blender/intern/cycles/render/tile.cpp

221 lines
5.6 KiB
C++
Raw Normal View History

/*
* Copyright 2011, Blender Foundation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "tile.h"
#include "util_algorithm.h"
#include "util_types.h"
CCL_NAMESPACE_BEGIN
TileManager::TileManager(bool progressive_, int num_samples_, int2 tile_size_, int start_resolution_,
int preserve_tile_device_, int num_devices_)
{
progressive = progressive_;
tile_size = tile_size_;
start_resolution = start_resolution_;
num_devices = num_devices_;
preserve_tile_device = preserve_tile_device_;
BufferParams buffer_params;
reset(buffer_params, 0);
}
TileManager::~TileManager()
{
}
void TileManager::reset(BufferParams& params_, int num_samples_)
{
params = params_;
int divider = 1;
int w = params.width, h = params.height;
if(start_resolution != INT_MAX) {
while(w*h > start_resolution*start_resolution) {
w = max(1, w/2);
h = max(1, h/2);
divider *= 2;
}
}
num_samples = num_samples_;
state.buffer = BufferParams();
state.sample = -1;
state.num_tiles = 0;
state.num_rendered_tiles = 0;
state.num_samples = 0;
state.resolution_divider = divider;
state.tiles.clear();
}
void TileManager::set_samples(int num_samples_)
{
num_samples = num_samples_;
}
void TileManager::set_tiles()
{
int resolution = state.resolution_divider;
int image_w = max(1, params.width/resolution);
int image_h = max(1, params.height/resolution);
int tile_index = 0;
state.tiles.clear();
int num_logical_devices = preserve_tile_device? num_devices: 1;
int num = min(image_h, num_logical_devices);
for(int device = 0; device < num; device++) {
int device_y = (image_h/num)*device;
int device_h = (device == num-1)? image_h - device*(image_h/num): image_h/num;
int tile_w = (tile_size.x >= image_w)? 1: (image_w + tile_size.x - 1)/tile_size.x;
int tile_h = (tile_size.y >= device_h)? 1: (device_h + tile_size.y - 1)/tile_size.y;
int sub_w = (image_w + tile_w - 1)/tile_w;
int sub_h = (device_h + tile_h - 1)/tile_h;
for(int tile_y = 0; tile_y < tile_h; tile_y++) {
for(int tile_x = 0; tile_x < tile_w; tile_x++, tile_index++) {
int x = tile_x * sub_w;
int y = tile_y * sub_h;
int w = (tile_x == tile_w-1)? image_w - x: sub_w;
int h = (tile_y == tile_h-1)? device_h - y: sub_h;
state.tiles.push_back(Tile(tile_index, x, y + device_y, w, h, device));
}
}
}
state.num_tiles = state.tiles.size();
state.buffer.width = image_w;
state.buffer.height = image_h;
state.buffer.full_x = params.full_x/resolution;
state.buffer.full_y = params.full_y/resolution;
state.buffer.full_width = max(1, params.full_width/resolution);
state.buffer.full_height = max(1, params.full_height/resolution);
}
list<Tile>::iterator TileManager::next_center_tile(int device)
{
list<Tile>::iterator iter, best = state.tiles.end();
int resolution = state.resolution_divider;
int image_w = max(1, params.width/resolution);
int image_h = max(1, params.height/resolution);
int logical_device = preserve_tile_device? device: 0;
int num_logical_devices = preserve_tile_device? num_devices: 1;
int num = min(image_h, num_logical_devices);
int device_y = (image_h / num) * logical_device;
int device_h = (logical_device == num - 1) ? image_h - device * (image_h / num) : image_h / num;
int64_t centx = image_w / 2, centy = device_y + device_h / 2, tot = 1;
int64_t mindist = (int64_t) image_w * (int64_t) device_h;
/* find center of rendering tiles, image center counts for 1 too */
for(iter = state.tiles.begin(); iter != state.tiles.end(); iter++) {
if(iter->rendering) {
Tile &cur_tile = *iter;
centx += cur_tile.x + cur_tile.w / 2;
centy += cur_tile.y + cur_tile.h / 2;
tot++;
}
}
centx /= tot;
centy /= tot;
/* closest of the non-rendering tiles */
for(iter = state.tiles.begin(); iter != state.tiles.end(); iter++) {
if(iter->device == logical_device && iter->rendering == false) {
Tile &cur_tile = *iter;
int64_t distx = centx - (cur_tile.x + cur_tile.w / 2);
int64_t disty = centy - (cur_tile.y + cur_tile.h / 2);
distx = (int64_t) sqrt((double)distx * distx + disty * disty);
if(distx < mindist) {
best = iter;
mindist = distx;
}
}
}
return best;
}
bool TileManager::next_tile(Tile& tile, int device)
{
list<Tile>::iterator tile_it;
tile_it = next_center_tile(device);
if(tile_it != state.tiles.end()) {
tile_it->rendering = true;
tile = *tile_it;
state.num_rendered_tiles++;
return true;
}
return false;
}
bool TileManager::done()
{
return (state.sample+state.num_samples >= num_samples && state.resolution_divider == 1);
}
bool TileManager::next()
{
if(done())
return false;
if(progressive && state.resolution_divider > 1) {
state.sample = 0;
state.resolution_divider /= 2;
state.num_samples = 1;
set_tiles();
}
else {
state.sample++;
if(progressive)
state.num_samples = 1;
else
state.num_samples = num_samples;
state.resolution_divider = 1;
set_tiles();
}
return true;
}
CCL_NAMESPACE_END