blender/intern/ghost/GHOST_IContext.hh

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

126 lines
5.1 KiB
C++
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0-or-later
* Copyright 2001-2002 NaN Holding BV. All rights reserved. */
/** \file
* \ingroup GHOST
* Declaration of GHOST_IContext interface class.
*/
#pragma once
#include "GHOST_Types.h"
/**
* Interface for GHOST context.
*
2021-07-26 02:32:42 +00:00
* You can create a off-screen context (windowless) with the system's
* #GHOST_ISystem::createOffscreenContext method.
* \see GHOST_ISystem#createOffscreenContext
*/
class GHOST_IContext {
public:
/**
* Destructor.
*/
virtual ~GHOST_IContext() {}
/**
* Activates the drawing context.
* \return A boolean success indicator.
*/
virtual GHOST_TSuccess activateDrawingContext() = 0;
/**
* Release the drawing context of the calling thread.
* \return A boolean success indicator.
*/
virtual GHOST_TSuccess releaseDrawingContext() = 0;
VR: Initial Virtual Reality support - Milestone 1, Scene Inspection NOTE: While most of the milestone 1 goals are there, a few smaller features and improvements are still to be done. Big picture of this milestone: Initial, OpenXR-based virtual reality support for users and foundation for advanced use cases. Maniphest Task: https://developer.blender.org/T71347 The tasks contains more information about this milestone. To be clear: This is not a feature rich VR implementation, it's focused on the initial scene inspection use case. We intentionally focused on that, further features like controller support are part of the next milestone. - How to use? Instructions on how to use this are here: https://wiki.blender.org/wiki/User:Severin/GSoC-2019/How_to_Test These will be updated and moved to a more official place (likely the manual) soon. Currently Windows Mixed Reality and Oculus devices are usable. Valve/HTC headsets don't support the OpenXR standard yet and hence, do not work with this implementation. --------------- This is the C-side implementation of the features added for initial VR support as per milestone 1. A "VR Scene Inspection" Add-on will be committed separately, to expose the VR functionality in the UI. It also adds some further features for milestone 1, namely a landmarking system (stored view locations in the VR space) Main additions/features: * Support for rendering viewports to an HMD, with good performance. * Option to sync the VR view perspective with a fully interactive, regular 3D View (VR-Mirror). * Option to disable positional tracking. Keeps the current position (calculated based on the VR eye center pose) when enabled while a VR session is running. * Some regular viewport settings for the VR view * RNA/Python-API to query and set VR session state information. * WM-XR: Layer tying Ghost-XR to the Blender specific APIs/data * wmSurface API: drawable, non-window container (manages Ghost-OpenGL and GPU context) * DNA/RNA for management of VR session settings * `--debug-xr` and `--debug-xr-time` commandline options * Utility batch & config file for using the Oculus runtime on Windows. * Most VR data is runtime only. The exception is user settings which are saved to files (`XrSessionSettings`). * VR support can be disabled through the `WITH_XR_OPENXR` compiler flag. For architecture and code documentation, see https://wiki.blender.org/wiki/Source/Interface/XR. --------------- A few thank you's: * A huge shoutout to Ray Molenkamp for his help during the project - it would have not been that successful without him! * Sebastian Koenig and Simeon Conzendorf for testing and feedback! * The reviewers, especially Brecht Van Lommel! * Dalai Felinto for pushing and managing me to get this done ;) * The OpenXR working group for providing an open standard. I think we're the first bigger application to adopt OpenXR. Congratulations to them and ourselves :) This project started as a Google Summer of Code 2019 project - "Core Support of Virtual Reality Headsets through OpenXR" (see https://wiki.blender.org/wiki/User:Severin/GSoC-2019/). Some further information, including ideas for further improvements can be found in the final GSoC report: https://wiki.blender.org/wiki/User:Severin/GSoC-2019/Final_Report Differential Revisions: D6193, D7098 Reviewed by: Brecht Van Lommel, Jeroen Bakker
2020-03-17 19:20:55 +00:00
virtual unsigned int getDefaultFramebuffer() = 0;
Vulkan: Initial Compute Shaders support This patch adds initial support for compute shaders to the vulkan backend. As the development is oriented to the test- cases we have the implementation is limited to what is used there. It has been validated that with this patch that the following test cases are running as expected - `GPUVulkanTest.gpu_shader_compute_vbo` - `GPUVulkanTest.gpu_shader_compute_ibo` - `GPUVulkanTest.gpu_shader_compute_ssbo` - `GPUVulkanTest.gpu_storage_buffer_create_update_read` - `GPUVulkanTest.gpu_shader_compute_2d` This patch includes: - Allocating VkBuffer on device. - Uploading data from CPU to VkBuffer. - Binding VkBuffer as SSBO to a compute shader. - Execute compute shader and altering VkBuffer. - Download the VkBuffer to CPU ram. - Validate that it worked. - Use device only vertex buffer as SSBO - Use device only index buffer as SSBO - Use device only image buffers GHOST API has been changed as the original design was created before we even had support for compute shaders in blender. The function `GHOST_getVulkanBackbuffer` has been separated to retrieve the command buffer without a backbuffer (`GHOST_getVulkanCommandBuffer`). In order to do correct command buffer processing we needed access to the queue owned by GHOST. This is returned as part of the `GHOST_getVulkanHandles` function. Open topics (not considered part of this patch) - Memory barriers & command buffer encoding - Indirect compute dispatching - Rest of the test cases - Data conversions when requested data format is different than on device. - GPUVulkanTest.gpu_shader_compute_1d is supported on AMD devices. NVIDIA doesn't seem to support 1d textures. Pull-request: #104518
2023-02-21 14:03:12 +00:00
/**
* Get Vulkan handles for the given context.
*
* These handles are the same for a given context.
2023-03-29 03:16:26 +00:00
* Should only be called when using a Vulkan context.
Vulkan: Initial Compute Shaders support This patch adds initial support for compute shaders to the vulkan backend. As the development is oriented to the test- cases we have the implementation is limited to what is used there. It has been validated that with this patch that the following test cases are running as expected - `GPUVulkanTest.gpu_shader_compute_vbo` - `GPUVulkanTest.gpu_shader_compute_ibo` - `GPUVulkanTest.gpu_shader_compute_ssbo` - `GPUVulkanTest.gpu_storage_buffer_create_update_read` - `GPUVulkanTest.gpu_shader_compute_2d` This patch includes: - Allocating VkBuffer on device. - Uploading data from CPU to VkBuffer. - Binding VkBuffer as SSBO to a compute shader. - Execute compute shader and altering VkBuffer. - Download the VkBuffer to CPU ram. - Validate that it worked. - Use device only vertex buffer as SSBO - Use device only index buffer as SSBO - Use device only image buffers GHOST API has been changed as the original design was created before we even had support for compute shaders in blender. The function `GHOST_getVulkanBackbuffer` has been separated to retrieve the command buffer without a backbuffer (`GHOST_getVulkanCommandBuffer`). In order to do correct command buffer processing we needed access to the queue owned by GHOST. This is returned as part of the `GHOST_getVulkanHandles` function. Open topics (not considered part of this patch) - Memory barriers & command buffer encoding - Indirect compute dispatching - Rest of the test cases - Data conversions when requested data format is different than on device. - GPUVulkanTest.gpu_shader_compute_1d is supported on AMD devices. NVIDIA doesn't seem to support 1d textures. Pull-request: #104518
2023-02-21 14:03:12 +00:00
* Other contexts will not return any handles and leave the
* handles where the parameters are referring to unmodified.
*
* \param r_instance: After calling this function the VkInstance
* referenced by this parameter will contain the VKInstance handle
* of the context associated with the `context` parameter.
* \param r_physical_device: After calling this function the VkPhysicalDevice
* referenced by this parameter will contain the VKPhysicalDevice handle
* of the context associated with the `context` parameter.
* \param r_device: After calling this function the VkDevice
* referenced by this parameter will contain the VKDevice handle
* of the context associated with the `context` parameter.
* \param r_graphic_queue_family: After calling this function the uint32_t
* referenced by this parameter will contain the graphic queue family id
* of the context associated with the `context` parameter.
* \param r_queue: After calling this function the VkQueue
* referenced by this parameter will contain the VKQueue handle
* of the context associated with the `context` parameter.
* \returns GHOST_kFailure when context isn't a Vulkan context.
* GHOST_kSuccess when the context is a Vulkan context and the
* handles have been set.
*/
virtual GHOST_TSuccess getVulkanHandles(void *r_instance,
void *r_physical_device,
void *r_device,
uint32_t *r_graphic_queue_family,
void *r_queue) = 0;
/**
* Return Vulkan command buffer.
*
* Command buffers are different for each image in the swap chain.
* At the start of each frame the correct command buffer should be
* retrieved with this function.
*
* \param r_command_buffer: After calling this function the VkCommandBuffer
* referenced by this parameter will contain the VKCommandBuffer handle
* of the current back buffer (when swap chains are enabled) or
* it will contain a general VkCommandQueue.
* \returns GHOST_kFailure when context isn't a Vulkan context.
* GHOST_kSuccess when the context is a Vulkan context and the
* handles have been set.
*/
virtual GHOST_TSuccess getVulkanCommandBuffer(void *r_command_buffer) = 0;
/**
2023-02-27 09:54:27 +00:00
* Gets the Vulkan back-buffer related resource handles associated with the Vulkan context.
* Needs to be called after each swap event as the back-buffer will change.
Vulkan: Initial Compute Shaders support This patch adds initial support for compute shaders to the vulkan backend. As the development is oriented to the test- cases we have the implementation is limited to what is used there. It has been validated that with this patch that the following test cases are running as expected - `GPUVulkanTest.gpu_shader_compute_vbo` - `GPUVulkanTest.gpu_shader_compute_ibo` - `GPUVulkanTest.gpu_shader_compute_ssbo` - `GPUVulkanTest.gpu_storage_buffer_create_update_read` - `GPUVulkanTest.gpu_shader_compute_2d` This patch includes: - Allocating VkBuffer on device. - Uploading data from CPU to VkBuffer. - Binding VkBuffer as SSBO to a compute shader. - Execute compute shader and altering VkBuffer. - Download the VkBuffer to CPU ram. - Validate that it worked. - Use device only vertex buffer as SSBO - Use device only index buffer as SSBO - Use device only image buffers GHOST API has been changed as the original design was created before we even had support for compute shaders in blender. The function `GHOST_getVulkanBackbuffer` has been separated to retrieve the command buffer without a backbuffer (`GHOST_getVulkanCommandBuffer`). In order to do correct command buffer processing we needed access to the queue owned by GHOST. This is returned as part of the `GHOST_getVulkanHandles` function. Open topics (not considered part of this patch) - Memory barriers & command buffer encoding - Indirect compute dispatching - Rest of the test cases - Data conversions when requested data format is different than on device. - GPUVulkanTest.gpu_shader_compute_1d is supported on AMD devices. NVIDIA doesn't seem to support 1d textures. Pull-request: #104518
2023-02-21 14:03:12 +00:00
*
* \param r_image: After calling this function the VkImage
* referenced by this parameter will contain the VKImage handle
* of the current back buffer.
* \param r_framebuffer: After calling this function the VkFramebuffer
* referenced by this parameter will contain the VKFramebuffer handle
* of the current back buffer.
* \param r_render_pass: After calling this function the VkRenderPass
* referenced by this parameter will contain the VKRenderPass handle
* of the current back buffer.
* \param r_extent: After calling this function the VkExtent2D
* referenced by this parameter will contain the size of the
* frame buffer and image in pixels.
* \param r_fb_id: After calling this function the uint32_t
* referenced by this parameter will contain the id of the
* framebuffer of the current back buffer.
* \returns GHOST_kFailure when context isn't a Vulkan context.
* GHOST_kSuccess when the context is a Vulkan context and the
* handles have been set.
*/
Vulkan: Initial Compute Shaders support This patch adds initial support for compute shaders to the vulkan backend. As the development is oriented to the test- cases we have the implementation is limited to what is used there. It has been validated that with this patch that the following test cases are running as expected - `GPUVulkanTest.gpu_shader_compute_vbo` - `GPUVulkanTest.gpu_shader_compute_ibo` - `GPUVulkanTest.gpu_shader_compute_ssbo` - `GPUVulkanTest.gpu_storage_buffer_create_update_read` - `GPUVulkanTest.gpu_shader_compute_2d` This patch includes: - Allocating VkBuffer on device. - Uploading data from CPU to VkBuffer. - Binding VkBuffer as SSBO to a compute shader. - Execute compute shader and altering VkBuffer. - Download the VkBuffer to CPU ram. - Validate that it worked. - Use device only vertex buffer as SSBO - Use device only index buffer as SSBO - Use device only image buffers GHOST API has been changed as the original design was created before we even had support for compute shaders in blender. The function `GHOST_getVulkanBackbuffer` has been separated to retrieve the command buffer without a backbuffer (`GHOST_getVulkanCommandBuffer`). In order to do correct command buffer processing we needed access to the queue owned by GHOST. This is returned as part of the `GHOST_getVulkanHandles` function. Open topics (not considered part of this patch) - Memory barriers & command buffer encoding - Indirect compute dispatching - Rest of the test cases - Data conversions when requested data format is different than on device. - GPUVulkanTest.gpu_shader_compute_1d is supported on AMD devices. NVIDIA doesn't seem to support 1d textures. Pull-request: #104518
2023-02-21 14:03:12 +00:00
virtual GHOST_TSuccess getVulkanBackbuffer(void *r_image,
void *r_framebuffer,
void *r_render_pass,
void *r_extent,
uint32_t *r_fb_id) = 0;
VR: Initial Virtual Reality support - Milestone 1, Scene Inspection NOTE: While most of the milestone 1 goals are there, a few smaller features and improvements are still to be done. Big picture of this milestone: Initial, OpenXR-based virtual reality support for users and foundation for advanced use cases. Maniphest Task: https://developer.blender.org/T71347 The tasks contains more information about this milestone. To be clear: This is not a feature rich VR implementation, it's focused on the initial scene inspection use case. We intentionally focused on that, further features like controller support are part of the next milestone. - How to use? Instructions on how to use this are here: https://wiki.blender.org/wiki/User:Severin/GSoC-2019/How_to_Test These will be updated and moved to a more official place (likely the manual) soon. Currently Windows Mixed Reality and Oculus devices are usable. Valve/HTC headsets don't support the OpenXR standard yet and hence, do not work with this implementation. --------------- This is the C-side implementation of the features added for initial VR support as per milestone 1. A "VR Scene Inspection" Add-on will be committed separately, to expose the VR functionality in the UI. It also adds some further features for milestone 1, namely a landmarking system (stored view locations in the VR space) Main additions/features: * Support for rendering viewports to an HMD, with good performance. * Option to sync the VR view perspective with a fully interactive, regular 3D View (VR-Mirror). * Option to disable positional tracking. Keeps the current position (calculated based on the VR eye center pose) when enabled while a VR session is running. * Some regular viewport settings for the VR view * RNA/Python-API to query and set VR session state information. * WM-XR: Layer tying Ghost-XR to the Blender specific APIs/data * wmSurface API: drawable, non-window container (manages Ghost-OpenGL and GPU context) * DNA/RNA for management of VR session settings * `--debug-xr` and `--debug-xr-time` commandline options * Utility batch & config file for using the Oculus runtime on Windows. * Most VR data is runtime only. The exception is user settings which are saved to files (`XrSessionSettings`). * VR support can be disabled through the `WITH_XR_OPENXR` compiler flag. For architecture and code documentation, see https://wiki.blender.org/wiki/Source/Interface/XR. --------------- A few thank you's: * A huge shoutout to Ray Molenkamp for his help during the project - it would have not been that successful without him! * Sebastian Koenig and Simeon Conzendorf for testing and feedback! * The reviewers, especially Brecht Van Lommel! * Dalai Felinto for pushing and managing me to get this done ;) * The OpenXR working group for providing an open standard. I think we're the first bigger application to adopt OpenXR. Congratulations to them and ourselves :) This project started as a Google Summer of Code 2019 project - "Core Support of Virtual Reality Headsets through OpenXR" (see https://wiki.blender.org/wiki/User:Severin/GSoC-2019/). Some further information, including ideas for further improvements can be found in the final GSoC report: https://wiki.blender.org/wiki/User:Severin/GSoC-2019/Final_Report Differential Revisions: D6193, D7098 Reviewed by: Brecht Van Lommel, Jeroen Bakker
2020-03-17 19:20:55 +00:00
virtual GHOST_TSuccess swapBuffers() = 0;
#ifdef WITH_CXX_GUARDEDALLOC
MEM_CXX_CLASS_ALLOC_FUNCS("GHOST:GHOST_IContext")
#endif
};