blender/source/gameengine/Ketsji/KX_Camera.cpp
Porteries Tristan 2050ecc307 BGE: Fix T48071: Global logic manager
Previously the logic manager was used as a global variable for SCA_ILogicBrick::m_sCurrentLogicManager,
this request to always update it before run any python script and allow call function like
ConvertPythonTo[GameObject/Mesh]. The bug showed in T48071 is that as exepted the global
m_sCurrentLogicManager is not updated with the proper scene logic manager.
Instead of trying to fix it by updating the logic manager everywhere and wait next bug report to add
a similar line. The following patch propose a different way:
- Every logic brick now contain its logic manager to SCA_ILogicBrick::m_logicManager, this value is
  set and get by SCA_ILogicBrick::[Set/Get]LogicManager, It's initialized from blender conversion and
  scene merging.
- Function ConvertPythonTo[GameObject/mesh] now take as first argument the logic manager to find name
  coresponding object or mesh. Only ConvertPythonToCamera doesn't do that because it uses the
  KX_Scene::FindCamera function.

Reviewers: moguri

Differential Revision: https://developer.blender.org/D1913
2016-04-10 23:57:43 +02:00

1168 lines
32 KiB
C++

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
* Camera in the gameengine. Cameras are also used for views.
*/
/** \file gameengine/Ketsji/KX_Camera.cpp
* \ingroup ketsji
*/
#include "glew-mx.h"
#include "KX_Camera.h"
#include "KX_Scene.h"
#include "KX_PythonInit.h"
#include "EXP_Python.h"
#include "KX_PyMath.h"
#include "RAS_ICanvas.h"
KX_Camera::KX_Camera(void* sgReplicationInfo,
SG_Callbacks callbacks,
const RAS_CameraData& camdata,
bool frustum_culling,
bool delete_node)
:
KX_GameObject(sgReplicationInfo,callbacks),
m_camdata(camdata),
m_dirty(true),
m_normalized(false),
m_frustum_culling(frustum_culling),
m_set_projection_matrix(false),
m_set_frustum_center(false),
m_delete_node(delete_node)
{
// setting a name would be nice...
m_name = "cam";
m_projection_matrix.setIdentity();
m_modelview_matrix.setIdentity();
}
KX_Camera::~KX_Camera()
{
if (m_delete_node && m_pSGNode)
{
// for shadow camera, avoids memleak
delete m_pSGNode;
m_pSGNode = NULL;
}
}
CValue* KX_Camera::GetReplica()
{
KX_Camera* replica = new KX_Camera(*this);
// this will copy properties and so on...
replica->ProcessReplica();
return replica;
}
void KX_Camera::ProcessReplica()
{
KX_GameObject::ProcessReplica();
// replicated camera are always registered in the scene
m_delete_node = false;
}
MT_Transform KX_Camera::GetWorldToCamera() const
{
MT_Transform camtrans;
camtrans.invert(MT_Transform(NodeGetWorldPosition(), NodeGetWorldOrientation()));
return camtrans;
}
MT_Transform KX_Camera::GetCameraToWorld() const
{
return MT_Transform(NodeGetWorldPosition(), NodeGetWorldOrientation());
}
void KX_Camera::CorrectLookUp(MT_Scalar speed)
{
}
const MT_Point3 KX_Camera::GetCameraLocation() const
{
/* this is the camera locatio in cam coords... */
//return m_trans1.getOrigin();
//return MT_Point3(0,0,0); <-----
/* .... I want it in world coords */
//MT_Transform trans;
//trans.setBasis(NodeGetWorldOrientation());
return NodeGetWorldPosition();
}
/* I want the camera orientation as well. */
const MT_Quaternion KX_Camera::GetCameraOrientation() const
{
return NodeGetWorldOrientation().getRotation();
}
/**
* Sets the projection matrix that is used by the rasterizer.
*/
void KX_Camera::SetProjectionMatrix(const MT_Matrix4x4 & mat)
{
m_projection_matrix = mat;
m_dirty = true;
m_set_projection_matrix = true;
m_set_frustum_center = false;
}
/**
* Sets the modelview matrix that is used by the rasterizer.
*/
void KX_Camera::SetModelviewMatrix(const MT_Matrix4x4 & mat)
{
m_modelview_matrix = mat;
m_dirty = true;
m_set_frustum_center = false;
}
/**
* Gets the projection matrix that is used by the rasterizer.
*/
const MT_Matrix4x4& KX_Camera::GetProjectionMatrix() const
{
return m_projection_matrix;
}
/**
* Gets the modelview matrix that is used by the rasterizer.
*/
const MT_Matrix4x4& KX_Camera::GetModelviewMatrix() const
{
return m_modelview_matrix;
}
bool KX_Camera::hasValidProjectionMatrix() const
{
return m_set_projection_matrix;
}
void KX_Camera::InvalidateProjectionMatrix(bool valid)
{
m_set_projection_matrix = valid;
}
/**
* These getters retrieve the clip data and the focal length
*/
float KX_Camera::GetLens() const
{
return m_camdata.m_lens;
}
float KX_Camera::GetScale() const
{
return m_camdata.m_scale;
}
/**
* Gets the horizontal size of the sensor - for camera matching.
*/
float KX_Camera::GetSensorWidth() const
{
return m_camdata.m_sensor_x;
}
/**
* Gets the vertical size of the sensor - for camera matching.
*/
float KX_Camera::GetSensorHeight() const
{
return m_camdata.m_sensor_y;
}
/** Gets the mode FOV is calculating from sensor dimensions */
short KX_Camera::GetSensorFit() const
{
return m_camdata.m_sensor_fit;
}
/**
* Gets the horizontal shift of the sensor - for camera matching.
*/
float KX_Camera::GetShiftHorizontal() const
{
return m_camdata.m_shift_x;
}
/**
* Gets the vertical shift of the sensor - for camera matching.
*/
float KX_Camera::GetShiftVertical() const
{
return m_camdata.m_shift_y;
}
float KX_Camera::GetCameraNear() const
{
return m_camdata.m_clipstart;
}
float KX_Camera::GetCameraFar() const
{
return m_camdata.m_clipend;
}
float KX_Camera::GetFocalLength() const
{
return m_camdata.m_focallength;
}
RAS_CameraData* KX_Camera::GetCameraData()
{
return &m_camdata;
}
void KX_Camera::ExtractClipPlanes()
{
if (!m_dirty)
return;
MT_Matrix4x4 m = m_projection_matrix * m_modelview_matrix;
// Left clip plane
m_planes[0] = m[3] + m[0];
// Right clip plane
m_planes[1] = m[3] - m[0];
// Top clip plane
m_planes[2] = m[3] - m[1];
// Bottom clip plane
m_planes[3] = m[3] + m[1];
// Near clip plane
m_planes[4] = m[3] + m[2];
// Far clip plane
m_planes[5] = m[3] - m[2];
m_dirty = false;
m_normalized = false;
}
void KX_Camera::NormalizeClipPlanes()
{
if (m_normalized)
return;
for (unsigned int p = 0; p < 6; p++)
{
MT_Scalar factor = sqrtf(m_planes[p][0]*m_planes[p][0] + m_planes[p][1]*m_planes[p][1] + m_planes[p][2]*m_planes[p][2]);
if (!MT_fuzzyZero(factor))
m_planes[p] /= factor;
}
m_normalized = true;
}
void KX_Camera::ExtractFrustumSphere()
{
if (m_set_frustum_center)
return;
// compute sphere for the general case and not only symmetric frustum:
// the mirror code in ImageRender can use very asymmetric frustum.
// We will put the sphere center on the line that goes from origin to the center of the far clipping plane
// This is the optimal position if the frustum is symmetric or very asymmetric and probably close
// to optimal for the general case. The sphere center position is computed so that the distance to
// the near and far extreme frustum points are equal.
// get the transformation matrix from device coordinate to camera coordinate
MT_Matrix4x4 clip_camcs_matrix = m_projection_matrix;
clip_camcs_matrix.invert();
if (m_projection_matrix[3][3] == MT_Scalar(0.0f))
{
// frustum projection
// detect which of the corner of the far clipping plane is the farthest to the origin
MT_Vector4 nfar; // far point in device normalized coordinate
MT_Point3 farpoint; // most extreme far point in camera coordinate
MT_Point3 nearpoint;// most extreme near point in camera coordinate
MT_Point3 farcenter(0.0f, 0.0f, 0.0f);// center of far cliping plane in camera coordinate
MT_Scalar F=-1.0f, N; // square distance of far and near point to origin
MT_Scalar f, n; // distance of far and near point to z axis. f is always > 0 but n can be < 0
MT_Scalar e, s; // far and near clipping distance (<0)
MT_Scalar c; // slope of center line = distance of far clipping center to z axis / far clipping distance
MT_Scalar z; // projection of sphere center on z axis (<0)
// tmp value
MT_Vector4 npoint(1.0f, 1.0f, 1.0f, 1.0f);
MT_Vector4 hpoint;
MT_Point3 point;
MT_Scalar len;
for (int i=0; i<4; i++)
{
hpoint = clip_camcs_matrix*npoint;
point.setValue(hpoint[0]/hpoint[3], hpoint[1]/hpoint[3], hpoint[2]/hpoint[3]);
len = point.dot(point);
if (len > F)
{
nfar = npoint;
farpoint = point;
F = len;
}
// rotate by 90 degree along the z axis to walk through the 4 extreme points of the far clipping plane
len = npoint[0];
npoint[0] = -npoint[1];
npoint[1] = len;
farcenter += point;
}
// the far center is the average of the far clipping points
farcenter *= 0.25f;
// the extreme near point is the opposite point on the near clipping plane
nfar.setValue(-nfar[0], -nfar[1], -1.0f, 1.0f);
nfar = clip_camcs_matrix*nfar;
nearpoint.setValue(nfar[0]/nfar[3], nfar[1]/nfar[3], nfar[2]/nfar[3]);
// this is a frustum projection
N = nearpoint.dot(nearpoint);
e = farpoint[2];
s = nearpoint[2];
// projection on XY plane for distance to axis computation
MT_Point2 farxy(farpoint[0], farpoint[1]);
// f is forced positive by construction
f = farxy.length();
// get corresponding point on the near plane
farxy *= s/e;
// this formula preserve the sign of n
n = f*s/e - MT_Point2(nearpoint[0]-farxy[0], nearpoint[1]-farxy[1]).length();
c = MT_Point2(farcenter[0], farcenter[1]).length()/e;
// the big formula, it simplifies to (F-N)/(2(e-s)) for the symmetric case
z = (F-N)/(2.0f*(e-s+c*(f-n)));
m_frustum_center = MT_Point3(farcenter[0]*z/e, farcenter[1]*z/e, z);
m_frustum_radius = m_frustum_center.distance(farpoint);
}
else
{
// orthographic projection
// The most extreme points on the near and far plane. (normalized device coords)
MT_Vector4 hnear(1.0f, 1.0f, 1.0f, 1.0f), hfar(-1.0f, -1.0f, -1.0f, 1.0f);
// Transform to hom camera local space
hnear = clip_camcs_matrix*hnear;
hfar = clip_camcs_matrix*hfar;
// Tranform to 3d camera local space.
MT_Point3 nearpoint(hnear[0]/hnear[3], hnear[1]/hnear[3], hnear[2]/hnear[3]);
MT_Point3 farpoint(hfar[0]/hfar[3], hfar[1]/hfar[3], hfar[2]/hfar[3]);
// just use mediant point
m_frustum_center = (farpoint + nearpoint)*0.5f;
m_frustum_radius = m_frustum_center.distance(farpoint);
}
// Transform to world space.
m_frustum_center = GetCameraToWorld()(m_frustum_center);
m_frustum_radius /= fabsf(NodeGetWorldScaling()[NodeGetWorldScaling().closestAxis()]);
m_set_frustum_center = true;
}
bool KX_Camera::PointInsideFrustum(const MT_Point3& x)
{
ExtractClipPlanes();
for ( unsigned int i = 0; i < 6 ; i++ )
{
if (m_planes[i][0] * x[0] + m_planes[i][1] * x[1] + m_planes[i][2] * x[2] + m_planes[i][3] < 0.0f)
return false;
}
return true;
}
int KX_Camera::BoxInsideFrustum(const MT_Point3 *box)
{
ExtractClipPlanes();
unsigned int insideCount = 0;
// 6 view frustum planes
for ( unsigned int p = 0; p < 6 ; p++ )
{
unsigned int behindCount = 0;
// 8 box vertices.
for (unsigned int v = 0; v < 8 ; v++)
{
if (m_planes[p][0] * box[v][0] + m_planes[p][1] * box[v][1] + m_planes[p][2] * box[v][2] + m_planes[p][3] < 0.0f)
behindCount++;
}
// 8 points behind this plane
if (behindCount == 8)
return OUTSIDE;
// Every box vertex is on the front side of this plane
if (!behindCount)
insideCount++;
}
// All box vertices are on the front side of all frustum planes.
if (insideCount == 6)
return INSIDE;
return INTERSECT;
}
int KX_Camera::SphereInsideFrustum(const MT_Point3& center, const MT_Scalar &radius)
{
ExtractFrustumSphere();
if (center.distance2(m_frustum_center) > (radius + m_frustum_radius)*(radius + m_frustum_radius))
return OUTSIDE;
unsigned int p;
ExtractClipPlanes();
NormalizeClipPlanes();
MT_Scalar distance;
int intersect = INSIDE;
// distance: <-------- OUTSIDE -----|----- INTERSECT -----0----- INTERSECT -----|----- INSIDE -------->
// -radius radius
for (p = 0; p < 6; p++)
{
distance = m_planes[p][0]*center[0] + m_planes[p][1]*center[1] + m_planes[p][2]*center[2] + m_planes[p][3];
if (fabsf(distance) <= radius)
intersect = INTERSECT;
else if (distance < -radius)
return OUTSIDE;
}
return intersect;
}
bool KX_Camera::GetFrustumCulling() const
{
return m_frustum_culling;
}
void KX_Camera::EnableViewport(bool viewport)
{
InvalidateProjectionMatrix(false); // We need to reset projection matrix
m_camdata.m_viewport = viewport;
}
void KX_Camera::SetViewport(int left, int bottom, int right, int top)
{
m_camdata.m_viewportleft = left;
m_camdata.m_viewportbottom = bottom;
m_camdata.m_viewportright = right;
m_camdata.m_viewporttop = top;
}
bool KX_Camera::GetViewport() const
{
return m_camdata.m_viewport;
}
int KX_Camera::GetViewportLeft() const
{
return m_camdata.m_viewportleft;
}
int KX_Camera::GetViewportBottom() const
{
return m_camdata.m_viewportbottom;
}
int KX_Camera::GetViewportRight() const
{
return m_camdata.m_viewportright;
}
int KX_Camera::GetViewportTop() const
{
return m_camdata.m_viewporttop;
}
#ifdef WITH_PYTHON
//----------------------------------------------------------------------------
//Python
PyMethodDef KX_Camera::Methods[] = {
KX_PYMETHODTABLE(KX_Camera, sphereInsideFrustum),
KX_PYMETHODTABLE_O(KX_Camera, boxInsideFrustum),
KX_PYMETHODTABLE_O(KX_Camera, pointInsideFrustum),
KX_PYMETHODTABLE_NOARGS(KX_Camera, getCameraToWorld),
KX_PYMETHODTABLE_NOARGS(KX_Camera, getWorldToCamera),
KX_PYMETHODTABLE(KX_Camera, setViewport),
KX_PYMETHODTABLE_NOARGS(KX_Camera, setOnTop),
KX_PYMETHODTABLE_O(KX_Camera, getScreenPosition),
KX_PYMETHODTABLE(KX_Camera, getScreenVect),
KX_PYMETHODTABLE(KX_Camera, getScreenRay),
{NULL,NULL} //Sentinel
};
PyAttributeDef KX_Camera::Attributes[] = {
KX_PYATTRIBUTE_BOOL_RW("frustum_culling", KX_Camera, m_frustum_culling),
KX_PYATTRIBUTE_RW_FUNCTION("perspective", KX_Camera, pyattr_get_perspective, pyattr_set_perspective),
KX_PYATTRIBUTE_RW_FUNCTION("lens", KX_Camera, pyattr_get_lens, pyattr_set_lens),
KX_PYATTRIBUTE_RW_FUNCTION("fov", KX_Camera, pyattr_get_fov, pyattr_set_fov),
KX_PYATTRIBUTE_RW_FUNCTION("ortho_scale", KX_Camera, pyattr_get_ortho_scale, pyattr_set_ortho_scale),
KX_PYATTRIBUTE_RW_FUNCTION("near", KX_Camera, pyattr_get_near, pyattr_set_near),
KX_PYATTRIBUTE_RW_FUNCTION("far", KX_Camera, pyattr_get_far, pyattr_set_far),
KX_PYATTRIBUTE_RW_FUNCTION("shift_x", KX_Camera, pyattr_get_shift_x, pyattr_set_shift_x),
KX_PYATTRIBUTE_RW_FUNCTION("shift_y", KX_Camera, pyattr_get_shift_y, pyattr_set_shift_y),
KX_PYATTRIBUTE_RW_FUNCTION("useViewport", KX_Camera, pyattr_get_use_viewport, pyattr_set_use_viewport),
KX_PYATTRIBUTE_RW_FUNCTION("projection_matrix", KX_Camera, pyattr_get_projection_matrix, pyattr_set_projection_matrix),
KX_PYATTRIBUTE_RO_FUNCTION("modelview_matrix", KX_Camera, pyattr_get_modelview_matrix),
KX_PYATTRIBUTE_RO_FUNCTION("camera_to_world", KX_Camera, pyattr_get_camera_to_world),
KX_PYATTRIBUTE_RO_FUNCTION("world_to_camera", KX_Camera, pyattr_get_world_to_camera),
/* Grrr, functions for constants? */
KX_PYATTRIBUTE_RO_FUNCTION("INSIDE", KX_Camera, pyattr_get_INSIDE),
KX_PYATTRIBUTE_RO_FUNCTION("OUTSIDE", KX_Camera, pyattr_get_OUTSIDE),
KX_PYATTRIBUTE_RO_FUNCTION("INTERSECT", KX_Camera, pyattr_get_INTERSECT),
{ NULL } //Sentinel
};
PyTypeObject KX_Camera::Type = {
PyVarObject_HEAD_INIT(NULL, 0)
"KX_Camera",
sizeof(PyObjectPlus_Proxy),
0,
py_base_dealloc,
0,
0,
0,
0,
py_base_repr,
0,
&KX_GameObject::Sequence,
&KX_GameObject::Mapping,
0,0,0,
NULL,
NULL,
0,
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,
0,0,0,0,0,0,0,
Methods,
0,
0,
&KX_GameObject::Type,
0,0,0,0,0,0,
py_base_new
};
KX_PYMETHODDEF_DOC_VARARGS(KX_Camera, sphereInsideFrustum,
"sphereInsideFrustum(center, radius) -> Integer\n"
"\treturns INSIDE, OUTSIDE or INTERSECT if the given sphere is\n"
"\tinside/outside/intersects this camera's viewing frustum.\n\n"
"\tcenter = the center of the sphere (in world coordinates.)\n"
"\tradius = the radius of the sphere\n\n"
"\tExample:\n"
"\timport bge.logic\n\n"
"\tco = bge.logic.getCurrentController()\n"
"\tcam = co.GetOwner()\n\n"
"\t# A sphere of radius 4.0 located at [x, y, z] = [1.0, 1.0, 1.0]\n"
"\tif (cam.sphereInsideFrustum([1.0, 1.0, 1.0], 4) != cam.OUTSIDE):\n"
"\t\t# Sphere is inside frustum !\n"
"\t\t# Do something useful !\n"
"\telse:\n"
"\t\t# Sphere is outside frustum\n"
)
{
PyObject *pycenter;
float radius;
if (PyArg_ParseTuple(args, "Of:sphereInsideFrustum", &pycenter, &radius))
{
MT_Point3 center;
if (PyVecTo(pycenter, center))
{
return PyLong_FromLong(SphereInsideFrustum(center, radius)); /* new ref */
}
}
PyErr_SetString(PyExc_TypeError, "camera.sphereInsideFrustum(center, radius): KX_Camera, expected arguments: (center, radius)");
return NULL;
}
KX_PYMETHODDEF_DOC_O(KX_Camera, boxInsideFrustum,
"boxInsideFrustum(box) -> Integer\n"
"\treturns INSIDE, OUTSIDE or INTERSECT if the given box is\n"
"\tinside/outside/intersects this camera's viewing frustum.\n\n"
"\tbox = a list of the eight (8) corners of the box (in world coordinates.)\n\n"
"\tExample:\n"
"\timport bge.logic\n\n"
"\tco = bge.logic.getCurrentController()\n"
"\tcam = co.GetOwner()\n\n"
"\tbox = []\n"
"\tbox.append([-1.0, -1.0, -1.0])\n"
"\tbox.append([-1.0, -1.0, 1.0])\n"
"\tbox.append([-1.0, 1.0, -1.0])\n"
"\tbox.append([-1.0, 1.0, 1.0])\n"
"\tbox.append([ 1.0, -1.0, -1.0])\n"
"\tbox.append([ 1.0, -1.0, 1.0])\n"
"\tbox.append([ 1.0, 1.0, -1.0])\n"
"\tbox.append([ 1.0, 1.0, 1.0])\n\n"
"\tif (cam.boxInsideFrustum(box) != cam.OUTSIDE):\n"
"\t\t# Box is inside/intersects frustum !\n"
"\t\t# Do something useful !\n"
"\telse:\n"
"\t\t# Box is outside the frustum !\n"
)
{
unsigned int num_points = PySequence_Size(value);
if (num_points != 8)
{
PyErr_Format(PyExc_TypeError, "camera.boxInsideFrustum(box): KX_Camera, expected eight (8) points, got %d", num_points);
return NULL;
}
MT_Point3 box[8];
for (unsigned int p = 0; p < 8 ; p++)
{
PyObject *item = PySequence_GetItem(value, p); /* new ref */
bool error = !PyVecTo(item, box[p]);
Py_DECREF(item);
if (error)
return NULL;
}
return PyLong_FromLong(BoxInsideFrustum(box)); /* new ref */
}
KX_PYMETHODDEF_DOC_O(KX_Camera, pointInsideFrustum,
"pointInsideFrustum(point) -> Bool\n"
"\treturns 1 if the given point is inside this camera's viewing frustum.\n\n"
"\tpoint = The point to test (in world coordinates.)\n\n"
"\tExample:\n"
"\timport bge.logic\n\n"
"\tco = bge.logic.getCurrentController()\n"
"\tcam = co.GetOwner()\n\n"
"\t# Test point [0.0, 0.0, 0.0]"
"\tif (cam.pointInsideFrustum([0.0, 0.0, 0.0])):\n"
"\t\t# Point is inside frustum !\n"
"\t\t# Do something useful !\n"
"\telse:\n"
"\t\t# Box is outside the frustum !\n"
)
{
MT_Point3 point;
if (PyVecTo(value, point))
{
return PyLong_FromLong(PointInsideFrustum(point)); /* new ref */
}
PyErr_SetString(PyExc_TypeError, "camera.pointInsideFrustum(point): KX_Camera, expected point argument.");
return NULL;
}
KX_PYMETHODDEF_DOC_NOARGS(KX_Camera, getCameraToWorld,
"getCameraToWorld() -> Matrix4x4\n"
"\treturns the camera to world transformation matrix, as a list of four lists of four values.\n\n"
"\tie: [[1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 1.0]])\n"
)
{
return PyObjectFrom(GetCameraToWorld()); /* new ref */
}
KX_PYMETHODDEF_DOC_NOARGS(KX_Camera, getWorldToCamera,
"getWorldToCamera() -> Matrix4x4\n"
"\treturns the world to camera transformation matrix, as a list of four lists of four values.\n\n"
"\tie: [[1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 1.0]])\n"
)
{
return PyObjectFrom(GetWorldToCamera()); /* new ref */
}
KX_PYMETHODDEF_DOC_VARARGS(KX_Camera, setViewport,
"setViewport(left, bottom, right, top)\n"
"Sets this camera's viewport\n")
{
int left, bottom, right, top;
if (!PyArg_ParseTuple(args,"iiii:setViewport",&left, &bottom, &right, &top))
return NULL;
SetViewport(left, bottom, right, top);
Py_RETURN_NONE;
}
KX_PYMETHODDEF_DOC_NOARGS(KX_Camera, setOnTop,
"setOnTop()\n"
"Sets this camera's viewport on top\n")
{
class KX_Scene* scene = KX_GetActiveScene();
scene->SetCameraOnTop(this);
Py_RETURN_NONE;
}
PyObject *KX_Camera::pyattr_get_perspective(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
{
KX_Camera* self = static_cast<KX_Camera*>(self_v);
return PyBool_FromLong(self->m_camdata.m_perspective);
}
int KX_Camera::pyattr_set_perspective(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value)
{
KX_Camera* self = static_cast<KX_Camera*>(self_v);
int param = PyObject_IsTrue( value );
if (param == -1) {
PyErr_SetString(PyExc_AttributeError, "camera.perspective = bool: KX_Camera, expected True/False or 0/1");
return PY_SET_ATTR_FAIL;
}
self->m_camdata.m_perspective= param;
self->InvalidateProjectionMatrix();
return PY_SET_ATTR_SUCCESS;
}
PyObject *KX_Camera::pyattr_get_lens(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
{
KX_Camera* self = static_cast<KX_Camera*>(self_v);
return PyFloat_FromDouble(self->m_camdata.m_lens);
}
int KX_Camera::pyattr_set_lens(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value)
{
KX_Camera* self = static_cast<KX_Camera*>(self_v);
float param = PyFloat_AsDouble(value);
if (param == -1) {
PyErr_SetString(PyExc_AttributeError, "camera.lens = float: KX_Camera, expected a float greater than zero");
return PY_SET_ATTR_FAIL;
}
self->m_camdata.m_lens= param;
self->m_set_projection_matrix = false;
return PY_SET_ATTR_SUCCESS;
}
PyObject *KX_Camera::pyattr_get_fov(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
{
KX_Camera* self = static_cast<KX_Camera*>(self_v);
float lens = self->m_camdata.m_lens;
float width = self->m_camdata.m_sensor_x;
float fov = 2.0f * atanf(0.5f * width / lens);
return PyFloat_FromDouble(fov * MT_DEGS_PER_RAD);
}
int KX_Camera::pyattr_set_fov(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value)
{
KX_Camera* self = static_cast<KX_Camera*>(self_v);
float fov = PyFloat_AsDouble(value);
if (fov <= 0.0f) {
PyErr_SetString(PyExc_AttributeError, "camera.fov = float: KX_Camera, expected a float greater than zero");
return PY_SET_ATTR_FAIL;
}
fov *= MT_RADS_PER_DEG;
float width = self->m_camdata.m_sensor_x;
float lens = width / (2.0f * tanf(0.5f * fov));
self->m_camdata.m_lens= lens;
self->m_set_projection_matrix = false;
return PY_SET_ATTR_SUCCESS;
}
PyObject *KX_Camera::pyattr_get_ortho_scale(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
{
KX_Camera* self = static_cast<KX_Camera*>(self_v);
return PyFloat_FromDouble(self->m_camdata.m_scale);
}
int KX_Camera::pyattr_set_ortho_scale(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value)
{
KX_Camera* self = static_cast<KX_Camera*>(self_v);
float param = PyFloat_AsDouble(value);
if (param == -1) {
PyErr_SetString(PyExc_AttributeError, "camera.ortho_scale = float: KX_Camera, expected a float greater than zero");
return PY_SET_ATTR_FAIL;
}
self->m_camdata.m_scale= param;
self->m_set_projection_matrix = false;
return PY_SET_ATTR_SUCCESS;
}
PyObject *KX_Camera::pyattr_get_near(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
{
KX_Camera* self = static_cast<KX_Camera*>(self_v);
return PyFloat_FromDouble(self->m_camdata.m_clipstart);
}
int KX_Camera::pyattr_set_near(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value)
{
KX_Camera* self = static_cast<KX_Camera*>(self_v);
float param = PyFloat_AsDouble(value);
if (param == -1) {
PyErr_SetString(PyExc_AttributeError, "camera.near = float: KX_Camera, expected a float greater than zero");
return PY_SET_ATTR_FAIL;
}
self->m_camdata.m_clipstart= param;
self->m_set_projection_matrix = false;
return PY_SET_ATTR_SUCCESS;
}
PyObject *KX_Camera::pyattr_get_far(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
{
KX_Camera* self = static_cast<KX_Camera*>(self_v);
return PyFloat_FromDouble(self->m_camdata.m_clipend);
}
int KX_Camera::pyattr_set_far(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value)
{
KX_Camera* self = static_cast<KX_Camera*>(self_v);
float param = PyFloat_AsDouble(value);
if (param == -1) {
PyErr_SetString(PyExc_AttributeError, "camera.far = float: KX_Camera, expected a float greater than zero");
return PY_SET_ATTR_FAIL;
}
self->m_camdata.m_clipend= param;
self->m_set_projection_matrix = false;
return PY_SET_ATTR_SUCCESS;
}
PyObject *KX_Camera::pyattr_get_shift_x(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
{
KX_Camera* self = static_cast<KX_Camera*>(self_v);
return PyFloat_FromDouble(self->m_camdata.m_shift_x);
}
int KX_Camera::pyattr_set_shift_x(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value)
{
KX_Camera* self = static_cast<KX_Camera*>(self_v);
float param = PyFloat_AsDouble(value);
if (param == -1) {
PyErr_SetString(PyExc_AttributeError, "camera.shift_x = float: KX_Camera, expected a float greater than zero");
return PY_SET_ATTR_FAIL;
}
self->m_camdata.m_shift_x = param;
self->m_set_projection_matrix = false;
return PY_SET_ATTR_SUCCESS;
}
PyObject *KX_Camera::pyattr_get_shift_y(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
{
KX_Camera* self = static_cast<KX_Camera*>(self_v);
return PyFloat_FromDouble(self->m_camdata.m_shift_y);
}
int KX_Camera::pyattr_set_shift_y(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value)
{
KX_Camera* self = static_cast<KX_Camera*>(self_v);
float param = PyFloat_AsDouble(value);
if (param == -1) {
PyErr_SetString(PyExc_AttributeError, "camera.shift_y = float: KX_Camera, expected a float greater than zero");
return PY_SET_ATTR_FAIL;
}
self->m_camdata.m_shift_y = param;
self->m_set_projection_matrix = false;
return PY_SET_ATTR_SUCCESS;
}
PyObject *KX_Camera::pyattr_get_use_viewport(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
{
KX_Camera* self = static_cast<KX_Camera*>(self_v);
return PyBool_FromLong(self->GetViewport());
}
int KX_Camera::pyattr_set_use_viewport(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value)
{
KX_Camera* self = static_cast<KX_Camera*>(self_v);
int param = PyObject_IsTrue( value );
if (param == -1) {
PyErr_SetString(PyExc_AttributeError, "camera.useViewport = bool: KX_Camera, expected True or False");
return PY_SET_ATTR_FAIL;
}
self->EnableViewport((bool)param);
return PY_SET_ATTR_SUCCESS;
}
PyObject *KX_Camera::pyattr_get_projection_matrix(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
{
KX_Camera* self = static_cast<KX_Camera*>(self_v);
return PyObjectFrom(self->GetProjectionMatrix());
}
int KX_Camera::pyattr_set_projection_matrix(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value)
{
KX_Camera* self = static_cast<KX_Camera*>(self_v);
MT_Matrix4x4 mat;
if (!PyMatTo(value, mat))
return PY_SET_ATTR_FAIL;
self->SetProjectionMatrix(mat);
return PY_SET_ATTR_SUCCESS;
}
PyObject *KX_Camera::pyattr_get_modelview_matrix(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
{
KX_Camera* self = static_cast<KX_Camera*>(self_v);
return PyObjectFrom(self->GetWorldToCamera());
}
PyObject *KX_Camera::pyattr_get_camera_to_world(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
{
KX_Camera* self = static_cast<KX_Camera*>(self_v);
return PyObjectFrom(self->GetCameraToWorld());
}
PyObject *KX_Camera::pyattr_get_world_to_camera(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
{
KX_Camera* self = static_cast<KX_Camera*>(self_v);
return PyObjectFrom(self->GetWorldToCamera());
}
PyObject *KX_Camera::pyattr_get_INSIDE(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
{ return PyLong_FromLong(INSIDE); }
PyObject *KX_Camera::pyattr_get_OUTSIDE(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
{ return PyLong_FromLong(OUTSIDE); }
PyObject *KX_Camera::pyattr_get_INTERSECT(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
{ return PyLong_FromLong(INTERSECT); }
bool ConvertPythonToCamera(PyObject *value, KX_Camera **object, bool py_none_ok, const char *error_prefix)
{
if (value==NULL) {
PyErr_Format(PyExc_TypeError, "%s, python pointer NULL, should never happen", error_prefix);
*object = NULL;
return false;
}
if (value==Py_None) {
*object = NULL;
if (py_none_ok) {
return true;
} else {
PyErr_Format(PyExc_TypeError, "%s, expected KX_Camera or a KX_Camera name, None is invalid", error_prefix);
return false;
}
}
if (PyUnicode_Check(value)) {
STR_String value_str = _PyUnicode_AsString(value);
*object = KX_GetActiveScene()->FindCamera(value_str);
if (*object) {
return true;
} else {
PyErr_Format(PyExc_ValueError,
"%s, requested name \"%s\" did not match any KX_Camera in this scene",
error_prefix, _PyUnicode_AsString(value));
return false;
}
}
if (PyObject_TypeCheck(value, &KX_Camera::Type)) {
*object = static_cast<KX_Camera*>BGE_PROXY_REF(value);
/* sets the error */
if (*object==NULL) {
PyErr_Format(PyExc_SystemError, "%s, " BGE_PROXY_ERROR_MSG, error_prefix);
return false;
}
return true;
}
*object = NULL;
if (py_none_ok) {
PyErr_Format(PyExc_TypeError, "%s, expect a KX_Camera, a string or None", error_prefix);
} else {
PyErr_Format(PyExc_TypeError, "%s, expect a KX_Camera or a string", error_prefix);
}
return false;
}
KX_PYMETHODDEF_DOC_O(KX_Camera, getScreenPosition,
"getScreenPosition()\n"
)
{
MT_Vector3 vect;
KX_GameObject *obj = NULL;
if (!PyVecTo(value, vect))
{
PyErr_Clear();
if (ConvertPythonToGameObject(GetScene()->GetLogicManager(), value, &obj, true, ""))
{
PyErr_Clear();
vect = MT_Vector3(obj->NodeGetWorldPosition());
}
else
{
PyErr_SetString(PyExc_TypeError, "Error in getScreenPosition. Expected a Vector3 or a KX_GameObject or a string for a name of a KX_GameObject");
return NULL;
}
}
const GLint *viewport;
GLdouble win[3];
GLdouble modelmatrix[16];
GLdouble projmatrix[16];
MT_Matrix4x4 m_modelmatrix = this->GetWorldToCamera();
MT_Matrix4x4 m_projmatrix = this->GetProjectionMatrix();
m_modelmatrix.getValue(modelmatrix);
m_projmatrix.getValue(projmatrix);
viewport = KX_GetActiveEngine()->GetCanvas()->GetViewPort();
gluProject(vect[0], vect[1], vect[2], modelmatrix, projmatrix, viewport, &win[0], &win[1], &win[2]);
vect[0] = (win[0] - viewport[0]) / viewport[2];
vect[1] = (win[1] - viewport[1]) / viewport[3];
vect[1] = 1.0f - vect[1]; //to follow Blender window coordinate system (Top-Down)
PyObject *ret = PyTuple_New(2);
if (ret) {
PyTuple_SET_ITEM(ret, 0, PyFloat_FromDouble(vect[0]));
PyTuple_SET_ITEM(ret, 1, PyFloat_FromDouble(vect[1]));
return ret;
}
return NULL;
}
KX_PYMETHODDEF_DOC_VARARGS(KX_Camera, getScreenVect,
"getScreenVect()\n"
)
{
double x,y;
if (!PyArg_ParseTuple(args,"dd:getScreenVect",&x,&y))
return NULL;
y = 1.0 - y; //to follow Blender window coordinate system (Top-Down)
MT_Vector3 vect;
MT_Point3 campos, screenpos;
const GLint *viewport;
GLdouble win[3];
GLdouble modelmatrix[16];
GLdouble projmatrix[16];
MT_Matrix4x4 m_modelmatrix = this->GetWorldToCamera();
MT_Matrix4x4 m_projmatrix = this->GetProjectionMatrix();
m_modelmatrix.getValue(modelmatrix);
m_projmatrix.getValue(projmatrix);
viewport = KX_GetActiveEngine()->GetCanvas()->GetViewPort();
vect[0] = x * viewport[2];
vect[1] = y * viewport[3];
vect[0] += viewport[0];
vect[1] += viewport[1];
vect[2] = 0.f;
gluUnProject(vect[0], vect[1], vect[2], modelmatrix, projmatrix, viewport, &win[0], &win[1], &win[2]);
campos = this->GetCameraLocation();
screenpos = MT_Point3(win[0], win[1], win[2]);
vect = campos-screenpos;
vect.normalize();
return PyObjectFrom(vect);
}
KX_PYMETHODDEF_DOC_VARARGS(KX_Camera, getScreenRay,
"getScreenRay()\n"
)
{
MT_Vector3 vect;
double x,y,dist;
char *propName = NULL;
if (!PyArg_ParseTuple(args,"ddd|s:getScreenRay",&x,&y,&dist,&propName))
return NULL;
PyObject *argValue = PyTuple_New(2);
PyTuple_SET_ITEM(argValue, 0, PyFloat_FromDouble(x));
PyTuple_SET_ITEM(argValue, 1, PyFloat_FromDouble(y));
if (!PyVecTo(PygetScreenVect(argValue), vect))
{
Py_DECREF(argValue);
PyErr_SetString(PyExc_TypeError,
"Error in getScreenRay. Invalid 2D coordinate. "
"Expected a normalized 2D screen coordinate, "
"a distance and an optional property argument");
return NULL;
}
Py_DECREF(argValue);
dist = -dist;
vect += this->GetCameraLocation();
argValue = (propName?PyTuple_New(3):PyTuple_New(2));
if (argValue) {
PyTuple_SET_ITEM(argValue, 0, PyObjectFrom(vect));
PyTuple_SET_ITEM(argValue, 1, PyFloat_FromDouble(dist));
if (propName)
PyTuple_SET_ITEM(argValue, 2, PyUnicode_FromString(propName));
PyObject *ret= this->PyrayCastTo(argValue,NULL);
Py_DECREF(argValue);
return ret;
}
return NULL;
}
#endif