==python scripts==

updated version of bevel center by Loic Berthe
This commit is contained in:
Tom Musgrove 2006-01-16 21:42:53 +00:00
parent 2c9a4eb6ef
commit 4734a2db7e

@ -2,21 +2,21 @@
""" Registration info for Blender menus
Name: 'Bevel Center'
Blender: 236
Blender: 240
Group: 'Mesh'
Tip: 'Bevel selected vertices'
Tip: 'Bevel selected faces, edges, and vertices'
"""
__author__ = "Loic Berthe"
__author__ = "Loic BERTHE"
__url__ = ("blender", "elysiun")
__version__ = "1.0"
__version__ = "2.0"
__bpydoc__ = """\
This script implements vertex bevelling in Blender.
This script implements vertex and edges bevelling in Blender.
Usage:
Select the mesh you want to work on, enter Edit Mode and select the vertices
Select the mesh you want to work on, enter Edit Mode and select the edges
to bevel. Then run this script from the 3d View's Mesh->Scripts menu.
You can control the thickness of the bevel with the slider -- redefine the
@ -24,358 +24,295 @@ end points for bigger or smaller ranges. The thickness can be changed even
after applying the bevel, as many times as needed.
For an extra smoothing after or instead of direct bevel, set the level of
recursiveness and use the "Recursive" button.
recursiveness and use the "Recursive" button.
This "Recursive" Button, won't work in face select mode, unless you choose
"faces" in the select mode menu.
Notes:<br>
You can undo and redo your steps just like with normal mesh operations in
You can undo and redo your steps just like with normal mesh operations in
Blender.
"""
# $Id$
#
######################################################################
# Bevel Center v1 for Blender
#
# This script lets you bevel the selected vertices and control the
# Bevel Center v2.0 for Blender
# This script lets you bevel the selected vertices or edges and control the
# thickness of the bevel
#
# (c) 2004 Loïc Berthe (loic.berthe@lilotux.net)
# (c) 2004-2006 Loïc Berthe (loic+blender@lilotux.net)
# released under Blender Artistic License
#
######################################################################
import Blender
from Blender import NMesh, Window
from Blender import NMesh, Window, Scene
from Blender.Draw import *
from Blender.Mathutils import *
from Blender.BGL import *
from math import pi, sin, sqrt
######################################################################
# Functions to handle the global structures of the script NV, NE and NC
# which contain informations about the vertices, faces and corners to be
# created
# Functions to handle the global structures of the script NF, NE and NC
# which contain informations about faces and corners to be created
class Dir:
def __init__(self, co):
self.co = co
global E_selected
E_selected = NMesh.EdgeFlags['SELECT']
def add_to_NV(old,co,new):
dir = Dir(co)
#
if old in NV.keys():
NV[old][dir] = new
else:
NV[old] = {dir:new}
def is_in_NV(old,co):
if old in NV.keys():
for dir in NV[old]:
if dir.co == co : return NV[old][dir]
#
return False
def add_to_NE(old, new):
ind1 = old[0].index
ind2 = old[1].index
if ind1 > ind2:
new.reverse()
ind1,ind2 = ind2,ind1
id = str(ind1)+"_"+str(ind2)
if id in NE.keys():
[NE[id].append(v) for v in new]
else:
NE[id] = new
def add_to_NC(old,edge):
if old in NC.keys():
NC[old].append(edge)
else:
NC[old] = [edge]
######################################################################
# Geometric functions
def norm(vec):
n = sqrt(vec[0]**2+vec[1]**2+vec[2]**2)
return [vec[0]/n,vec[1]/n,vec[2]/n]
def parall_coord(old, dir):
co = old.co
vec = [0.0,0.0,0.0]
nco = [0.0,0.0,0.0]
#
if len(dir) == 1:
for i in range(3): vec[i] = dir[0].co[i] - co[i]
vec = norm(vec)
#
elif len(dir) == 2:
vec1 = [0.0,0.0,0.0]
vec2 = [0.0,0.0,0.0]
for i in range(3):
vec1[i] = dir[0].co[i] - co[i]
vec2[i] = dir[1].co[i] - co[i]
vec1 = norm(vec1)
vec2 = norm(vec2)
for i in range(3) : vec[i] = vec1[i]+vec2[i]
#
for i in range(3): nco[i] = co[i] + dist.val*vec[i]
return (nco,vec)
def get_vert(old, dir):
""" Look in NV if a vertex corresponding to the vertex old and the
direction dir already exists, and create one otherwise"""
(nco, vec) = parall_coord(old, dir)
v = is_in_NV(old,vec)
if v: return v
#
v = NMesh.Vert(nco[0],nco[1],nco[2])
v.sel = 1
def make_sel_vert(*co):
vi= NMesh.Vert(*co)
v.sel = 1
me.verts.append(v)
add_to_NV(old,vec,v)
return v
######################################################################
# Functions to create the differents faces
def make_sel_face(verts):
f = NMesh.Face(verts)
f.sel = 1
me.addFace(f)
def add_to_NV(old,dir,new):
if old in NV.keys(): NV[old][dir] = new
else: NV[old] = {dir:new}
def get_v(old, *neighbors):
# compute the direction of the new vert
if len(neighbors) == 1 : dir = (neighbors[0].co - old.co).normalize()
else : dir = (neighbors[0].co - old.co).normalize() + (neighbors[1].co-old.co).normalize()
# look in NV if this vert already exists
key = tuple(dir)
if old in NV and key in NV[old] : return NV[old][key]
def make_NF():
""" Analyse the mesh, sort the faces containing selected vertices and
create a liste NF : NF = [[flag, vertlist, old_face]]. Flag describes the
topology of the face."""
#
for f in me.faces:
V = f.v
v_sel = [x.sel for x in V]
nb_sel = sum(v_sel)
if nb_sel == 0 :
pass
else:
nb_v = len(V)
#
if nb_v == 4:
#
if nb_sel == 4:
NF.append([1,V,f])
#
elif nb_sel == 3:
if v_sel == [0,1,1,1]: V = [V[1],V[2],V[3],V[0]]
elif v_sel == [1,0,1,1]: V = [V[2],V[3],V[0],V[1]]
elif v_sel == [1,1,0,1]: V = [V[3],V[0],V[1],V[2]]
NF.append([2,V,f])
#
elif nb_sel == 2:
if v_sel == [1,0,1,0] or v_sel == [0,1,0,1]:
if v_sel == [0,1,0,1]: V = [V[1],V[2],V[3],V[0]]
NF.append([5,[V[0],V[1],V[3]],f])
NF.append([5,[V[2],V[1],V[3]]])
else:
if v_sel == [0,1,1,0]: V = [V[1],V[2],V[3],V[0]]
elif v_sel == [0,0,1,1]: V = [V[2],V[3],V[0],V[1]]
elif v_sel == [1,0,0,1]: V = [V[3],V[0],V[1],V[2]]
NF.append([3,V,f])
#
else:
if v_sel == [0,1,0,0]: V = [V[1],V[2],V[3],V[0]]
elif v_sel == [0,0,1,0]: V = [V[2],V[3],V[0],V[1]]
elif v_sel == [0,0,0,1]: V = [V[3],V[0],V[1],V[2]]
NF.append([4,V,f])
#
elif nb_v == 3:
#
if nb_sel == 3:
NF.append([6,V,f])
#
elif nb_sel == 2:
if v_sel == [0,1,1]: V = [V[1],V[2],V[0]]
elif v_sel == [1,0,1]: V = [V[2],V[0],V[1]]
NF.append([7,V,f])
#
else:
if v_sel == [0,1,0]: V = [V[1],V[2],V[0]]
elif v_sel == [0,0,1]: V = [V[2],V[0],V[1]]
NF.append([5,V,f])
# else, create it
new = old.co + dist.val*dir
v = make_sel_vert(new.x,new.y,new.z)
add_to_NV(old,key,v)
return v
def make_faces():
""" Make the new faces according to NF """
#
for N in NF:
cas = N[0]
V = N[1]
#
if cas < 6:
new_v = [0,0,0,0]
if cas == 1: # v_sel = [1,1,1,1]
for i in range(-1,3):
new_v[i] = get_vert(V[i],[V[i-1],V[i+1]])
new_f = NMesh.Face(new_v)
me.faces.append(new_f)
for i in range(-1,3):
add_to_NE([V[i],V[i+1]],[new_v[i],new_v[i+1]])
#
elif cas == 2: # v_sel = [1,1,1,0]
new_v[0] = get_vert(V[0],[V[3]])
new_v[1] = get_vert(V[1],[V[0],V[2]])
new_v[2] = get_vert(V[2],[V[3]])
new_v[3] = V[3]
#
new_f = NMesh.Face(new_v)
me.faces.append(new_f)
#
add_to_NE([V[0],V[1]],[new_v[0],new_v[1]])
add_to_NE([V[1],V[2]],[new_v[1],new_v[2]])
#
elif cas == 3: # v_sel = [1,1,0,0]
new_v[0] = get_vert(V[0],[V[3]])
new_v[1] = get_vert(V[1],[V[2]])
new_v[2] = V[2]
new_v[3] = V[3]
#
new_f = NMesh.Face(new_v)
me.faces.append(new_f)
#
add_to_NE([V[0],V[1]],[new_v[0],new_v[1]])
#
elif cas == 4: # v_sel = [1,0,0,0]
new_v[0] = get_vert(V[0],[V[3]])
new_v[1] = get_vert(V[0],[V[1]])
new_v[2] = V[1]
new_v[3] = V[3]
#
new_f = NMesh.Face(new_v)
me.faces.append(new_f)
#
add_to_NC(V[0], new_v[0:2])
#
new_v[0] = V[1]
new_v[1] = V[2]
new_v[2] = V[3]
#
new_f = NMesh.Face(new_v[:3])
me.faces.append(new_f)
#
else: # v_sel = [1,0,0]
new_v[0] = get_vert(V[0],[V[2]])
new_v[1] = get_vert(V[0],[V[1]])
new_v[2] = V[1]
new_v[3] = V[2]
#
new_f = NMesh.Face(new_v)
me.faces.append(new_f)
#
add_to_NC(V[0], new_v[0:2])
#
else:
new_v = [0,0,0]
#
if cas == 6: # v_sel = [1,1,1]
for i in range(-1,2):
new_v[i] = get_vert(V[i],[V[i-1],V[i+1]])
new_f = NMesh.Face(new_v)
me.faces.append(new_f)
for i in range(-1,2):
add_to_NE([V[i],V[i+1]],[new_v[i],new_v[i+1]])
#
elif cas == 7: # v_sel = [1,1,0]
new_v[0] = get_vert(V[0],[V[2]])
new_v[1] = get_vert(V[1],[V[2]])
new_v[2] = V[2]
#
new_f = NMesh.Face(new_v)
me.faces.append(new_f)
add_to_NE([V[0],V[1]],[new_v[0],new_v[1]])
""" Analyse the mesh, make the faces corresponding to selected faces and
fill the structures NE and NC """
# make the differents flags consistent
for e in me.edges:
if e.flag & E_selected :
e.v1.sel = 1
e.v2.sel = 1
NF =[] # NF : New faces
for f in me.faces:
V = f.v
nV = len(V)
enumV = range(nV)
E = [me.findEdge(V[i],V[(i+1) % nV]) for i in enumV]
Esel = [x.flag & E_selected for x in E]
# look for selected vertices and creates a list containing the new vertices
newV = V[:]
changes = False
for (i,v) in enumerate(V):
if v.sel :
changes = True
if Esel[i-1] == 0 and Esel[i] == 1 : newV[i] = get_v(v,V[i-1])
elif Esel[i-1] == 1 and Esel[i] == 0 : newV[i] = get_v(v,V[(i+1) % nV])
elif Esel[i-1] == 1 and Esel[i] == 1 : newV[i] = get_v(v,V[i-1],V[(i+1) % nV])
else : newV[i] = [get_v(v,V[i-1]),get_v(v,V[(i+1) % nV])]
if changes:
# determine and store the face to be created
lenV = [len(x) for x in newV]
if 2 not in lenV :
new_f = NMesh.Face(newV)
if sum(Esel) == nV : new_f.sel = 1
NF.append(new_f)
else :
nb2 = lenV.count(2)
if nV == 4 : # f is a quad
if nb2 == 1 :
ind2 = lenV.index(2)
NF.append(NMesh.Face([newV[ind2-1],newV[ind2][0],newV[ind2][1],newV[ind2-3]]))
NF.append(NMesh.Face([newV[ind2-1],newV[ind2-2],newV[ind2-3]]))
elif nb2 == 2 :
# We must know if the tuples are neighbours
ind2 = ''.join([str(x) for x in lenV+lenV[:1]]).find('22')
if ind2 != -1 : # They are
NF.append(NMesh.Face([newV[ind2][0],newV[ind2][1],newV[ind2-3][0],newV[ind2-3][1]]))
NF.append(NMesh.Face([newV[ind2][0],newV[ind2-1],newV[ind2-2],newV[ind2-3][1]]))
else: # They aren't
ind2 = lenV.index(2)
NF.append(NMesh.Face([newV[ind2][0],newV[ind2][1],newV[ind2-2][0],newV[ind2-2][1]]))
NF.append(NMesh.Face([newV[ind2][1],newV[ind2-3],newV[ind2-2][0]]))
NF.append(NMesh.Face([newV[ind2][0],newV[ind2-1],newV[ind2-2][1]]))
elif nb2 == 3 :
ind2 = lenV.index(3)
NF.append(NMesh.Face([newV[ind2-1][1],newV[ind2],newV[ind2-3][0]]))
NF.append(NMesh.Face([newV[ind2-1][0],newV[ind2-1][1],newV[ind2-3][0],newV[ind2-3][1]]))
NF.append(NMesh.Face([newV[ind2-3][1],newV[ind2-2][0],newV[ind2-2][1],newV[ind2-1][0]]))
else:
if (newV[0][1].co-newV[3][0].co).length + (newV[1][0].co-newV[2][1].co).length \
< (newV[0][0].co-newV[1][1].co).length + (newV[2][0].co-newV[3][1].co).length :
ind2 = 0
else :
ind2 = 1
NF.append(NMesh.Face([newV[ind2-1][0],newV[ind2-1][1],newV[ind2][0],newV[ind2][1]]))
NF.append(NMesh.Face([newV[ind2][1],newV[ind2-3][0],newV[ind2-2][1],newV[ind2-1][0]]))
NF.append(NMesh.Face([newV[ind2-3][0],newV[ind2-3][1],newV[ind2-2][0],newV[ind2-2][1]]))
else : # f is a tri
if nb2 == 1:
ind2 = lenV.index(2)
NF.append(NMesh.Face([newV[ind2-2],newV[ind2-1],newV[ind2][0],newV[ind2][1]]))
elif nb2 == 2:
ind2 = lenV.index(3)
NF.append(NMesh.Face([newV[ind2-1][1],newV[ind2],newV[ind2-2][0]]))
NF.append(NMesh.Face([newV[ind2-2][0],newV[ind2-2][1],newV[ind2-1][0],newV[ind2-1][1]]))
else:
ind2 = min(((newV[i][1].co-newV[i-1][0].co).length, i) for i in enumV)[1]
NF.append(NMesh.Face([newV[ind2-1][1],newV[ind2][0],newV[ind2][1],newV[ind2-2][0]]))
NF.append(NMesh.Face([newV[ind2-2][0],newV[ind2-2][1],newV[ind2-1][0],newV[ind2-1][1]]))
# Preparing the corners
for i in enumV:
if lenV[i] == 2 : NC.setdefault(V[i],[]).append(newV[i])
old_faces.append(f)
# Preparing the Edges
for i in enumV:
if Esel[i]:
verts = [newV[i],newV[(i+1) % nV]]
if V[i].index > V[(i+1) % nV].index : verts.reverse()
NE.setdefault(E[i],[]).append(verts)
# Create the faces
for f in NF: me.addFace(f)
def make_edges():
""" Make the faces corresponding to selected edges """
#
for l in NE.values():
if len(l) == 4:
f = NMesh.Face([l[0],l[1],l[3],l[2]])
me.faces.append(f)
for old,new in NE.iteritems() :
if len(new) == 1 : # This edge was on a border
oldv = [old.v1, old.v2]
if old.v1.index < old.v2.index : oldv.reverse()
make_sel_face(oldv+new[0])
me.findEdge(*oldv).flag |= E_selected
me.findEdge(*new[0]).flag |= E_selected
for v in oldv : NV_ext.add(v)
else:
make_sel_face(new[0] + new[1][::-1])
me.findEdge(*new[0]).flag |= E_selected
me.findEdge(*new[1]).flag |= E_selected
def make_corners():
""" Make the faces corresponding to selected corners """
#
""" Make the faces corresponding to corners """
for v in NV.keys():
V = NV[v].values()
nb_v = len(V)
#
if nb_v < 3:
pass
#
elif nb_v == 3:
new_f = NMesh.Face(V)
me.faces.append(new_f)
#
nV = len(V)
if nV == 1: pass
elif nV == 2 :
if v in NV_ext:
make_sel_face(V+[v])
me.findEdge(*V).flag |= E_selected
else:
# We need to know which are the edges around the corner.
# First, we look for the quads surrounding the corner.
q = [NE[id] for id in NE.keys() if str(v.index) in id.split('_')]
#
# We will put the associated edges in the list eed
is_in_v = lambda x:x in V
eed = [filter(is_in_v, l) for l in q]
#
# We will add the edges coming from faces where only one vertex is selected.
# They are stocked in NC.
if v in NC.keys():
eed = eed+NC[v]
b = eed.pop()
# b will contain the sorted list of vertices
#
while eed:
for l in eed:
if l[0] == b[-1]:
b.append(l[1])
eed.remove(l)
break
elif l[1] == b[-1]:
b.append(l[0])
eed.remove(l)
break
# Now we can create the faces
if nb_v == 4:
new_f = NMesh.Face(b[:4])
me.faces.append(new_f)
#
else:
co = [0.0, 0.0,0.0]
vec = [0.0, 0.0,0.0]
for x in V:
co[0] += x[0]
co[1] += x[1]
co[2] += x[2]
#
for dir in NV[v]:
vec[0] += dir.co[0]
vec[1] += dir.co[1]
vec[2] += dir.co[2]
#
co = [x/nb_v for x in co]
vec = [x/nb_v for x in vec]
center = NMesh.Vert(co[0],co[1],co[2])
center.sel = 1
me.verts.append(center)
add_to_NV(v,vec,center)
#
for k in range(nb_v):
new_f = NMesh.Face([center, b[k], b[k+1]])
me.faces.append(new_f)
#
if nV == 3 and v not in NV_ext : make_sel_face(V)
else :
# We need to know which are the edges around the corner.
# First, we look for the quads surrounding the corner.
eed = []
for old, new in NE.iteritems():
if v in (old.v1,old.v2) :
if v.index == min(old.v1.index,old.v2.index) : ind = 0
else : ind = 1
if len(new) == 1: eed.append([v,new[0][ind]])
else : eed.append([new[0][ind],new[1][ind]])
# We will add the edges coming from faces where only one vertice is selected.
# They are stored in NC.
if v in NC: eed = eed+NC[v]
# Now we have to sort these vertices
hc = {}
for (a,b) in eed :
hc.setdefault(a,[]).append(b)
hc.setdefault(b,[]).append(a)
for x0,edges in hc.iteritems():
if len(edges) == 1 : break
b = [x0] # b will contain the sorted list of vertices
for i in range(len(hc)-1):
for x in hc[x0] :
if x not in b : break
b.append(x)
x0 = x
b.append(b[0])
# Now we can create the faces
if len(b) == 5: make_sel_face(b[:4])
else:
New_V = Vector(0.0, 0.0,0.0)
New_d = [0.0, 0.0,0.0]
for x in hc.keys(): New_V += x.co
for dir in NV[v] :
for i in xrange(3): New_d[i] += dir[i]
New_V *= 1./len(hc)
for i in range(3) : New_d[i] /= nV
center = make_sel_vert(New_V.x,New_V.y,New_V.z)
add_to_NV(v,tuple(New_d),center)
for k in range(len(b)-1): make_sel_face([center, b[k], b[k+1]])
if 2 < nV and v in NC :
for edge in NC[v] : me.findEdge(*edge).flag |= E_selected
def clear_old():
""" Erase old faces and vertices """
for F in NF:
if len(F) == 3:
me.faces.remove(F[2])
#
for f in old_faces: me.removeFace(f)
for v in NV.keys():
me.verts.remove(v)
if v not in NV_ext : me.verts.remove(v)
for e in me.edges:
if e.flag & E_selected :
e.v1.sel = 1
e.v2.sel = 1
######################################################################
# Interface
#
global dist
NV = {}
dist = Create(0.2)
left = Create(0.0)
right = Create(1.0)
@ -393,83 +330,79 @@ def draw():
global EVENT_NOEVENT, EVENT_BEVEL, EVENT_UPDATE, EVENT_RECURS, EVENT_EXIT
glClear(GL_COLOR_BUFFER_BIT)
Button("Bevel",EVENT_BEVEL,10,100,300,25)
left=Number('', EVENT_NOEVENT,10,70,50, 20,left.val,0,right.val,'Set the minimum of the slider')
right = Number("",EVENT_NOEVENT,260,70,50,20,right.val,left.val,200,"Set the maximum of the slider")
dist=Slider("Thickness ",EVENT_UPDATE,65,70,190,20,dist.val,left.val,right.val,0,"Thickness of the bevel, can be changed even after bevelling")
glRasterPos2d(10,40)
Button("Bevel",EVENT_BEVEL,10,100,280,25)
left=Number('', EVENT_NOEVENT,10,70,45, 20,left.val,0,right.val,'Set the minimum of the slider')
right = Number("",EVENT_NOEVENT,245,70,45,20,right.val,left.val,200,"Set the maximum of the slider")
dist=Slider("Thickness ",EVENT_UPDATE,60,70,180,20,dist.val,left.val,right.val,0, \
"Thickness of the bevel, can be changed even after bevelling")
glRasterPos2d(8,40)
Text('To finish, you can use recursive bevel to smooth it')
num=Number('', EVENT_NOEVENT,10,10,50, 16,num.val,1,100,'Recursion level')
Button("Recursive",EVENT_RECURS,65,10,100,16)
Button("Exit",EVENT_EXIT,230,10,80,20)
num=Number('', EVENT_NOEVENT,10,10,40, 16,num.val,1,100,'Recursion level')
Button("Recursive",EVENT_RECURS,55,10,100,16)
Button("Exit",EVENT_EXIT,210,10,80,20)
def event(evt, val):
if ((evt == QKEY or evt == ESCKEY) and not val):
Exit()
if ((evt == QKEY or evt == ESCKEY) and not val): Exit()
def bevent(evt):
if evt == EVENT_EXIT :
Exit()
#
elif evt == EVENT_BEVEL:
bevel()
#
elif evt == EVENT_UPDATE:
try:
bevel_update()
except NameError:
pass
#
elif evt == EVENT_RECURS:
recursive()
if evt == EVENT_EXIT : Exit()
elif evt == EVENT_BEVEL : bevel()
elif evt == EVENT_UPDATE :
try: bevel_update()
except NameError : pass
elif evt == EVENT_RECURS : recursive()
Register(draw, event, bevent)
######################################################################
def bevel():
""" The main function, which creates the bevel """
global me,NF,NV,NE,NC, old_dist
#
is_editmode = Window.EditMode()
if is_editmode: Window.EditMode(0)
objects = Blender.Object.GetSelected()
bev_obj = objects[0]
if bev_obj.getType() != "Mesh":
PupMenu("ERROR: active object must be a mesh")
global me,NV,NV_ext,NE,NC, old_faces,old_dist
scn = Scene.GetCurrent()
ob = scn.getActiveObject()
if ob == None or ob.getType() != 'Mesh':
Draw.PupMenu('ERROR%t|Select a mesh object.')
return
me = NMesh.GetRaw(bev_obj.getData(name_only = True))
#
NF = []
Window.WaitCursor(1) # Change the Cursor
is_editmode = Window.EditMode()
if is_editmode: Window.EditMode(0)
me = ob.getData()
NV = {}
NV_ext = set()
NE = {}
NC = {}
#
make_NF()
old_faces = []
make_faces()
make_edges()
make_corners()
clear_old()
#
old_dist = dist.val
#
me.update(1)
if is_editmode: Window.EditMode(1)
Window.WaitCursor(0)
Blender.Redraw()
def bevel_update():
""" Use NV to update the bevel """
global dist, old_dist, NV
if not NV: return
global dist, old_dist
is_editmode = Window.EditMode()
if is_editmode: Window.EditMode(0)
fac = dist.val - old_dist
old_dist = dist.val
#
for old_v in NV.keys():
for dir in NV[old_v].keys():
for i in range(3):
NV[old_v][dir].co[i] += fac*dir.co[i]
#
NV[old_v][dir].co[i] += fac*dir[i]
me.update(1)
if is_editmode: Window.EditMode(1)
Blender.Redraw()
@ -477,24 +410,23 @@ def bevel_update():
def recursive():
""" Make a recursive bevel... still experimental """
global dist
#
from math import pi, sin
if num.val > 1:
a = pi/4
ang = []
for k in range(num.val):
ang.append(a)
a = (pi+2*a)/4
#
l = [2*(1-sin(x))/sin(2*x) for x in ang]
R = dist.val/sum(l)
l = [x*R for x in l]
#
dist.val = l[0]
bevel_update()
#
for x in l[1:]:
dist.val = x
bevel()
# vim:set ts=4 sw=4: