Use Summary structure to collect all summary related on the shader compilation
process which then could be either simply reported to the log or be passed to
some user interface or so.
This is type of the summary / report which is most flexible and useful and
something we could use for other parts like shader optimization.
Seems set_intersection() requires passing explicit comparator if non-default
one is used for the sets. A bit weird, but can't really find another explanation
here about whats' going on here.
The issue was caused by not really optimal graph traversal for gathering nodes
dependencies which could have exponential complexity with a long tree branches
connected with multiple connections between them.
Now we optimize the depth traversal and perform early output if the node was
already traversed.
Please note that this adds some limitations to the use of SVM compiler's
find_dependencies() in the cases when skip_node is not NULL and one wants to
perform dependencies find sequentially with the same set. This doesn't happen
in the code, but one should be aware of this.
The issue was than nodes dependencies were stored as set<ShaderNode*> which
is actually a so called "strict weak ordered", meaning order of nodes in
the set is strictly defined, but based on the ShaderNode pointer. This means
that between different render invokations order of original nodes could be
different due to different pointers allocated for ShaderNode.
This commit makes it so dependencies and maps used for ShaderNodes are based
on the node->id which has much more predictable order. It's still possible
to trick the system by doing some crazy edits during viewport rendfer and
cause difference between viewport and final render stacks.
Reviewers: brecht
Reviewed By: brecht
Subscribers: LazyDodo
Differential Revision: https://developer.blender.org/D1630
Basically we can not use sharp closure as a substitude when filter glossy is
used. This is because we can not blur sharp reflection/refraction.
This is quite quick and not really clean implementation. Not really happy
with manual handling of original settings, but this is as good as we can do
in the quick patch. It's a good acknowledgment and we now can re-consider
some aspects of graph simplification to make such cases more natively
supported.
P.S. This failure would have been shown by our regression tests, so please,
bother a bit to run Cycles's test sweep before doing such optimizations.
Now we calculate color in range 800..12000 using an approximation a/x+bx+c for R and G and ((at + b)t + c)t + d) for B.
Max absolute error for RGB for non-lut function is less than 0.0001, which is enough to get the same 8 bit/channel color as for OSL with a noticeable performance difference.
However there is a slight visible difference between previous non-OSL implementation because of lookup table interpolation and offset-by-one mistake.
The previous implementation gave black color outside of soft range (t > 12000), now it gives the same color as for 12000.
Also blackbody node without input connected is being converted to value input at shader compile time.
Reviewers: dingto, sergey
Reviewed By: dingto
Subscribers: nutel, brecht, juicyfruit
Differential Revision: https://developer.blender.org/D1280
This is the same as blender internal's texture mapping from another object,
so this way it's possible to control texture space of one object by another.
Quite straightforward change apart from the workaround for the stupidness of
the dependency graph. Now shader has flag telling that it depends on object
transform. This is the simplest way to know which shaders needs to be tagged
for update when object changes. This might give some false-positive tags now
but reducing them should not be priority for Cycles and rather be a priority
to bring new dependency graph.
Also GLSL preview does not support using other object for mapping.
This is actually correct for BI shading as well and to be addressed as
a part of general GLSL viewport improvements since it's not really clear
how to support this in GLSL.
Reviewers: brecht, juicyfruit
Subscribers: eyecandy, venomgfx
Differential Revision: https://developer.blender.org/D1021
This was the original code to get things working on old GPUs, but now it is no
longer in use and various features in fact depend on this to work correctly to
the point that enabling this code is too buggy to be useful.
for one of the input shaders is zero.
This gives about 5% speedup for koro_final.blend. In general this is important
so you can design shaders that run faster for shadows, diffuse bounces, etc, for
example by skipping procedural textures or even using a single fixed color.
In practice this means that if you don't connect a texture to your volume nodes
it will figure that out and render the node faster, rather than you having to
specify it manually.
Main weakness is custom OSL nodes where we have to assume it is heterogeneous
because we don't know what kind of data the node accesses.
This should be pretty rare, the shader in question had many parallel node links
because of copying the nodes many times, which is inefficient to run anyway.
* Added a new sky model by Hosek and Wilkie: "An Analytic Model for Full Spectral Sky-Dome Radiance" http://cgg.mff.cuni.cz/projects/SkylightModelling/
Example render:
http://archive.dingto.org/2013/blender/code/new_sky_model.png
Documentation:
http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Nodes/Textures#Sky_Texture
Details:
* User can choose between the older Preetham and the new Hosek / Wilkie model via a dropdown. For older files, backwards compatibility is preserved. When we add a new Sky texture, it defaults to the new model though.
* For the new model, you can specify the ground albedo (see documentation for details).
* Turbidity now has a UI soft range between 1 and 10, higher values (up to 30) are still possible, but can result in weird colors or black.
* Removed the limitation of 1 sky texture per SVM stack. (Patch by Lukas Tönne, thanks!)
Thanks to Brecht for code review and some help!
This is part of my GSoC 2013 project, SVN merge of r59214, r59220, r59251 and r59601.
New features:
* Bump mapping now works with SSS
* Texture Blur factor for SSS, see the documentation for details:
http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Nodes/Shaders#Subsurface_Scattering
Work in progress for feedback:
Initial implementation of the "BSSRDF Importance Sampling" paper, which uses
a different importance sampling method. It gives better quality results in
many ways, with the availability of both Cubic and Gaussian falloff functions,
but also tends to be more noisy when using the progressive integrator and does
not give great results with some geometry. It works quite well for the
non-progressive integrator and is often less noisy there.
This code may still change a lot, so unless you're testing it may be best to
stick to the Compatible falloff function.
Skin test render and file that takes advantage of the gaussian falloff:
http://www.pasteall.org/pic/show.php?id=57661http://www.pasteall.org/pic/show.php?id=57662http://www.pasteall.org/blend/23501
* Added a node to convert a temperature in Kelvin to an RGB color. This can be used e.g. for lights, to easily find the right color temperature.
= Some common temperatures =
Candle light: 1500 Kelvin
Sunset/Sunrise: 1850 Kelvin
Studio lamps: 3200 Kelvin
Horizon daylight: 5000 Kelvin
Documentation: http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Nodes/More#Blackbody
Thanks to Philipp Oeser (lichtwerk), who essentially contributed to this with a patch! :)
This is part of my GSoC 2013 project. SVN merge of r57424, r57487, r57507, r57525, r58253 and r58774
well as I would like, but it works, just add a subsurface scattering node and
you can use it like any other BSDF.
It is using fully raytraced sampling compatible with progressive rendering
and other more advanced rendering algorithms we might used in the future, and
it uses no extra memory so it's suitable for complex scenes.
Disadvantage is that it can be quite noisy and slow. Two limitations that will
be solved are that it does not work with bump mapping yet, and that the falloff
function used is a simple cubic function, it's not using the real BSSRDF
falloff function yet.
The node has a color input, along with a scattering radius for each RGB color
channel along with an overall scale factor for the radii.
There is also no GPU support yet, will test if I can get that working later.
Node Documentation:
http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Nodes/Shaders#BSSRDF
Implementation notes:
http://wiki.blender.org/index.php/Dev:2.6/Source/Render/Cycles/Subsurface_Scattering
of closures limit. Optimized the code now so it can handle more.
Change SVM mix/add closure handling, now we transform the node graph so that
the mix weights are fed into the closure nodes directly.
Most of the changes are related to adding support for motion data throughout
the code. There's some code for actual camera/object motion blur raytracing
but it's unfinished (it badly slows down the raytracing kernel even when the
option is turned off), so that code it disabled still.
Motion vector export from Blender tries to avoid computing derived meshes
when the mesh does not have a deforming modifier, and it also won't store
motion vectors for every vertex if only the object or camera is moving.
existing "Equirectangular". This projection is useful to create light probes
from a chrome ball placed in a real scene. It expects as input a photograph of
the chrome ball, cropped so the ball just fits inside the image boundaries.
Example setup with panorama camera and mixing two (poor quality) photographs
from different viewpoints to avoid stretching and hide the photographer:
http://www.pasteall.org/pic/28036
decided it's better to render objects as either surface or volume.
This may break the volume rendering patch, but shaders with volume closures still
get tagged as having volume closures, so it should be fixable without too many
changes.