7f4479da42
This commit contains all the work related on the AMD megakernel split work which was mainly done by Varun Sundar, George Kyriazis and Lenny Wang, plus some help from Sergey Sharybin, Martijn Berger, Thomas Dinges and likely someone else which we're forgetting to mention. Currently only AMD cards are enabled for the new split kernel, but it is possible to force split opencl kernel to be used by setting the following environment variable: CYCLES_OPENCL_SPLIT_KERNEL_TEST=1. Not all the features are supported yet, and that being said no motion blur, camera blur, SSS and volumetrics for now. Also transparent shadows are disabled on AMD device because of some compiler bug. This kernel is also only implements regular path tracing and supporting branched one will take a bit. Branched path tracing is exposed to the interface still, which is a bit misleading and will be hidden there soon. More feature will be enabled once they're ported to the split kernel and tested. Neither regular CPU nor CUDA has any difference, they're generating the same exact code, which means no regressions/improvements there. Based on the research paper: https://research.nvidia.com/sites/default/files/publications/laine2013hpg_paper.pdf Here's the documentation: https://docs.google.com/document/d/1LuXW-CV-sVJkQaEGZlMJ86jZ8FmoPfecaMdR-oiWbUY/edit Design discussion of the patch: https://developer.blender.org/T44197 Differential Revision: https://developer.blender.org/D1200
310 lines
9.5 KiB
C
310 lines
9.5 KiB
C
/*
|
|
* Copyright 2011-2013 Blender Foundation
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
#if defined(__BRANCHED_PATH__) || defined(__SUBSURFACE__)
|
|
|
|
/* branched path tracing: connect path directly to position on one or more lights and add it to L */
|
|
ccl_device void kernel_branched_path_surface_connect_light(KernelGlobals *kg, RNG *rng,
|
|
ShaderData *sd, PathState *state, float3 throughput, float num_samples_adjust, PathRadiance *L, bool sample_all_lights)
|
|
{
|
|
#ifdef __EMISSION__
|
|
/* sample illumination from lights to find path contribution */
|
|
if(!(ccl_fetch(sd, flag) & SD_BSDF_HAS_EVAL))
|
|
return;
|
|
|
|
Ray light_ray;
|
|
BsdfEval L_light;
|
|
bool is_lamp;
|
|
|
|
#ifdef __OBJECT_MOTION__
|
|
light_ray.time = ccl_fetch(sd, time);
|
|
#endif
|
|
|
|
if(sample_all_lights) {
|
|
/* lamp sampling */
|
|
for(int i = 0; i < kernel_data.integrator.num_all_lights; i++) {
|
|
if(UNLIKELY(light_select_reached_max_bounces(kg, i, state->bounce)))
|
|
continue;
|
|
|
|
int num_samples = ceil_to_int(num_samples_adjust*light_select_num_samples(kg, i));
|
|
float num_samples_inv = num_samples_adjust/(num_samples*kernel_data.integrator.num_all_lights);
|
|
RNG lamp_rng = cmj_hash(*rng, i);
|
|
|
|
if(kernel_data.integrator.pdf_triangles != 0.0f)
|
|
num_samples_inv *= 0.5f;
|
|
|
|
for(int j = 0; j < num_samples; j++) {
|
|
float light_u, light_v;
|
|
path_branched_rng_2D(kg, &lamp_rng, state, j, num_samples, PRNG_LIGHT_U, &light_u, &light_v);
|
|
|
|
LightSample ls;
|
|
lamp_light_sample(kg, i, light_u, light_v, ccl_fetch(sd, P), &ls);
|
|
|
|
if(direct_emission(kg, sd, &ls, &light_ray, &L_light, &is_lamp, state->bounce, state->transparent_bounce)) {
|
|
/* trace shadow ray */
|
|
float3 shadow;
|
|
|
|
if(!shadow_blocked(kg, state, &light_ray, &shadow)) {
|
|
/* accumulate */
|
|
path_radiance_accum_light(L, throughput*num_samples_inv, &L_light, shadow, num_samples_inv, state->bounce, is_lamp);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* mesh light sampling */
|
|
if(kernel_data.integrator.pdf_triangles != 0.0f) {
|
|
int num_samples = ceil_to_int(num_samples_adjust*kernel_data.integrator.mesh_light_samples);
|
|
float num_samples_inv = num_samples_adjust/num_samples;
|
|
|
|
if(kernel_data.integrator.num_all_lights)
|
|
num_samples_inv *= 0.5f;
|
|
|
|
for(int j = 0; j < num_samples; j++) {
|
|
float light_t = path_branched_rng_1D(kg, rng, state, j, num_samples, PRNG_LIGHT);
|
|
float light_u, light_v;
|
|
path_branched_rng_2D(kg, rng, state, j, num_samples, PRNG_LIGHT_U, &light_u, &light_v);
|
|
|
|
/* only sample triangle lights */
|
|
if(kernel_data.integrator.num_all_lights)
|
|
light_t = 0.5f*light_t;
|
|
|
|
LightSample ls;
|
|
light_sample(kg, light_t, light_u, light_v, ccl_fetch(sd, time), ccl_fetch(sd, P), state->bounce, &ls);
|
|
|
|
if(direct_emission(kg, sd, &ls, &light_ray, &L_light, &is_lamp, state->bounce, state->transparent_bounce)) {
|
|
/* trace shadow ray */
|
|
float3 shadow;
|
|
|
|
if(!shadow_blocked(kg, state, &light_ray, &shadow)) {
|
|
/* accumulate */
|
|
path_radiance_accum_light(L, throughput*num_samples_inv, &L_light, shadow, num_samples_inv, state->bounce, is_lamp);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
/* sample one light at random */
|
|
float light_t = path_state_rng_1D(kg, rng, state, PRNG_LIGHT);
|
|
float light_u, light_v;
|
|
path_state_rng_2D(kg, rng, state, PRNG_LIGHT_U, &light_u, &light_v);
|
|
|
|
LightSample ls;
|
|
light_sample(kg, light_t, light_u, light_v, ccl_fetch(sd, time), ccl_fetch(sd, P), state->bounce, &ls);
|
|
|
|
/* sample random light */
|
|
if(direct_emission(kg, sd, &ls, &light_ray, &L_light, &is_lamp, state->bounce, state->transparent_bounce)) {
|
|
/* trace shadow ray */
|
|
float3 shadow;
|
|
|
|
if(!shadow_blocked(kg, state, &light_ray, &shadow)) {
|
|
/* accumulate */
|
|
path_radiance_accum_light(L, throughput*num_samples_adjust, &L_light, shadow, num_samples_adjust, state->bounce, is_lamp);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* branched path tracing: bounce off or through surface to with new direction stored in ray */
|
|
ccl_device bool kernel_branched_path_surface_bounce(KernelGlobals *kg, RNG *rng,
|
|
ShaderData *sd, const ShaderClosure *sc, int sample, int num_samples,
|
|
float3 *throughput, PathState *state, PathRadiance *L, Ray *ray)
|
|
{
|
|
/* sample BSDF */
|
|
float bsdf_pdf;
|
|
BsdfEval bsdf_eval;
|
|
float3 bsdf_omega_in;
|
|
differential3 bsdf_domega_in;
|
|
float bsdf_u, bsdf_v;
|
|
path_branched_rng_2D(kg, rng, state, sample, num_samples, PRNG_BSDF_U, &bsdf_u, &bsdf_v);
|
|
int label;
|
|
|
|
label = shader_bsdf_sample_closure(kg, sd, sc, bsdf_u, bsdf_v, &bsdf_eval,
|
|
&bsdf_omega_in, &bsdf_domega_in, &bsdf_pdf);
|
|
|
|
if(bsdf_pdf == 0.0f || bsdf_eval_is_zero(&bsdf_eval))
|
|
return false;
|
|
|
|
/* modify throughput */
|
|
path_radiance_bsdf_bounce(L, throughput, &bsdf_eval, bsdf_pdf, state->bounce, label);
|
|
|
|
/* modify path state */
|
|
path_state_next(kg, state, label);
|
|
|
|
/* setup ray */
|
|
ray->P = ray_offset(ccl_fetch(sd, P), (label & LABEL_TRANSMIT)? -ccl_fetch(sd, Ng): ccl_fetch(sd, Ng));
|
|
ray->D = bsdf_omega_in;
|
|
ray->t = FLT_MAX;
|
|
#ifdef __RAY_DIFFERENTIALS__
|
|
ray->dP = ccl_fetch(sd, dP);
|
|
ray->dD = bsdf_domega_in;
|
|
#endif
|
|
#ifdef __OBJECT_MOTION__
|
|
ray->time = ccl_fetch(sd, time);
|
|
#endif
|
|
|
|
#ifdef __VOLUME__
|
|
/* enter/exit volume */
|
|
if(label & LABEL_TRANSMIT)
|
|
kernel_volume_stack_enter_exit(kg, sd, state->volume_stack);
|
|
#endif
|
|
|
|
/* branch RNG state */
|
|
path_state_branch(state, sample, num_samples);
|
|
|
|
/* set MIS state */
|
|
state->min_ray_pdf = fminf(bsdf_pdf, FLT_MAX);
|
|
state->ray_pdf = bsdf_pdf;
|
|
#ifdef __LAMP_MIS__
|
|
state->ray_t = 0.0f;
|
|
#endif
|
|
|
|
return true;
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifndef __SPLIT_KERNEL__
|
|
/* path tracing: connect path directly to position on a light and add it to L */
|
|
ccl_device_inline void kernel_path_surface_connect_light(KernelGlobals *kg, ccl_addr_space RNG *rng,
|
|
ShaderData *sd, float3 throughput, ccl_addr_space PathState *state, PathRadiance *L)
|
|
{
|
|
#ifdef __EMISSION__
|
|
if(!(kernel_data.integrator.use_direct_light && (ccl_fetch(sd, flag) & SD_BSDF_HAS_EVAL)))
|
|
return;
|
|
|
|
/* sample illumination from lights to find path contribution */
|
|
float light_t = path_state_rng_1D(kg, rng, state, PRNG_LIGHT);
|
|
float light_u, light_v;
|
|
path_state_rng_2D(kg, rng, state, PRNG_LIGHT_U, &light_u, &light_v);
|
|
|
|
Ray light_ray;
|
|
BsdfEval L_light;
|
|
bool is_lamp;
|
|
|
|
#ifdef __OBJECT_MOTION__
|
|
light_ray.time = ccl_fetch(sd, time);
|
|
#endif
|
|
|
|
LightSample ls;
|
|
light_sample(kg, light_t, light_u, light_v, ccl_fetch(sd, time), ccl_fetch(sd, P), state->bounce, &ls);
|
|
|
|
if(direct_emission(kg, sd, &ls, &light_ray, &L_light, &is_lamp, state->bounce, state->transparent_bounce)) {
|
|
/* trace shadow ray */
|
|
float3 shadow;
|
|
|
|
if(!shadow_blocked(kg, state, &light_ray, &shadow)) {
|
|
/* accumulate */
|
|
path_radiance_accum_light(L, throughput, &L_light, shadow, 1.0f, state->bounce, is_lamp);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
/* path tracing: bounce off or through surface to with new direction stored in ray */
|
|
ccl_device_inline bool kernel_path_surface_bounce(KernelGlobals *kg, ccl_addr_space RNG *rng,
|
|
ShaderData *sd, ccl_addr_space float3 *throughput, ccl_addr_space PathState *state, PathRadiance *L, ccl_addr_space Ray *ray)
|
|
{
|
|
/* no BSDF? we can stop here */
|
|
if(ccl_fetch(sd, flag) & SD_BSDF) {
|
|
/* sample BSDF */
|
|
float bsdf_pdf;
|
|
BsdfEval bsdf_eval;
|
|
float3 bsdf_omega_in;
|
|
differential3 bsdf_domega_in;
|
|
float bsdf_u, bsdf_v;
|
|
path_state_rng_2D(kg, rng, state, PRNG_BSDF_U, &bsdf_u, &bsdf_v);
|
|
int label;
|
|
|
|
label = shader_bsdf_sample(kg, sd, bsdf_u, bsdf_v, &bsdf_eval,
|
|
&bsdf_omega_in, &bsdf_domega_in, &bsdf_pdf);
|
|
|
|
if(bsdf_pdf == 0.0f || bsdf_eval_is_zero(&bsdf_eval))
|
|
return false;
|
|
|
|
/* modify throughput */
|
|
path_radiance_bsdf_bounce(L, throughput, &bsdf_eval, bsdf_pdf, state->bounce, label);
|
|
|
|
/* set labels */
|
|
if(!(label & LABEL_TRANSPARENT)) {
|
|
state->ray_pdf = bsdf_pdf;
|
|
#ifdef __LAMP_MIS__
|
|
state->ray_t = 0.0f;
|
|
#endif
|
|
state->min_ray_pdf = fminf(bsdf_pdf, state->min_ray_pdf);
|
|
}
|
|
|
|
/* update path state */
|
|
path_state_next(kg, state, label);
|
|
|
|
/* setup ray */
|
|
ray->P = ray_offset(ccl_fetch(sd, P), (label & LABEL_TRANSMIT)? -ccl_fetch(sd, Ng): ccl_fetch(sd, Ng));
|
|
ray->D = bsdf_omega_in;
|
|
|
|
if(state->bounce == 0)
|
|
ray->t -= ccl_fetch(sd, ray_length); /* clipping works through transparent */
|
|
else
|
|
ray->t = FLT_MAX;
|
|
|
|
#ifdef __RAY_DIFFERENTIALS__
|
|
ray->dP = ccl_fetch(sd, dP);
|
|
ray->dD = bsdf_domega_in;
|
|
#endif
|
|
|
|
#ifdef __VOLUME__
|
|
/* enter/exit volume */
|
|
if(label & LABEL_TRANSMIT)
|
|
kernel_volume_stack_enter_exit(kg, sd, state->volume_stack);
|
|
#endif
|
|
return true;
|
|
}
|
|
#ifdef __VOLUME__
|
|
else if(ccl_fetch(sd, flag) & SD_HAS_ONLY_VOLUME) {
|
|
/* no surface shader but have a volume shader? act transparent */
|
|
|
|
/* update path state, count as transparent */
|
|
path_state_next(kg, state, LABEL_TRANSPARENT);
|
|
|
|
if(state->bounce == 0)
|
|
ray->t -= ccl_fetch(sd, ray_length); /* clipping works through transparent */
|
|
else
|
|
ray->t = FLT_MAX;
|
|
|
|
/* setup ray position, direction stays unchanged */
|
|
ray->P = ray_offset(ccl_fetch(sd, P), -ccl_fetch(sd, Ng));
|
|
#ifdef __RAY_DIFFERENTIALS__
|
|
ray->dP = ccl_fetch(sd, dP);
|
|
#endif
|
|
|
|
/* enter/exit volume */
|
|
kernel_volume_stack_enter_exit(kg, sd, state->volume_stack);
|
|
return true;
|
|
}
|
|
#endif
|
|
else {
|
|
/* no bsdf or volume? */
|
|
return false;
|
|
}
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|
|
|