blender/source/gameengine/Expressions/BoolValue.cpp

215 lines
3.9 KiB
C++
Raw Normal View History

2002-10-12 11:37:38 +00:00
// BoolValue.cpp: implementation of the CBoolValue class.
/*
* Copyright (c) 1996-2000 Erwin Coumans <coockie@acm.org>
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Erwin Coumans makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*/
#include "BoolValue.h"
#include "StringValue.h"
#include "ErrorValue.h"
#include "VoidValue.h"
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
2002-10-12 11:37:38 +00:00
//////////////////////////////////////////////////////////////////////
// Construction/Destruction
//////////////////////////////////////////////////////////////////////
BGE performance, 4th round: logic This commit extends the technique of dynamic linked list to the logic system to eliminate as much as possible temporaries, map lookup or full scan. The logic engine is now free of memory allocation, which is an important stability factor. The overhead of the logic system is reduced by a factor between 3 and 6 depending on the logic setup. This is the speed-up you can expect on a logic setup using simple bricks. Heavy bricks like python controllers and ray sensors will still take about the same time to execute so the speed up will be less important. The core of the logic engine has been much reworked but the functionality is still the same except for one thing: the priority system on the execution of controllers. The exact same remark applies to actuators but I'll explain for controllers only: Previously, it was possible, with the "executePriority" attribute to set a controller to run before any other controllers in the game. Other than that, the sequential execution of controllers, as defined in Blender was guaranteed by default. With the new system, the sequential execution of controllers is still guaranteed but only within the controllers of one object. the user can no longer set a controller to run before any other controllers in the game. The "executePriority" attribute controls the execution of controllers within one object. The priority is a small number starting from 0 for the first controller and incrementing for each controller. If this missing feature is a must, a special method can be implemented to set a controller to run before all other controllers. Other improvements: - Systematic use of reference in parameter passing to avoid unnecessary data copy - Use pre increment in iterator instead of post increment to avoid temporary allocation - Use const char* instead of STR_String whenever possible to avoid temporary allocation - Fix reference counting bugs (memory leak) - Fix a crash in certain cases of state switching and object deletion - Minor speed up in property sensor - Removal of objects during the game is a lot faster
2009-05-10 20:53:58 +00:00
const STR_String CBoolValue::sTrueString = "TRUE";
const STR_String CBoolValue::sFalseString = "FALSE";
2002-10-12 11:37:38 +00:00
CBoolValue::CBoolValue()
/*
pre: false
effect: constructs a new CBoolValue
*/
{
trace("Bool constructor error");
}
CBoolValue::CBoolValue(bool inBool)
: m_bool(inBool)
{
} // Constructs a new CBoolValue containing <inBool>
BGE performance, 4th round: logic This commit extends the technique of dynamic linked list to the logic system to eliminate as much as possible temporaries, map lookup or full scan. The logic engine is now free of memory allocation, which is an important stability factor. The overhead of the logic system is reduced by a factor between 3 and 6 depending on the logic setup. This is the speed-up you can expect on a logic setup using simple bricks. Heavy bricks like python controllers and ray sensors will still take about the same time to execute so the speed up will be less important. The core of the logic engine has been much reworked but the functionality is still the same except for one thing: the priority system on the execution of controllers. The exact same remark applies to actuators but I'll explain for controllers only: Previously, it was possible, with the "executePriority" attribute to set a controller to run before any other controllers in the game. Other than that, the sequential execution of controllers, as defined in Blender was guaranteed by default. With the new system, the sequential execution of controllers is still guaranteed but only within the controllers of one object. the user can no longer set a controller to run before any other controllers in the game. The "executePriority" attribute controls the execution of controllers within one object. The priority is a small number starting from 0 for the first controller and incrementing for each controller. If this missing feature is a must, a special method can be implemented to set a controller to run before all other controllers. Other improvements: - Systematic use of reference in parameter passing to avoid unnecessary data copy - Use pre increment in iterator instead of post increment to avoid temporary allocation - Use const char* instead of STR_String whenever possible to avoid temporary allocation - Fix reference counting bugs (memory leak) - Fix a crash in certain cases of state switching and object deletion - Minor speed up in property sensor - Removal of objects during the game is a lot faster
2009-05-10 20:53:58 +00:00
CBoolValue::CBoolValue(bool innie,const char *name,AllocationTYPE alloctype)
2002-10-12 11:37:38 +00:00
{
m_bool = innie;
SetName(name);
if (alloctype == CValue::STACKVALUE)
CValue::DisableRefCount();
}
void CBoolValue::SetValue(CValue* newval)
{
m_bool = (newval->GetNumber() != 0);
SetModified(true);
}
CValue* CBoolValue::Calc(VALUE_OPERATOR op, CValue *val)
/*
pre:
ret: a new object containing the result of applying operator op to this
object and val
*/
{
switch (op)
{
case VALUE_POS_OPERATOR:
case VALUE_NEG_OPERATOR:
{
return new CErrorValue (op2str(op) + GetText());
break;
}
case VALUE_NOT_OPERATOR:
{
return new CBoolValue (!m_bool);
break;
}
default:
{
return val->CalcFinal(VALUE_BOOL_TYPE, op, this);
break;
}
}
}
CValue* CBoolValue::CalcFinal(VALUE_DATA_TYPE dtype, VALUE_OPERATOR op, CValue *val)
/*
pre: the type of val is dtype
ret: a new object containing the result of applying operator op to val and
this object
*/
{
CValue *ret;
switch(dtype)
{
case VALUE_EMPTY_TYPE:
case VALUE_BOOL_TYPE:
{
switch(op)
{
case VALUE_AND_OPERATOR:
{
ret = new CBoolValue (((CBoolValue *) val)->GetBool() && m_bool);
break;
}
case VALUE_OR_OPERATOR:
{
ret = new CBoolValue (((CBoolValue *) val)->GetBool() || m_bool);
break;
}
case VALUE_EQL_OPERATOR:
{
ret = new CBoolValue (((CBoolValue *) val)->GetBool() == m_bool);
break;
}
case VALUE_NEQ_OPERATOR:
{
ret = new CBoolValue (((CBoolValue *) val)->GetBool() != m_bool);
break;
}
case VALUE_NOT_OPERATOR:
{
return new CBoolValue (!m_bool);
break;
}
default:
{
ret = new CErrorValue(val->GetText() + op2str(op) +
"[operator not allowed on booleans]");
break;
}
}
break;
}
case VALUE_STRING_TYPE:
{
switch(op)
{
case VALUE_ADD_OPERATOR:
{
ret = new CStringValue(val->GetText() + GetText(),"");
break;
}
default:
{
ret = new CErrorValue(val->GetText() + op2str(op) + "[Only + allowed on boolean and string]");
break;
}
}
break;
}
default:
ret = new CErrorValue("[type mismatch]" + op2str(op) + GetText());
}
return ret;
}
bool CBoolValue::GetBool()
/*
pre:
ret: the bool stored in the object
*/
{
return m_bool;
}
double CBoolValue::GetNumber()
2002-10-12 11:37:38 +00:00
{
return (double)m_bool;
2002-10-12 11:37:38 +00:00
}
const STR_String& CBoolValue::GetText()
{
return m_bool ? sTrueString : sFalseString;
}
CValue* CBoolValue::GetReplica()
{
CBoolValue* replica = new CBoolValue(*this);
replica->ProcessReplica();
2002-10-12 11:37:38 +00:00
return replica;
}
PyObject* CBoolValue::ConvertValueToPython()
{
return PyInt_FromLong(m_bool != 0);
}