in submenus (categories) was previously defined by the order in which all nodes are registered (at the bottom of blenkernel/intern/node.c). For the dynamic registration of node types now possible this system of defining node order along with registration is no longer viable: while it would still sort of work for C nodes, it is completely meaningless for dynamic (python) nodes, which are basically registered automatically in whatever order modules and addons are loaded, with the added complexity of unloading and reloading. To fix this problem and add a bunch of desirable features this commit replaces the C menu with a python implementation. The new menu does not rely on any particular order of types in the node registry, but instead uses a simple explicit list of all the available nodes, grouped by categories (in scripts/nodeitems_builtins.py). There are a number of additional features that become possible with this implementation: 1) Node Toolbar can be populated! The list of nodes is used to create 2 UI items for each node: 1 entry in a submenu of "Add" menu and 1 item in a node toolbar panel with basically the same functionality. Clicking a button in the toolbar will add a new node of this type, just like selecting an item in the menu. The toolbar has the advantage of having collapsible panels for each category, so users can decide if they don't need certain nodes categories and have the rest more easily accessible. 2) Each node item is a true operator call. The old Add menu is a pretty old piece of C code which doesn't even use proper operator buttons. Now there is a generic node_add operator which can be used very flexibly for adding any of the available nodes. 3) Node Items support additional settings. Each "NodeItem" consists of the basic node type plus an optional list of initial settings that shall be applied to a new instance. This gives additional flexibility for creating variants of the same node or for defining preferred initial settings. E.g. it has been requested to disable previews for all nodes except inputs, this would be simple change in the py code and much less intrusive than in C. 4) Node items can be generated with a function. A callback can be used in any category instead of the fixed list, which generates a set of items based on the context (much like dynamic enum items in bpy.props). Originally this was implemented for group nodes, because these nodes only make sense when linked to a node tree from the library data. This principle could come in handy for a number of other nodes, e.g. Image nodes could provide a similar list of node variants based on images in the library - no need to first add node, then select an image. WARNING: pynodes scripters will have to rework their "draw_add_menu" callback in node tree types, this has been removed now! It was already pretty redundant, since one can add draw functions to the Add menu just like for any other menu. In the future i'd like to improve the categories system further so scripters can use it for custom node systems too, for now just make a draw callback and attach it to the Add menu.
2013-04-13 15:38:02 +00:00
def draw_node_item(self, context):
layout = self.layout
col = layout.column(align=True)
for item in self.category.items(context):
item.draw(item, col, context)
Replacing the node Add menu and making the toolbar useful As some people have already noticed, the "Add" menu for nodes is a bit messy since pynodes merge. The reason for this is that the order of nodes in submenus (categories) was previously defined by the order in which all nodes are registered (at the bottom of blenkernel/intern/node.c). For the dynamic registration of node types now possible this system of defining node order along with registration is no longer viable: while it would still sort of work for C nodes, it is completely meaningless for dynamic (python) nodes, which are basically registered automatically in whatever order modules and addons are loaded, with the added complexity of unloading and reloading. To fix this problem and add a bunch of desirable features this commit replaces the C menu with a python implementation. The new menu does not rely on any particular order of types in the node registry, but instead uses a simple explicit list of all the available nodes, grouped by categories (in scripts/nodeitems_builtins.py). There are a number of additional features that become possible with this implementation: 1) Node Toolbar can be populated! The list of nodes is used to create 2 UI items for each node: 1 entry in a submenu of "Add" menu and 1 item in a node toolbar panel with basically the same functionality. Clicking a button in the toolbar will add a new node of this type, just like selecting an item in the menu. The toolbar has the advantage of having collapsible panels for each category, so users can decide if they don't need certain nodes categories and have the rest more easily accessible. 2) Each node item is a true operator call. The old Add menu is a pretty old piece of C code which doesn't even use proper operator buttons. Now there is a generic node_add operator which can be used very flexibly for adding any of the available nodes. 3) Node Items support additional settings. Each "NodeItem" consists of the basic node type plus an optional list of initial settings that shall be applied to a new instance. This gives additional flexibility for creating variants of the same node or for defining preferred initial settings. E.g. it has been requested to disable previews for all nodes except inputs, this would be simple change in the py code and much less intrusive than in C. 4) Node items can be generated with a function. A callback can be used in any category instead of the fixed list, which generates a set of items based on the context (much like dynamic enum items in bpy.props). Originally this was implemented for group nodes, because these nodes only make sense when linked to a node tree from the library data. This principle could come in handy for a number of other nodes, e.g. Image nodes could provide a similar list of node variants based on images in the library - no need to first add node, then select an image. WARNING: pynodes scripters will have to rework their "draw_add_menu" callback in node tree types, this has been removed now! It was already pretty redundant, since one can add draw functions to the Add menu just like for any other menu. In the future i'd like to improve the categories system further so scripters can use it for custom node systems too, for now just make a draw callback and attach it to the Add menu.
2013-04-13 15:38:02 +00:00
menu_types = []
for cat in cat_list:
2013-06-27 03:05:19 +00:00
menu_type = type("NODE_MT_category_" + cat.identifier, (bpy.types.Menu,), {
"bl_space_type": 'NODE_EDITOR',
"bl_label": cat.name,
"category": cat,
"poll": cat.poll,
"draw": draw_node_item,
2018-07-03 04:27:53 +00:00
})
Replacing the node Add menu and making the toolbar useful As some people have already noticed, the "Add" menu for nodes is a bit messy since pynodes merge. The reason for this is that the order of nodes in submenus (categories) was previously defined by the order in which all nodes are registered (at the bottom of blenkernel/intern/node.c). For the dynamic registration of node types now possible this system of defining node order along with registration is no longer viable: while it would still sort of work for C nodes, it is completely meaningless for dynamic (python) nodes, which are basically registered automatically in whatever order modules and addons are loaded, with the added complexity of unloading and reloading. To fix this problem and add a bunch of desirable features this commit replaces the C menu with a python implementation. The new menu does not rely on any particular order of types in the node registry, but instead uses a simple explicit list of all the available nodes, grouped by categories (in scripts/nodeitems_builtins.py). There are a number of additional features that become possible with this implementation: 1) Node Toolbar can be populated! The list of nodes is used to create 2 UI items for each node: 1 entry in a submenu of "Add" menu and 1 item in a node toolbar panel with basically the same functionality. Clicking a button in the toolbar will add a new node of this type, just like selecting an item in the menu. The toolbar has the advantage of having collapsible panels for each category, so users can decide if they don't need certain nodes categories and have the rest more easily accessible. 2) Each node item is a true operator call. The old Add menu is a pretty old piece of C code which doesn't even use proper operator buttons. Now there is a generic node_add operator which can be used very flexibly for adding any of the available nodes. 3) Node Items support additional settings. Each "NodeItem" consists of the basic node type plus an optional list of initial settings that shall be applied to a new instance. This gives additional flexibility for creating variants of the same node or for defining preferred initial settings. E.g. it has been requested to disable previews for all nodes except inputs, this would be simple change in the py code and much less intrusive than in C. 4) Node items can be generated with a function. A callback can be used in any category instead of the fixed list, which generates a set of items based on the context (much like dynamic enum items in bpy.props). Originally this was implemented for group nodes, because these nodes only make sense when linked to a node tree from the library data. This principle could come in handy for a number of other nodes, e.g. Image nodes could provide a similar list of node variants based on images in the library - no need to first add node, then select an image. WARNING: pynodes scripters will have to rework their "draw_add_menu" callback in node tree types, this has been removed now! It was already pretty redundant, since one can add draw functions to the Add menu just like for any other menu. In the future i'd like to improve the categories system further so scripters can use it for custom node systems too, for now just make a draw callback and attach it to the Add menu.
2013-04-13 15:38:02 +00:00
menu_types.append(menu_type)
bpy.utils.register_class(menu_type)
Replacing the node Add menu and making the toolbar useful As some people have already noticed, the "Add" menu for nodes is a bit messy since pynodes merge. The reason for this is that the order of nodes in submenus (categories) was previously defined by the order in which all nodes are registered (at the bottom of blenkernel/intern/node.c). For the dynamic registration of node types now possible this system of defining node order along with registration is no longer viable: while it would still sort of work for C nodes, it is completely meaningless for dynamic (python) nodes, which are basically registered automatically in whatever order modules and addons are loaded, with the added complexity of unloading and reloading. To fix this problem and add a bunch of desirable features this commit replaces the C menu with a python implementation. The new menu does not rely on any particular order of types in the node registry, but instead uses a simple explicit list of all the available nodes, grouped by categories (in scripts/nodeitems_builtins.py). There are a number of additional features that become possible with this implementation: 1) Node Toolbar can be populated! The list of nodes is used to create 2 UI items for each node: 1 entry in a submenu of "Add" menu and 1 item in a node toolbar panel with basically the same functionality. Clicking a button in the toolbar will add a new node of this type, just like selecting an item in the menu. The toolbar has the advantage of having collapsible panels for each category, so users can decide if they don't need certain nodes categories and have the rest more easily accessible. 2) Each node item is a true operator call. The old Add menu is a pretty old piece of C code which doesn't even use proper operator buttons. Now there is a generic node_add operator which can be used very flexibly for adding any of the available nodes. 3) Node Items support additional settings. Each "NodeItem" consists of the basic node type plus an optional list of initial settings that shall be applied to a new instance. This gives additional flexibility for creating variants of the same node or for defining preferred initial settings. E.g. it has been requested to disable previews for all nodes except inputs, this would be simple change in the py code and much less intrusive than in C. 4) Node items can be generated with a function. A callback can be used in any category instead of the fixed list, which generates a set of items based on the context (much like dynamic enum items in bpy.props). Originally this was implemented for group nodes, because these nodes only make sense when linked to a node tree from the library data. This principle could come in handy for a number of other nodes, e.g. Image nodes could provide a similar list of node variants based on images in the library - no need to first add node, then select an image. WARNING: pynodes scripters will have to rework their "draw_add_menu" callback in node tree types, this has been removed now! It was already pretty redundant, since one can add draw functions to the Add menu just like for any other menu. In the future i'd like to improve the categories system further so scripters can use it for custom node systems too, for now just make a draw callback and attach it to the Add menu.
2013-04-13 15:38:02 +00:00
def draw_add_menu(self, context):
layout = self.layout
for cat in cat_list:
Replacing the node Add menu and making the toolbar useful As some people have already noticed, the "Add" menu for nodes is a bit messy since pynodes merge. The reason for this is that the order of nodes in submenus (categories) was previously defined by the order in which all nodes are registered (at the bottom of blenkernel/intern/node.c). For the dynamic registration of node types now possible this system of defining node order along with registration is no longer viable: while it would still sort of work for C nodes, it is completely meaningless for dynamic (python) nodes, which are basically registered automatically in whatever order modules and addons are loaded, with the added complexity of unloading and reloading. To fix this problem and add a bunch of desirable features this commit replaces the C menu with a python implementation. The new menu does not rely on any particular order of types in the node registry, but instead uses a simple explicit list of all the available nodes, grouped by categories (in scripts/nodeitems_builtins.py). There are a number of additional features that become possible with this implementation: 1) Node Toolbar can be populated! The list of nodes is used to create 2 UI items for each node: 1 entry in a submenu of "Add" menu and 1 item in a node toolbar panel with basically the same functionality. Clicking a button in the toolbar will add a new node of this type, just like selecting an item in the menu. The toolbar has the advantage of having collapsible panels for each category, so users can decide if they don't need certain nodes categories and have the rest more easily accessible. 2) Each node item is a true operator call. The old Add menu is a pretty old piece of C code which doesn't even use proper operator buttons. Now there is a generic node_add operator which can be used very flexibly for adding any of the available nodes. 3) Node Items support additional settings. Each "NodeItem" consists of the basic node type plus an optional list of initial settings that shall be applied to a new instance. This gives additional flexibility for creating variants of the same node or for defining preferred initial settings. E.g. it has been requested to disable previews for all nodes except inputs, this would be simple change in the py code and much less intrusive than in C. 4) Node items can be generated with a function. A callback can be used in any category instead of the fixed list, which generates a set of items based on the context (much like dynamic enum items in bpy.props). Originally this was implemented for group nodes, because these nodes only make sense when linked to a node tree from the library data. This principle could come in handy for a number of other nodes, e.g. Image nodes could provide a similar list of node variants based on images in the library - no need to first add node, then select an image. WARNING: pynodes scripters will have to rework their "draw_add_menu" callback in node tree types, this has been removed now! It was already pretty redundant, since one can add draw functions to the Add menu just like for any other menu. In the future i'd like to improve the categories system further so scripters can use it for custom node systems too, for now just make a draw callback and attach it to the Add menu.
2013-04-13 15:38:02 +00:00
if cat.poll(context):
layout.menu("NODE_MT_category_" + cat.identifier)
Replacing the node Add menu and making the toolbar useful As some people have already noticed, the "Add" menu for nodes is a bit messy since pynodes merge. The reason for this is that the order of nodes in submenus (categories) was previously defined by the order in which all nodes are registered (at the bottom of blenkernel/intern/node.c). For the dynamic registration of node types now possible this system of defining node order along with registration is no longer viable: while it would still sort of work for C nodes, it is completely meaningless for dynamic (python) nodes, which are basically registered automatically in whatever order modules and addons are loaded, with the added complexity of unloading and reloading. To fix this problem and add a bunch of desirable features this commit replaces the C menu with a python implementation. The new menu does not rely on any particular order of types in the node registry, but instead uses a simple explicit list of all the available nodes, grouped by categories (in scripts/nodeitems_builtins.py). There are a number of additional features that become possible with this implementation: 1) Node Toolbar can be populated! The list of nodes is used to create 2 UI items for each node: 1 entry in a submenu of "Add" menu and 1 item in a node toolbar panel with basically the same functionality. Clicking a button in the toolbar will add a new node of this type, just like selecting an item in the menu. The toolbar has the advantage of having collapsible panels for each category, so users can decide if they don't need certain nodes categories and have the rest more easily accessible. 2) Each node item is a true operator call. The old Add menu is a pretty old piece of C code which doesn't even use proper operator buttons. Now there is a generic node_add operator which can be used very flexibly for adding any of the available nodes. 3) Node Items support additional settings. Each "NodeItem" consists of the basic node type plus an optional list of initial settings that shall be applied to a new instance. This gives additional flexibility for creating variants of the same node or for defining preferred initial settings. E.g. it has been requested to disable previews for all nodes except inputs, this would be simple change in the py code and much less intrusive than in C. 4) Node items can be generated with a function. A callback can be used in any category instead of the fixed list, which generates a set of items based on the context (much like dynamic enum items in bpy.props). Originally this was implemented for group nodes, because these nodes only make sense when linked to a node tree from the library data. This principle could come in handy for a number of other nodes, e.g. Image nodes could provide a similar list of node variants based on images in the library - no need to first add node, then select an image. WARNING: pynodes scripters will have to rework their "draw_add_menu" callback in node tree types, this has been removed now! It was already pretty redundant, since one can add draw functions to the Add menu just like for any other menu. In the future i'd like to improve the categories system further so scripters can use it for custom node systems too, for now just make a draw callback and attach it to the Add menu.
2013-04-13 15:38:02 +00:00
2023-09-05 00:49:20 +00:00
# Stores: (categories list, menu draw function, sub-menu types).
_node_categories[identifier] = (cat_list, draw_add_menu, menu_types)
def node_categories_iter(context):
for cat_type in _node_categories.values():
for cat in cat_type[0]:
if cat.poll and ((context is None) or cat.poll(context)):
yield cat
def has_node_categories(context):
for cat_type in _node_categories.values():
for cat in cat_type[0]:
if cat.poll and ((context is None) or cat.poll(context)):
return True
return False
def node_items_iter(context):
for cat in node_categories_iter(context):
for item in cat.items(context):
yield item
def unregister_node_cat_types(cats):
for mt in cats[2]:
bpy.utils.unregister_class(mt)
Replacing the node Add menu and making the toolbar useful As some people have already noticed, the "Add" menu for nodes is a bit messy since pynodes merge. The reason for this is that the order of nodes in submenus (categories) was previously defined by the order in which all nodes are registered (at the bottom of blenkernel/intern/node.c). For the dynamic registration of node types now possible this system of defining node order along with registration is no longer viable: while it would still sort of work for C nodes, it is completely meaningless for dynamic (python) nodes, which are basically registered automatically in whatever order modules and addons are loaded, with the added complexity of unloading and reloading. To fix this problem and add a bunch of desirable features this commit replaces the C menu with a python implementation. The new menu does not rely on any particular order of types in the node registry, but instead uses a simple explicit list of all the available nodes, grouped by categories (in scripts/nodeitems_builtins.py). There are a number of additional features that become possible with this implementation: 1) Node Toolbar can be populated! The list of nodes is used to create 2 UI items for each node: 1 entry in a submenu of "Add" menu and 1 item in a node toolbar panel with basically the same functionality. Clicking a button in the toolbar will add a new node of this type, just like selecting an item in the menu. The toolbar has the advantage of having collapsible panels for each category, so users can decide if they don't need certain nodes categories and have the rest more easily accessible. 2) Each node item is a true operator call. The old Add menu is a pretty old piece of C code which doesn't even use proper operator buttons. Now there is a generic node_add operator which can be used very flexibly for adding any of the available nodes. 3) Node Items support additional settings. Each "NodeItem" consists of the basic node type plus an optional list of initial settings that shall be applied to a new instance. This gives additional flexibility for creating variants of the same node or for defining preferred initial settings. E.g. it has been requested to disable previews for all nodes except inputs, this would be simple change in the py code and much less intrusive than in C. 4) Node items can be generated with a function. A callback can be used in any category instead of the fixed list, which generates a set of items based on the context (much like dynamic enum items in bpy.props). Originally this was implemented for group nodes, because these nodes only make sense when linked to a node tree from the library data. This principle could come in handy for a number of other nodes, e.g. Image nodes could provide a similar list of node variants based on images in the library - no need to first add node, then select an image. WARNING: pynodes scripters will have to rework their "draw_add_menu" callback in node tree types, this has been removed now! It was already pretty redundant, since one can add draw functions to the Add menu just like for any other menu. In the future i'd like to improve the categories system further so scripters can use it for custom node systems too, for now just make a draw callback and attach it to the Add menu.
2013-04-13 15:38:02 +00:00
def unregister_node_categories(identifier=None):
Replacing the node Add menu and making the toolbar useful As some people have already noticed, the "Add" menu for nodes is a bit messy since pynodes merge. The reason for this is that the order of nodes in submenus (categories) was previously defined by the order in which all nodes are registered (at the bottom of blenkernel/intern/node.c). For the dynamic registration of node types now possible this system of defining node order along with registration is no longer viable: while it would still sort of work for C nodes, it is completely meaningless for dynamic (python) nodes, which are basically registered automatically in whatever order modules and addons are loaded, with the added complexity of unloading and reloading. To fix this problem and add a bunch of desirable features this commit replaces the C menu with a python implementation. The new menu does not rely on any particular order of types in the node registry, but instead uses a simple explicit list of all the available nodes, grouped by categories (in scripts/nodeitems_builtins.py). There are a number of additional features that become possible with this implementation: 1) Node Toolbar can be populated! The list of nodes is used to create 2 UI items for each node: 1 entry in a submenu of "Add" menu and 1 item in a node toolbar panel with basically the same functionality. Clicking a button in the toolbar will add a new node of this type, just like selecting an item in the menu. The toolbar has the advantage of having collapsible panels for each category, so users can decide if they don't need certain nodes categories and have the rest more easily accessible. 2) Each node item is a true operator call. The old Add menu is a pretty old piece of C code which doesn't even use proper operator buttons. Now there is a generic node_add operator which can be used very flexibly for adding any of the available nodes. 3) Node Items support additional settings. Each "NodeItem" consists of the basic node type plus an optional list of initial settings that shall be applied to a new instance. This gives additional flexibility for creating variants of the same node or for defining preferred initial settings. E.g. it has been requested to disable previews for all nodes except inputs, this would be simple change in the py code and much less intrusive than in C. 4) Node items can be generated with a function. A callback can be used in any category instead of the fixed list, which generates a set of items based on the context (much like dynamic enum items in bpy.props). Originally this was implemented for group nodes, because these nodes only make sense when linked to a node tree from the library data. This principle could come in handy for a number of other nodes, e.g. Image nodes could provide a similar list of node variants based on images in the library - no need to first add node, then select an image. WARNING: pynodes scripters will have to rework their "draw_add_menu" callback in node tree types, this has been removed now! It was already pretty redundant, since one can add draw functions to the Add menu just like for any other menu. In the future i'd like to improve the categories system further so scripters can use it for custom node systems too, for now just make a draw callback and attach it to the Add menu.
2013-04-13 15:38:02 +00:00
# unregister existing UI classes
if identifier:
cat_types = _node_categories.get(identifier, None)
if cat_types:
unregister_node_cat_types(cat_types)
del _node_categories[identifier]
else:
for cat_types in _node_categories.values():
unregister_node_cat_types(cat_types)
_node_categories.clear()
2015-08-31 17:51:50 +00:00
def draw_node_categories_menu(self, context):
for cats in _node_categories.values():
cats[1](self, context)