blender/intern/opensubdiv/gpu_shader_opensubd_display.glsl

328 lines
7.6 KiB
Plaintext
Raw Normal View History

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2014 Blender Foundation.
* All rights reserved.
*
* Contributor(s): Sergey Sharybin
*
* ***** END GPL LICENSE BLOCK *****
*/
/* ***** Vertex shader ***** */
#extension GL_EXT_geometry_shader4 : enable
#extension GL_ARB_gpu_shader5 : enable
#extension GL_ARB_explicit_attrib_location : require
#extension GL_ARB_uniform_buffer_object : require
struct VertexData {
vec4 position;
vec3 normal;
vec2 uv;
};
#ifdef VERTEX_SHADER
in vec3 normal;
in vec4 position;
uniform mat4 modelViewMatrix;
uniform mat3 normalMatrix;
out block {
VertexData v;
} outpt;
void main()
{
outpt.v.position = modelViewMatrix * position;
outpt.v.normal = normalize(normalMatrix * normal);
}
#endif /* VERTEX_SHADER */
/* ***** geometry shader ***** */
#ifdef GEOMETRY_SHADER
#ifndef GLSL_COMPAT_WORKAROUND
layout(lines_adjacency) in;
#ifndef WIREFRAME
layout(triangle_strip, max_vertices = 4) out;
#else
layout(line_strip, max_vertices = 8) out;
#endif
#endif
uniform mat4 modelViewMatrix;
uniform mat4 projectionMatrix;
uniform int PrimitiveIdBase;
uniform int osd_fvar_count;
uniform int osd_active_uv_offset;
in block {
VertexData v;
} inpt[4];
#define INTERP_FACE_VARYING_2(result, fvarOffset, tessCoord) \
{ \
vec2 v[4]; \
int primOffset = (gl_PrimitiveID + PrimitiveIdBase) * 4; \
for (int i = 0; i < 4; ++i) { \
int index = (primOffset + i) * osd_fvar_count + fvarOffset; \
v[i] = vec2(texelFetch(FVarDataBuffer, index).s, \
texelFetch(FVarDataBuffer, index + 1).s); \
} \
result = mix(mix(v[0], v[1], tessCoord.s), \
mix(v[3], v[2], tessCoord.s), \
tessCoord.t); \
}
uniform samplerBuffer FVarDataBuffer;
out block {
VertexData v;
} outpt;
#ifdef FLAT_SHADING
void emit(int index, vec3 normal)
{
outpt.v.position = inpt[index].v.position;
outpt.v.normal = normal;
/* TODO(sergey): Only uniform subdivisions atm. */
vec2 quadst[4] = vec2[](vec2(0,0), vec2(1,0), vec2(1,1), vec2(0,1));
vec2 st = quadst[index];
INTERP_FACE_VARYING_2(outpt.v.uv, osd_active_uv_offset, st);
gl_Position = projectionMatrix * inpt[index].v.position;
EmitVertex();
}
# ifdef WIREFRAME
void emit_edge(int v0, int v1, vec3 normal)
{
emit(v0, normal);
emit(v1, normal);
}
# endif
#else
void emit(int index)
{
outpt.v.position = inpt[index].v.position;
outpt.v.normal = inpt[index].v.normal;
/* TODO(sergey): Only uniform subdivisions atm. */
vec2 quadst[4] = vec2[](vec2(0,0), vec2(1,0), vec2(1,1), vec2(0,1));
vec2 st = quadst[index];
INTERP_FACE_VARYING_2(outpt.v.uv, osd_active_uv_offset, st);
gl_Position = projectionMatrix * inpt[index].v.position;
EmitVertex();
}
# ifdef WIREFRAME
void emit_edge(int v0, int v1)
{
emit(v0);
emit(v1);
}
# endif
#endif
void main()
{
gl_PrimitiveID = gl_PrimitiveIDIn;
#ifdef FLAT_SHADING
vec3 A = (inpt[0].v.position - inpt[1].v.position).xyz;
vec3 B = (inpt[3].v.position - inpt[1].v.position).xyz;
vec3 flat_normal = normalize(cross(B, A));
# ifndef WIREFRAME
emit(0, flat_normal);
emit(1, flat_normal);
emit(3, flat_normal);
emit(2, flat_normal);
# else
emit_edge(0, 1, flat_normal);
emit_edge(1, 2, flat_normal);
emit_edge(2, 3, flat_normal);
emit_edge(3, 0, flat_normal);
# endif
#else
# ifndef WIREFRAME
emit(0);
emit(1);
emit(3);
emit(2);
# else
emit_edge(0, 1);
emit_edge(1, 2);
emit_edge(2, 3);
emit_edge(3, 0);
# endif
#endif
EndPrimitive();
}
#endif /* GEOMETRY_SHADER */
/* ***** Fragment shader ***** */
#ifdef FRAGMENT_SHADER
#define MAX_LIGHTS 8
#define NUM_SOLID_LIGHTS 3
struct LightSource {
vec4 position;
vec4 ambient;
vec4 diffuse;
vec4 specular;
vec4 spotDirection;
float constantAttenuation;
float linearAttenuation;
float quadraticAttenuation;
float spotCutoff;
float spotExponent;
float spotCosCutoff;
};
uniform Lighting {
LightSource lightSource[MAX_LIGHTS];
int num_enabled_lights;
};
uniform vec4 diffuse;
uniform vec4 specular;
uniform float shininess;
uniform sampler2D texture_buffer;
in block {
VertexData v;
} inpt;
void main()
{
#ifdef WIREFRAME
gl_FragColor = diffuse;
#else
vec3 N = inpt.v.normal;
if (!gl_FrontFacing)
N = -N;
/* Compute diffuse and specular lighting. */
vec3 L_diffuse = vec3(0.0);
vec3 L_specular = vec3(0.0);
#ifndef USE_COLOR_MATERIAL
/* Assume NUM_SOLID_LIGHTS directional lights. */
for (int i = 0; i < NUM_SOLID_LIGHTS; i++) {
vec4 Plight = lightSource[i].position;
#ifdef USE_DIRECTIONAL_LIGHT
vec3 l = (Plight.w == 0.0)
? normalize(Plight.xyz)
: normalize(inpt.v.position.xyz);
#else /* USE_DIRECTIONAL_LIGHT */
/* TODO(sergey): We can normalize it outside of the shader. */
vec3 l = normalize(Plight.xyz);
#endif /* USE_DIRECTIONAL_LIGHT */
vec3 h = normalize(l + vec3(0, 0, 1));
float d = max(0.0, dot(N, l));
float s = pow(max(0.0, dot(N, h)), shininess);
L_diffuse += d * lightSource[i].diffuse.rgb;
L_specular += s * lightSource[i].specular.rgb;
}
#else /* USE_COLOR_MATERIAL */
vec3 varying_position = inpt.v.position.xyz;
vec3 V = (gl_ProjectionMatrix[3][3] == 0.0) ?
normalize(varying_position): vec3(0.0, 0.0, -1.0);
for (int i = 0; i < num_enabled_lights; i++) {
/* todo: this is a slow check for disabled lights */
if (lightSource[i].specular.a == 0.0)
continue;
float intensity = 1.0;
vec3 light_direction;
if (lightSource[i].position.w == 0.0) {
/* directional light */
light_direction = lightSource[i].position.xyz;
}
else {
/* point light */
vec3 d = lightSource[i].position.xyz - varying_position;
light_direction = normalize(d);
/* spot light cone */
if (lightSource[i].spotCutoff < 90.0) {
float cosine = max(dot(light_direction,
-lightSource[i].spotDirection.xyz),
0.0);
intensity = pow(cosine, lightSource[i].spotExponent);
intensity *= step(lightSource[i].spotCosCutoff, cosine);
}
/* falloff */
float distance = length(d);
intensity /= lightSource[i].constantAttenuation +
lightSource[i].linearAttenuation * distance +
lightSource[i].quadraticAttenuation * distance * distance;
}
/* diffuse light */
vec3 light_diffuse = lightSource[i].diffuse.rgb;
float diffuse_bsdf = max(dot(N, light_direction), 0.0);
L_diffuse += light_diffuse*diffuse_bsdf*intensity;
/* specular light */
vec3 light_specular = lightSource[i].specular.rgb;
vec3 H = normalize(light_direction - V);
float specular_bsdf = pow(max(dot(N, H), 0.0),
gl_FrontMaterial.shininess);
L_specular += light_specular*specular_bsdf * intensity;
}
#endif /* USE_COLOR_MATERIAL */
/* Compute diffuse color. */
#ifdef USE_TEXTURE_2D
L_diffuse *= texture2D(texture_buffer, inpt.v.uv).rgb;
#else
L_diffuse *= diffuse.rgb;
#endif
/* Sum lighting. */
vec3 L = L_diffuse;
if (shininess != 0) {
L += L_specular * specular.rgb;
}
/* Write out fragment color. */
gl_FragColor = vec4(L, diffuse.a);
#endif
}
#endif // FRAGMENT_SHADER