blender/source/gameengine/Ketsji/KX_BlenderMaterial.cpp

759 lines
16 KiB
C++
Raw Normal View History

// ------------------------------------
// ...
// ------------------------------------
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#ifdef WIN32
#include <windows.h>
#endif // WIN32
#ifdef __APPLE__
#define GL_GLEXT_LEGACY 1
#include <OpenGL/gl.h>
#include <OpenGL/glu.h>
#else
#include <GL/gl.h>
#include <GL/glu.h>
#endif
#include "KX_BlenderMaterial.h"
#include "BL_Material.h"
#include "KX_Scene.h"
#include "KX_Light.h"
#include "KX_GameObject.h"
#include "KX_MeshProxy.h"
#include "MT_Vector3.h"
#include "MT_Vector4.h"
#include "MT_Matrix4x4.h"
#include "RAS_MeshObject.h"
#include "RAS_IRasterizer.h"
#include "RAS_OpenGLRasterizer/RAS_GLExtensionManager.h"
#include "RAS_OpenGLRasterizer/ARB_multitexture.h"
extern "C" {
#include "BDR_drawmesh.h"
}
#include "STR_HashedString.h"
// ------------------------------------
#include "DNA_object_types.h"
#include "DNA_material_types.h"
#include "DNA_image_types.h"
#include "DNA_mesh_types.h"
#include "BKE_mesh.h"
// ------------------------------------
using namespace bgl;
#define spit(x) std::cout << x << std::endl;
//static PyObject *gTextureDict = 0;
KX_BlenderMaterial::KX_BlenderMaterial(
KX_Scene *scene,
BL_Material *data,
bool skin,
int lightlayer,
void *clientobject,
PyTypeObject *T
)
: PyObjectPlus(T),
RAS_IPolyMaterial(
STR_String( data->texname[0] ),
STR_String( data->matname ), // needed for physics!
data->tile,
data->tilexrep[0],
data->tileyrep[0],
data->mode,
((data->ras_mode &TRANSP)!=0),
((data->ras_mode &ZSORT)!=0),
lightlayer,
((data->ras_mode &TRIANGLE)!=0),
clientobject
),
mMaterial(data),
mShader(0),
mScene(scene),
mUserDefBlend(0),
mModified(0),
mPass(0)
{
// --------------------------------
// RAS_IPolyMaterial variables...
m_flag |=RAS_BLENDERMAT;
m_flag |=(mMaterial->IdMode>=ONETEX)?RAS_MULTITEX:0;
m_flag |=(mMaterial->ras_mode & USE_LIGHT)!=0?RAS_MULTILIGHT:0;
m_flag |=(mMaterial->ras_mode &ALPHA_TEST)!=0?RAS_FORCEALPHA:0;
// figure max
int enabled = mMaterial->num_enabled;
int max = BL_Texture::GetMaxUnits();
mMaterial->num_enabled = enabled>=max?max:enabled;
// base class
m_enabled = mMaterial->num_enabled;
// test the sum of the various modes for equality
// so we can ether accept or reject this material
// as being equal, this is rather important to
// prevent material bleeding
for(int i=0; i<mMaterial->num_enabled; i++) {
m_multimode +=
( mMaterial->flag[i] +
mMaterial->blend_mode[i]
);
}
m_multimode += mMaterial->IdMode+mMaterial->ras_mode;
}
KX_BlenderMaterial::~KX_BlenderMaterial()
{
// cleanup work
OnExit();
}
TFace* KX_BlenderMaterial::GetTFace(void) const
{
// fonts on polys
MT_assert(mMaterial->tface);
return mMaterial->tface;
}
void KX_BlenderMaterial::OnConstruction()
{
// for each unique material...
int i;
for(i=0; i<mMaterial->num_enabled; i++) {
BL_Texture::ActivateUnit(i);
if( mMaterial->mapping[i].mapping & USEENV ) {
if(!RAS_EXT_support._ARB_texture_cube_map) {
spit("CubeMap textures not supported");
continue;
}
if(!mTextures[i].InitCubeMap(i, mMaterial->cubemap[i] ) )
spit("unable to initialize image("<<i<<") in "<<
mMaterial->matname<< ", image will not be available");
}
else {
if( mMaterial->img[i] ) {
if( ! mTextures[i].InitFromImage(i, mMaterial->img[i], (mMaterial->flag[i] &MIPMAP)!=0 ))
spit("unable to initialize image("<<i<<") in "<<
mMaterial->matname<< ", image will not be available");
}
}
}
mBlendFunc[0] =0;
mBlendFunc[1] =0;
}
void KX_BlenderMaterial::OnExit()
{
if( mShader ) {
//note, the shader here is allocated, per unique material
//and this function is called per face
mShader->SetProg(0);
delete mShader;
mShader = 0;
}
BL_Texture::ActivateFirst();
for(int i=0; i<mMaterial->num_enabled; i++) {
BL_Texture::ActivateUnit(i);
mTextures[i].DeleteTex();
mTextures[i].DisableUnit();
}
if( mMaterial->tface )
set_tpage(mMaterial->tface);
}
void KX_BlenderMaterial::setShaderData( bool enable, RAS_IRasterizer *ras)
{
MT_assert(RAS_EXT_support._ARB_shader_objects && mShader);
int i;
if( !enable || !mShader->Ok() ) {
// frame cleanup.
mShader->SetProg(false);
BL_Texture::DisableAllTextures();
return;
}
BL_Texture::DisableAllTextures();
mShader->SetProg(true);
BL_Texture::ActivateFirst();
mShader->ApplyShader();
// for each enabled unit
for(i=0; i<mMaterial->num_enabled; i++) {
if(!mTextures[i].Ok()) continue;
mTextures[i].ActivateTexture();
mTextures[0].SetMapping(mMaterial->mapping[i].mapping);
}
if(!mUserDefBlend) {
setDefaultBlending();
}
else {
// tested to be valid enums
glEnable(GL_BLEND);
glBlendFunc(mBlendFunc[0], mBlendFunc[1]);
}
}
void KX_BlenderMaterial::setTexData( bool enable, RAS_IRasterizer *ras)
{
if(RAS_EXT_support._ARB_shader_objects && mShader)
mShader->SetProg(false);
BL_Texture::DisableAllTextures();
if( !enable )
return;
BL_Texture::ActivateFirst();
if( mMaterial->IdMode == DEFAULT_BLENDER ) {
setDefaultBlending();
return;
}
if( mMaterial->IdMode == TEXFACE ) {
// no material connected to the object
if( mTextures[0].Ok() ) {
mTextures[0].ActivateTexture();
mTextures[0].setTexEnv(0, true);
mTextures[0].SetMapping(mMaterial->mapping[0].mapping);
setDefaultBlending();
}
return;
}
int mode = 0,i=0;
for(i=0; (i<mMaterial->num_enabled); i++) {
if( !mTextures[i].Ok() ) continue;
mTextures[i].ActivateTexture();
mTextures[i].setTexEnv(mMaterial);
mode = mMaterial->mapping[i].mapping;
if(mode &USEOBJ)
setObjectMatrixData(i, ras);
else
mTextures[i].SetMapping(mode);
if(!(mode &USEOBJ))
setTexMatrixData( i );
}
if(!mUserDefBlend) {
setDefaultBlending();
}
else {
glEnable(GL_BLEND);
glBlendFunc(mBlendFunc[0], mBlendFunc[1]);
}
}
void
KX_BlenderMaterial::ActivatShaders(
RAS_IRasterizer* rasty,
TCachingInfo& cachingInfo)const
{
KX_BlenderMaterial *tmp = const_cast<KX_BlenderMaterial*>(this);
// reset...
if(tmp->mMaterial->IsShared())
cachingInfo =0;
if (GetCachingInfo() != cachingInfo) {
if (!cachingInfo)
tmp->setShaderData( false, rasty);
cachingInfo = GetCachingInfo();
if (rasty->GetDrawingMode() == RAS_IRasterizer::KX_TEXTURED ) {
tmp->setShaderData( true, rasty);
rasty->EnableTextures(true);
}
else {
tmp->setShaderData( false, rasty);
rasty->EnableTextures(false);
}
if(mMaterial->mode & RAS_IRasterizer::KX_TWOSIDE)
rasty->SetCullFace(false);
else
rasty->SetCullFace(true);
if (((mMaterial->ras_mode &WIRE)!=0) || mMaterial->mode & RAS_IRasterizer::KX_LINES)
{
if((mMaterial->ras_mode &WIRE)!=0)
rasty->SetCullFace(false);
rasty->SetLines(true);
}
else
rasty->SetLines(false);
}
ActivatGLMaterials(rasty);
ActivateTexGen(rasty);
}
void
KX_BlenderMaterial::ActivateMat(
RAS_IRasterizer* rasty,
TCachingInfo& cachingInfo
)const
{
KX_BlenderMaterial *tmp = const_cast<KX_BlenderMaterial*>(this);
if (GetCachingInfo() != cachingInfo) {
if (!cachingInfo)
tmp->setTexData( false,rasty );
cachingInfo = GetCachingInfo();
if (rasty->GetDrawingMode() == RAS_IRasterizer::KX_TEXTURED) {
tmp->setTexData( true,rasty );
rasty->EnableTextures(true);
}
else{
tmp->setTexData( false,rasty);
rasty->EnableTextures(false);
}
if(mMaterial->mode & RAS_IRasterizer::KX_TWOSIDE)
rasty->SetCullFace(false);
else
rasty->SetCullFace(true);
if (((mMaterial->ras_mode &WIRE)!=0) || mMaterial->mode & RAS_IRasterizer::KX_LINES)
{
if((mMaterial->ras_mode &WIRE)!=0)
rasty->SetCullFace(false);
rasty->SetLines(true);
}
else
rasty->SetLines(false);
}
ActivatGLMaterials(rasty);
ActivateTexGen(rasty);
}
bool
KX_BlenderMaterial::Activate(
RAS_IRasterizer* rasty,
TCachingInfo& cachingInfo
)const
{
bool dopass = false;
if( RAS_EXT_support._ARB_shader_objects && ( mShader && mShader->Ok() ) ) {
if( (mPass++) < mShader->getNumPass() ) {
ActivatShaders(rasty, cachingInfo);
dopass = true;
return dopass;
}
else {
mShader->SetProg(false);
mPass = 0;
dopass = false;
return dopass;
}
}
else {
switch (mPass++)
{
case 0:
ActivateMat(rasty, cachingInfo);
dopass = true;
break;
default:
mPass = 0;
dopass = false;
break;
}
}
return dopass;
}
void KX_BlenderMaterial::ActivateMeshSlot(const KX_MeshSlot & ms, RAS_IRasterizer* rasty) const
{
if(mShader && RAS_EXT_support._ARB_shader_objects)
mShader->Update(ms, rasty);
}
void KX_BlenderMaterial::ActivatGLMaterials( RAS_IRasterizer* rasty )const
{
rasty->SetSpecularity(
mMaterial->speccolor[0]*mMaterial->spec_f,
mMaterial->speccolor[1]*mMaterial->spec_f,
mMaterial->speccolor[2]*mMaterial->spec_f,
mMaterial->spec_f
);
rasty->SetShinyness( mMaterial->hard );
rasty->SetDiffuse(
mMaterial->matcolor[0]*mMaterial->ref+mMaterial->emit,
mMaterial->matcolor[1]*mMaterial->ref+mMaterial->emit,
mMaterial->matcolor[2]*mMaterial->ref+mMaterial->emit,
1.0f);
rasty->SetEmissive(
mMaterial->matcolor[0]*mMaterial->emit,
mMaterial->matcolor[1]*mMaterial->emit,
mMaterial->matcolor[2]*mMaterial->emit,
1.0 );
rasty->SetAmbient(mMaterial->amb);
if (mMaterial->material)
rasty->SetPolygonOffset(-mMaterial->material->zoffs, 0.0);
}
void KX_BlenderMaterial::ActivateTexGen(RAS_IRasterizer *ras) const
{
if(mShader && RAS_EXT_support._ARB_shader_objects)
if(mShader->GetAttribute() == BL_Shader::SHD_TANGENT)
ras->SetAttrib(RAS_IRasterizer::RAS_TEXTANGENT);
for(int i=0; i<mMaterial->num_enabled; i++) {
int mode = mMaterial->mapping[i].mapping;
if( mode &(USEREFL|USEOBJ))
ras->SetTexCoords(RAS_IRasterizer::RAS_TEXCO_GEN, i);
else if(mode &USEORCO)
ras->SetTexCoords(RAS_IRasterizer::RAS_TEXCO_ORCO, i);
else if(mode &USENORM)
ras->SetTexCoords(RAS_IRasterizer::RAS_TEXCO_NORM, i);
else if(mode &USEUV)
ras->SetTexCoords(RAS_IRasterizer::RAS_TEXCO_UV1, i);
else if(mode &USETANG)
ras->SetTexCoords(RAS_IRasterizer::RAS_TEXTANGENT, i);
else
ras->SetTexCoords(RAS_IRasterizer::RAS_TEXCO_DISABLE, i);
}
}
bool KX_BlenderMaterial::setDefaultBlending()
{
if( mMaterial->transp &TF_ADD) {
glEnable(GL_BLEND);
glBlendFunc(GL_ONE, GL_ONE);
return true;
}
if( mMaterial->transp & TF_ALPHA ) {
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
return true;
}
glDisable(GL_BLEND);
return false;
}
void KX_BlenderMaterial::setTexMatrixData(int i)
{
glMatrixMode(GL_TEXTURE);
glLoadIdentity();
#ifdef GL_ARB_texture_cube_map
if( RAS_EXT_support._ARB_texture_cube_map &&
mTextures[i].GetTextureType() == GL_TEXTURE_CUBE_MAP_ARB &&
mMaterial->mapping[i].mapping & USEREFL) {
glScalef(
mMaterial->mapping[i].scale[0],
-mMaterial->mapping[i].scale[1],
-mMaterial->mapping[i].scale[2]
);
}
else
#endif
{
glScalef(
mMaterial->mapping[i].scale[0],
mMaterial->mapping[i].scale[1],
mMaterial->mapping[i].scale[2]
);
}
glTranslatef(
mMaterial->mapping[i].offsets[0],
mMaterial->mapping[i].offsets[1],
mMaterial->mapping[i].offsets[2]
);
glMatrixMode(GL_MODELVIEW);
}
static void GetProjPlane(BL_Material *mat, int index,int num, float*param)
{
param[0]=param[1]=param[2]=param[3]=0.f;
if( mat->mapping[index].projplane[num] == PROJX )
param[0] = 1.f;
else if( mat->mapping[index].projplane[num] == PROJY )
param[1] = 1.f;
else if( mat->mapping[index].projplane[num] == PROJZ)
param[2] = 1.f;
}
void KX_BlenderMaterial::setObjectMatrixData(int i, RAS_IRasterizer *ras)
{
KX_GameObject *obj =
(KX_GameObject*)
mScene->GetObjectList()->FindValue(mMaterial->mapping[i].objconame);
if(!obj) return;
glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_EYE_LINEAR );
glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_EYE_LINEAR );
glTexGeni(GL_R, GL_TEXTURE_GEN_MODE, GL_EYE_LINEAR );
GLenum plane = GL_EYE_PLANE;
// figure plane gen
float proj[4]= {0.f,0.f,0.f,0.f};
GetProjPlane(mMaterial, i, 0, proj);
glTexGenfv(GL_S, plane, proj);
GetProjPlane(mMaterial, i, 1, proj);
glTexGenfv(GL_T, plane, proj);
GetProjPlane(mMaterial, i, 2, proj);
glTexGenfv(GL_R, plane, proj);
glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);
glEnable(GL_TEXTURE_GEN_R);
MT_Matrix4x4 mvmat;
ras->GetViewMatrix(mvmat);
glMatrixMode(GL_TEXTURE);
glLoadIdentity();
glScalef(
mMaterial->mapping[i].scale[0],
mMaterial->mapping[i].scale[1],
mMaterial->mapping[i].scale[2]
);
MT_Point3 pos = obj->NodeGetWorldPosition();
MT_Vector4 matmul = MT_Vector4(pos[0], pos[1], pos[2], 1.f);
MT_Vector4 t = mvmat*matmul;
glTranslatef( (float)(-t[0]), (float)(-t[1]), (float)(-t[2]) );
glMatrixMode(GL_MODELVIEW);
}
// ------------------------------------
void KX_BlenderMaterial::UpdateIPO(
MT_Vector4 rgba,
MT_Vector3 specrgb,
MT_Scalar hard,
MT_Scalar spec,
MT_Scalar ref,
MT_Scalar emit,
MT_Scalar alpha
)
{
// only works one deep now
mMaterial->speccolor[0] = (float)(specrgb)[0];
mMaterial->speccolor[1] = (float)(specrgb)[1];
mMaterial->speccolor[2] = (float)(specrgb)[2];
mMaterial->matcolor[0] = (float)(rgba[0]);
mMaterial->matcolor[1] = (float)(rgba[1]);
mMaterial->matcolor[2] = (float)(rgba[2]);
mMaterial->alpha = (float)(alpha);
mMaterial->hard = (float)(hard);
mMaterial->emit = (float)(emit);
mMaterial->spec_f = (float)(spec);
}
PyMethodDef KX_BlenderMaterial::Methods[] =
{
KX_PYMETHODTABLE( KX_BlenderMaterial, getShader ),
KX_PYMETHODTABLE( KX_BlenderMaterial, getMaterialIndex ),
KX_PYMETHODTABLE( KX_BlenderMaterial, setBlending ),
{NULL,NULL} //Sentinel
};
PyTypeObject KX_BlenderMaterial::Type = {
PyObject_HEAD_INIT(&PyType_Type)
0,
"KX_BlenderMaterial",
sizeof(KX_BlenderMaterial),
0,
PyDestructor,
0,
__getattr,
__setattr,
0,
__repr,
0
};
PyParentObject KX_BlenderMaterial::Parents[] = {
&PyObjectPlus::Type,
&KX_BlenderMaterial::Type,
NULL
};
PyObject* KX_BlenderMaterial::_getattr(const STR_String& attr)
{
_getattr_up(PyObjectPlus);
}
int KX_BlenderMaterial::_setattr(const STR_String& attr, PyObject *pyvalue)
{
return PyObjectPlus::_setattr(attr, pyvalue);
}
KX_PYMETHODDEF_DOC( KX_BlenderMaterial, getShader , "getShader()")
{
#ifdef GL_ARB_fragment_shader
if( !RAS_EXT_support._ARB_fragment_shader) {
if(!mModified)
spit("Fragment shaders not supported");
mModified = true;
Py_Return;
}
#endif
#ifdef GL_ARB_vertex_shader
if( !RAS_EXT_support._ARB_vertex_shader) {
if(!mModified)
spit("Vertex shaders not supported");
mModified = true;
Py_Return;
}
#endif
#ifdef GL_ARB_shader_objects
if(!RAS_EXT_support._ARB_shader_objects) {
if(!mModified)
spit("GLSL not supported");
mModified = true;
Py_Return;
}
else {
// returns Py_None on error
// the calling script will need to check
if(!mShader && !mModified) {
mShader = new BL_Shader();
mModified = true;
}
if(mShader && !mShader->GetError()) {
mMaterial->SetSharedMaterial(true);
Py_INCREF(mShader);
return mShader;
}else
{
// decref all references to the object
// then delete it!
// We will then go back to fixed functionality
// for this material
if(mShader) {
if(mShader->ob_refcnt > 1) {
Py_DECREF(mShader);
}
else {
delete mShader;
mShader=0;
}
}
}
Py_Return;
}
PyErr_Format(PyExc_ValueError, "GLSL Error");
return NULL;
#else
Py_Return;
#endif//GL_ARB_shader_objects
}
KX_PYMETHODDEF_DOC( KX_BlenderMaterial, getMaterialIndex, "getMaterialIndex()")
{
return PyInt_FromLong( mMaterial->material_index );
}
KX_PYMETHODDEF_DOC( KX_BlenderMaterial, getTexture, "getTexture( index )" )
{
// TODO: enable python switching
return NULL;
}
KX_PYMETHODDEF_DOC( KX_BlenderMaterial, setTexture , "setTexture( index, tex)")
{
// TODO: enable python switching
return NULL;
}
static unsigned int GL_array[11] = {
GL_ZERO,
GL_ONE,
GL_SRC_COLOR,
GL_ONE_MINUS_SRC_COLOR,
GL_DST_COLOR,
GL_ONE_MINUS_DST_COLOR,
GL_SRC_ALPHA,
GL_ONE_MINUS_SRC_ALPHA,
GL_DST_ALPHA,
GL_ONE_MINUS_DST_ALPHA,
GL_SRC_ALPHA_SATURATE
};
KX_PYMETHODDEF_DOC( KX_BlenderMaterial, setBlending , "setBlending( GameLogic.src, GameLogic.dest)")
{
unsigned int b[2];
if(PyArg_ParseTuple(args, "ii", &b[0], &b[1]))
{
bool value_found[2] = {false, false};
for(int i=0; i<11; i++)
{
if(b[0] == GL_array[i]) {
value_found[0] = true;
mBlendFunc[0] = b[0];
}
if(b[1] == GL_array[i]) {
value_found[1] = true;
mBlendFunc[1] = b[1];
}
if(value_found[0] && value_found[1]) break;
}
if(!value_found[0] || !value_found[1]) {
PyErr_Format(PyExc_ValueError, "invalid enum.");
return NULL;
}
mUserDefBlend = true;
Py_Return;
}
return NULL;
}