blender/intern/cycles/render/image.cpp
Mai Lavelle 06bf34227b Revert "Cycles: Fix crash changing image after recent OpenCL changes"
This reverts commit f2809ae0a671057caa1005e2b9cc91648c33dd1f.
2017-08-09 04:24:03 -04:00

1102 lines
32 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "device/device.h"
#include "render/image.h"
#include "render/scene.h"
#include "util/util_foreach.h"
#include "util/util_logging.h"
#include "util/util_path.h"
#include "util/util_progress.h"
#include "util/util_texture.h"
#ifdef WITH_OSL
#include <OSL/oslexec.h>
#endif
CCL_NAMESPACE_BEGIN
/* Some helpers to silence warning in templated function. */
static bool isfinite(uchar /*value*/)
{
return false;
}
static bool isfinite(half /*value*/)
{
return false;
}
ImageManager::ImageManager(const DeviceInfo& info)
{
need_update = true;
osl_texture_system = NULL;
animation_frame = 0;
/* In case of multiple devices used we need to know type of an actual
* compute device.
*
* NOTE: We assume that all the devices are same type, otherwise we'll
* be screwed on so many levels..
*/
DeviceType device_type = info.type;
if(device_type == DEVICE_MULTI) {
device_type = info.multi_devices[0].type;
}
/* Set image limits */
max_num_images = TEX_NUM_MAX;
has_half_images = true;
cuda_fermi_limits = false;
if(device_type == DEVICE_CUDA) {
if(!info.has_bindless_textures) {
/* CUDA Fermi hardware (SM 2.x) has a hard limit on the number of textures */
cuda_fermi_limits = true;
has_half_images = false;
}
}
else if(device_type == DEVICE_OPENCL) {
has_half_images = false;
}
for(size_t type = 0; type < IMAGE_DATA_NUM_TYPES; type++) {
tex_num_images[type] = 0;
}
}
ImageManager::~ImageManager()
{
for(size_t type = 0; type < IMAGE_DATA_NUM_TYPES; type++) {
for(size_t slot = 0; slot < images[type].size(); slot++)
assert(!images[type][slot]);
}
}
void ImageManager::set_osl_texture_system(void *texture_system)
{
osl_texture_system = texture_system;
}
bool ImageManager::set_animation_frame_update(int frame)
{
if(frame != animation_frame) {
animation_frame = frame;
for(size_t type = 0; type < IMAGE_DATA_NUM_TYPES; type++) {
for(size_t slot = 0; slot < images[type].size(); slot++) {
if(images[type][slot] && images[type][slot]->animated)
return true;
}
}
}
return false;
}
ImageDataType ImageManager::get_image_metadata(const string& filename,
void *builtin_data,
bool& is_linear,
bool& builtin_free_cache)
{
bool is_float = false, is_half = false;
is_linear = false;
builtin_free_cache = false;
int channels = 4;
if(builtin_data) {
if(builtin_image_info_cb) {
int width, height, depth;
builtin_image_info_cb(filename, builtin_data, is_float, width, height, depth, channels, builtin_free_cache);
}
if(is_float) {
is_linear = true;
return (channels > 1) ? IMAGE_DATA_TYPE_FLOAT4 : IMAGE_DATA_TYPE_FLOAT;
}
else {
return (channels > 1) ? IMAGE_DATA_TYPE_BYTE4 : IMAGE_DATA_TYPE_BYTE;
}
}
/* Perform preliminary checks, with meaningful logging. */
if(!path_exists(filename)) {
VLOG(1) << "File '" << filename << "' does not exist.";
return IMAGE_DATA_TYPE_BYTE4;
}
if(path_is_directory(filename)) {
VLOG(1) << "File '" << filename << "' is a directory, can't use as image.";
return IMAGE_DATA_TYPE_BYTE4;
}
ImageInput *in = ImageInput::create(filename);
if(in) {
ImageSpec spec;
if(in->open(filename, spec)) {
/* check the main format, and channel formats;
* if any take up more than one byte, we'll need a float texture slot */
if(spec.format.basesize() > 1) {
is_float = true;
is_linear = true;
}
for(size_t channel = 0; channel < spec.channelformats.size(); channel++) {
if(spec.channelformats[channel].basesize() > 1) {
is_float = true;
is_linear = true;
}
}
/* check if it's half float */
if(spec.format == TypeDesc::HALF)
is_half = true;
channels = spec.nchannels;
/* basic color space detection, not great but better than nothing
* before we do OpenColorIO integration */
if(is_float) {
string colorspace = spec.get_string_attribute("oiio:ColorSpace");
is_linear = !(colorspace == "sRGB" ||
colorspace == "GammaCorrected" ||
(colorspace == "" &&
(strcmp(in->format_name(), "png") == 0 ||
strcmp(in->format_name(), "tiff") == 0 ||
strcmp(in->format_name(), "dpx") == 0 ||
strcmp(in->format_name(), "jpeg2000") == 0)));
}
else {
is_linear = false;
}
in->close();
}
delete in;
}
if(is_half) {
return (channels > 1) ? IMAGE_DATA_TYPE_HALF4 : IMAGE_DATA_TYPE_HALF;
}
else if(is_float) {
return (channels > 1) ? IMAGE_DATA_TYPE_FLOAT4 : IMAGE_DATA_TYPE_FLOAT;
}
else {
return (channels > 1) ? IMAGE_DATA_TYPE_BYTE4 : IMAGE_DATA_TYPE_BYTE;
}
}
int ImageManager::max_flattened_slot(ImageDataType type)
{
if(tex_num_images[type] == 0) {
/* No textures for the type, no slots needs allocation. */
return 0;
}
return type_index_to_flattened_slot(tex_num_images[type], type);
}
/* The lower three bits of a device texture slot number indicate its type.
* These functions convert the slot ids from ImageManager "images" ones
* to device ones and vice verse.
*/
int ImageManager::type_index_to_flattened_slot(int slot, ImageDataType type)
{
return (slot << IMAGE_DATA_TYPE_SHIFT) | (type);
}
int ImageManager::flattened_slot_to_type_index(int flat_slot, ImageDataType *type)
{
*type = (ImageDataType)(flat_slot & IMAGE_DATA_TYPE_MASK);
return flat_slot >> IMAGE_DATA_TYPE_SHIFT;
}
string ImageManager::name_from_type(int type)
{
if(type == IMAGE_DATA_TYPE_FLOAT4)
return "float4";
else if(type == IMAGE_DATA_TYPE_FLOAT)
return "float";
else if(type == IMAGE_DATA_TYPE_BYTE)
return "byte";
else if(type == IMAGE_DATA_TYPE_HALF4)
return "half4";
else if(type == IMAGE_DATA_TYPE_HALF)
return "half";
else
return "byte4";
}
static bool image_equals(ImageManager::Image *image,
const string& filename,
void *builtin_data,
InterpolationType interpolation,
ExtensionType extension,
bool use_alpha)
{
return image->filename == filename &&
image->builtin_data == builtin_data &&
image->interpolation == interpolation &&
image->extension == extension &&
image->use_alpha == use_alpha;
}
int ImageManager::add_image(const string& filename,
void *builtin_data,
bool animated,
float frame,
bool& is_float,
bool& is_linear,
InterpolationType interpolation,
ExtensionType extension,
bool use_alpha)
{
Image *img;
size_t slot;
bool builtin_free_cache;
ImageDataType type = get_image_metadata(filename, builtin_data, is_linear, builtin_free_cache);
thread_scoped_lock device_lock(device_mutex);
/* Check whether it's a float texture. */
is_float = (type == IMAGE_DATA_TYPE_FLOAT || type == IMAGE_DATA_TYPE_FLOAT4);
/* No single channel and half textures on CUDA (Fermi) and no half on OpenCL, use available slots */
if(!has_half_images) {
if(type == IMAGE_DATA_TYPE_HALF4) {
type = IMAGE_DATA_TYPE_FLOAT4;
}
else if(type == IMAGE_DATA_TYPE_HALF) {
type = IMAGE_DATA_TYPE_FLOAT;
}
}
if(cuda_fermi_limits) {
if(type == IMAGE_DATA_TYPE_FLOAT) {
type = IMAGE_DATA_TYPE_FLOAT4;
}
else if(type == IMAGE_DATA_TYPE_BYTE) {
type = IMAGE_DATA_TYPE_BYTE4;
}
}
/* Fnd existing image. */
for(slot = 0; slot < images[type].size(); slot++) {
img = images[type][slot];
if(img && image_equals(img,
filename,
builtin_data,
interpolation,
extension,
use_alpha))
{
if(img->frame != frame) {
img->frame = frame;
img->need_load = true;
}
if(img->use_alpha != use_alpha) {
img->use_alpha = use_alpha;
img->need_load = true;
}
img->users++;
return type_index_to_flattened_slot(slot, type);
}
}
/* Find free slot. */
for(slot = 0; slot < images[type].size(); slot++) {
if(!images[type][slot])
break;
}
/* Count if we're over the limit */
if(cuda_fermi_limits) {
if(tex_num_images[IMAGE_DATA_TYPE_BYTE4] == TEX_NUM_BYTE4_CUDA
|| tex_num_images[IMAGE_DATA_TYPE_FLOAT4] == TEX_NUM_FLOAT4_CUDA)
{
printf("ImageManager::add_image: Reached %s image limit (%d), skipping '%s'\n",
name_from_type(type).c_str(), tex_num_images[type], filename.c_str());
return -1;
}
}
else {
/* Very unlikely, since max_num_images is insanely big. But better safe than sorry. */
int tex_count = 0;
for(int type = 0; type < IMAGE_DATA_NUM_TYPES; type++) {
tex_count += tex_num_images[type];
}
if(tex_count > max_num_images) {
printf("ImageManager::add_image: Reached image limit (%d), skipping '%s'\n",
max_num_images, filename.c_str());
return -1;
}
}
if(slot == images[type].size()) {
images[type].resize(images[type].size() + 1);
}
/* Add new image. */
img = new Image();
img->filename = filename;
img->builtin_data = builtin_data;
img->builtin_free_cache = builtin_free_cache;
img->need_load = true;
img->animated = animated;
img->frame = frame;
img->interpolation = interpolation;
img->extension = extension;
img->users = 1;
img->use_alpha = use_alpha;
images[type][slot] = img;
++tex_num_images[type];
need_update = true;
return type_index_to_flattened_slot(slot, type);
}
void ImageManager::remove_image(int flat_slot)
{
ImageDataType type;
int slot = flattened_slot_to_type_index(flat_slot, &type);
Image *image = images[type][slot];
assert(image && image->users >= 1);
/* decrement user count */
image->users--;
/* don't remove immediately, rather do it all together later on. one of
* the reasons for this is that on shader changes we add and remove nodes
* that use them, but we do not want to reload the image all the time. */
if(image->users == 0)
need_update = true;
}
void ImageManager::remove_image(const string& filename,
void *builtin_data,
InterpolationType interpolation,
ExtensionType extension,
bool use_alpha)
{
size_t slot;
for(int type = 0; type < IMAGE_DATA_NUM_TYPES; type++) {
for(slot = 0; slot < images[type].size(); slot++) {
if(images[type][slot] && image_equals(images[type][slot],
filename,
builtin_data,
interpolation,
extension,
use_alpha))
{
remove_image(type_index_to_flattened_slot(slot, (ImageDataType)type));
return;
}
}
}
}
/* TODO(sergey): Deduplicate with the iteration above, but make it pretty,
* without bunch of arguments passing around making code readability even
* more cluttered.
*/
void ImageManager::tag_reload_image(const string& filename,
void *builtin_data,
InterpolationType interpolation,
ExtensionType extension,
bool use_alpha)
{
for(size_t type = 0; type < IMAGE_DATA_NUM_TYPES; type++) {
for(size_t slot = 0; slot < images[type].size(); slot++) {
if(images[type][slot] && image_equals(images[type][slot],
filename,
builtin_data,
interpolation,
extension,
use_alpha))
{
images[type][slot]->need_load = true;
break;
}
}
}
}
bool ImageManager::file_load_image_generic(Image *img,
ImageInput **in,
int &width,
int &height,
int &depth,
int &components)
{
if(img->filename == "")
return false;
if(!img->builtin_data) {
/* NOTE: Error logging is done in meta data acquisition. */
if(!path_exists(img->filename) || path_is_directory(img->filename)) {
return false;
}
/* load image from file through OIIO */
*in = ImageInput::create(img->filename);
if(!*in)
return false;
ImageSpec spec = ImageSpec();
ImageSpec config = ImageSpec();
if(img->use_alpha == false)
config.attribute("oiio:UnassociatedAlpha", 1);
if(!(*in)->open(img->filename, spec, config)) {
delete *in;
*in = NULL;
return false;
}
width = spec.width;
height = spec.height;
depth = spec.depth;
components = spec.nchannels;
}
else {
/* load image using builtin images callbacks */
if(!builtin_image_info_cb || !builtin_image_pixels_cb)
return false;
bool is_float, free_cache;
builtin_image_info_cb(img->filename, img->builtin_data, is_float, width, height, depth, components, free_cache);
}
/* we only handle certain number of components */
if(!(components >= 1 && components <= 4)) {
if(*in) {
(*in)->close();
delete *in;
*in = NULL;
}
return false;
}
return true;
}
template<TypeDesc::BASETYPE FileFormat,
typename StorageType,
typename DeviceType>
bool ImageManager::file_load_image(Image *img,
ImageDataType type,
int texture_limit,
device_vector<DeviceType>& tex_img)
{
const StorageType alpha_one = (FileFormat == TypeDesc::UINT8)? 255 : 1;
ImageInput *in = NULL;
int width, height, depth, components;
if(!file_load_image_generic(img, &in, width, height, depth, components)) {
return false;
}
/* Read RGBA pixels. */
vector<StorageType> pixels_storage;
StorageType *pixels;
const size_t max_size = max(max(width, height), depth);
if(texture_limit > 0 && max_size > texture_limit) {
pixels_storage.resize(((size_t)width)*height*depth*4);
pixels = &pixels_storage[0];
}
else {
pixels = (StorageType*)tex_img.resize(width, height, depth);
}
bool cmyk = false;
const size_t num_pixels = ((size_t)width) * height * depth;
if(in) {
StorageType *readpixels = pixels;
vector<StorageType> tmppixels;
if(components > 4) {
tmppixels.resize(((size_t)width)*height*components);
readpixels = &tmppixels[0];
}
if(depth <= 1) {
size_t scanlinesize = ((size_t)width)*components*sizeof(StorageType);
in->read_image(FileFormat,
(uchar*)readpixels + (height-1)*scanlinesize,
AutoStride,
-scanlinesize,
AutoStride);
}
else {
in->read_image(FileFormat, (uchar*)readpixels);
}
if(components > 4) {
size_t dimensions = ((size_t)width)*height;
for(size_t i = dimensions-1, pixel = 0; pixel < dimensions; pixel++, i--) {
pixels[i*4+3] = tmppixels[i*components+3];
pixels[i*4+2] = tmppixels[i*components+2];
pixels[i*4+1] = tmppixels[i*components+1];
pixels[i*4+0] = tmppixels[i*components+0];
}
tmppixels.clear();
}
cmyk = strcmp(in->format_name(), "jpeg") == 0 && components == 4;
in->close();
delete in;
}
else {
if(FileFormat == TypeDesc::FLOAT) {
builtin_image_float_pixels_cb(img->filename,
img->builtin_data,
(float*)&pixels[0],
num_pixels * components,
img->builtin_free_cache);
}
else if(FileFormat == TypeDesc::UINT8) {
builtin_image_pixels_cb(img->filename,
img->builtin_data,
(uchar*)&pixels[0],
num_pixels * components,
img->builtin_free_cache);
}
else {
/* TODO(dingto): Support half for ImBuf. */
}
}
/* Check if we actually have a float4 slot, in case components == 1,
* but device doesn't support single channel textures.
*/
bool is_rgba = (type == IMAGE_DATA_TYPE_FLOAT4 ||
type == IMAGE_DATA_TYPE_HALF4 ||
type == IMAGE_DATA_TYPE_BYTE4);
if(is_rgba) {
if(cmyk) {
/* CMYK */
for(size_t i = num_pixels-1, pixel = 0; pixel < num_pixels; pixel++, i--) {
pixels[i*4+2] = (pixels[i*4+2]*pixels[i*4+3])/255;
pixels[i*4+1] = (pixels[i*4+1]*pixels[i*4+3])/255;
pixels[i*4+0] = (pixels[i*4+0]*pixels[i*4+3])/255;
pixels[i*4+3] = alpha_one;
}
}
else if(components == 2) {
/* grayscale + alpha */
for(size_t i = num_pixels-1, pixel = 0; pixel < num_pixels; pixel++, i--) {
pixels[i*4+3] = pixels[i*2+1];
pixels[i*4+2] = pixels[i*2+0];
pixels[i*4+1] = pixels[i*2+0];
pixels[i*4+0] = pixels[i*2+0];
}
}
else if(components == 3) {
/* RGB */
for(size_t i = num_pixels-1, pixel = 0; pixel < num_pixels; pixel++, i--) {
pixels[i*4+3] = alpha_one;
pixels[i*4+2] = pixels[i*3+2];
pixels[i*4+1] = pixels[i*3+1];
pixels[i*4+0] = pixels[i*3+0];
}
}
else if(components == 1) {
/* grayscale */
for(size_t i = num_pixels-1, pixel = 0; pixel < num_pixels; pixel++, i--) {
pixels[i*4+3] = alpha_one;
pixels[i*4+2] = pixels[i];
pixels[i*4+1] = pixels[i];
pixels[i*4+0] = pixels[i];
}
}
if(img->use_alpha == false) {
for(size_t i = num_pixels-1, pixel = 0; pixel < num_pixels; pixel++, i--) {
pixels[i*4+3] = alpha_one;
}
}
}
/* Make sure we don't have buggy values. */
if(FileFormat == TypeDesc::FLOAT) {
/* For RGBA buffers we put all channels to 0 if either of them is not
* finite. This way we avoid possible artifacts caused by fully changed
* hue.
*/
if(is_rgba) {
for(size_t i = 0; i < num_pixels; i += 4) {
StorageType *pixel = &pixels[i*4];
if(!isfinite(pixel[0]) ||
!isfinite(pixel[1]) ||
!isfinite(pixel[2]) ||
!isfinite(pixel[3]))
{
pixel[0] = 0;
pixel[1] = 0;
pixel[2] = 0;
pixel[3] = 0;
}
}
}
else {
for(size_t i = 0; i < num_pixels; ++i) {
StorageType *pixel = &pixels[i];
if(!isfinite(pixel[0])) {
pixel[0] = 0;
}
}
}
}
/* Scale image down if needed. */
if(pixels_storage.size() > 0) {
float scale_factor = 1.0f;
while(max_size * scale_factor > texture_limit) {
scale_factor *= 0.5f;
}
VLOG(1) << "Scaling image " << img->filename
<< " by a factor of " << scale_factor << ".";
vector<StorageType> scaled_pixels;
size_t scaled_width, scaled_height, scaled_depth;
util_image_resize_pixels(pixels_storage,
width, height, depth,
is_rgba ? 4 : 1,
scale_factor,
&scaled_pixels,
&scaled_width, &scaled_height, &scaled_depth);
StorageType *texture_pixels = (StorageType*)tex_img.resize(scaled_width,
scaled_height,
scaled_depth);
memcpy(texture_pixels,
&scaled_pixels[0],
scaled_pixels.size() * sizeof(StorageType));
}
return true;
}
void ImageManager::device_load_image(Device *device,
DeviceScene *dscene,
Scene *scene,
ImageDataType type,
int slot,
Progress *progress)
{
if(progress->get_cancel())
return;
Image *img = images[type][slot];
if(osl_texture_system && !img->builtin_data)
return;
string filename = path_filename(images[type][slot]->filename);
progress->set_status("Updating Images", "Loading " + filename);
const int texture_limit = scene->params.texture_limit;
/* Slot assignment */
int flat_slot = type_index_to_flattened_slot(slot, type);
string name = string_printf("__tex_image_%s_%03d", name_from_type(type).c_str(), flat_slot);
if(type == IMAGE_DATA_TYPE_FLOAT4) {
if(dscene->tex_float4_image[slot] == NULL)
dscene->tex_float4_image[slot] = new device_vector<float4>();
device_vector<float4>& tex_img = *dscene->tex_float4_image[slot];
if(tex_img.device_pointer) {
thread_scoped_lock device_lock(device_mutex);
device->tex_free(tex_img);
}
if(!file_load_image<TypeDesc::FLOAT, float>(img,
type,
texture_limit,
tex_img))
{
/* on failure to load, we set a 1x1 pixels pink image */
float *pixels = (float*)tex_img.resize(1, 1);
pixels[0] = TEX_IMAGE_MISSING_R;
pixels[1] = TEX_IMAGE_MISSING_G;
pixels[2] = TEX_IMAGE_MISSING_B;
pixels[3] = TEX_IMAGE_MISSING_A;
}
{
thread_scoped_lock device_lock(device_mutex);
device->tex_alloc(name.c_str(),
tex_img,
img->interpolation,
img->extension);
}
}
else if(type == IMAGE_DATA_TYPE_FLOAT) {
if(dscene->tex_float_image[slot] == NULL)
dscene->tex_float_image[slot] = new device_vector<float>();
device_vector<float>& tex_img = *dscene->tex_float_image[slot];
if(tex_img.device_pointer) {
thread_scoped_lock device_lock(device_mutex);
device->tex_free(tex_img);
}
if(!file_load_image<TypeDesc::FLOAT, float>(img,
type,
texture_limit,
tex_img))
{
/* on failure to load, we set a 1x1 pixels pink image */
float *pixels = (float*)tex_img.resize(1, 1);
pixels[0] = TEX_IMAGE_MISSING_R;
}
{
thread_scoped_lock device_lock(device_mutex);
device->tex_alloc(name.c_str(),
tex_img,
img->interpolation,
img->extension);
}
}
else if(type == IMAGE_DATA_TYPE_BYTE4) {
if(dscene->tex_byte4_image[slot] == NULL)
dscene->tex_byte4_image[slot] = new device_vector<uchar4>();
device_vector<uchar4>& tex_img = *dscene->tex_byte4_image[slot];
if(tex_img.device_pointer) {
thread_scoped_lock device_lock(device_mutex);
device->tex_free(tex_img);
}
if(!file_load_image<TypeDesc::UINT8, uchar>(img,
type,
texture_limit,
tex_img))
{
/* on failure to load, we set a 1x1 pixels pink image */
uchar *pixels = (uchar*)tex_img.resize(1, 1);
pixels[0] = (TEX_IMAGE_MISSING_R * 255);
pixels[1] = (TEX_IMAGE_MISSING_G * 255);
pixels[2] = (TEX_IMAGE_MISSING_B * 255);
pixels[3] = (TEX_IMAGE_MISSING_A * 255);
}
{
thread_scoped_lock device_lock(device_mutex);
device->tex_alloc(name.c_str(),
tex_img,
img->interpolation,
img->extension);
}
}
else if(type == IMAGE_DATA_TYPE_BYTE){
if(dscene->tex_byte_image[slot] == NULL)
dscene->tex_byte_image[slot] = new device_vector<uchar>();
device_vector<uchar>& tex_img = *dscene->tex_byte_image[slot];
if(tex_img.device_pointer) {
thread_scoped_lock device_lock(device_mutex);
device->tex_free(tex_img);
}
if(!file_load_image<TypeDesc::UINT8, uchar>(img,
type,
texture_limit,
tex_img)) {
/* on failure to load, we set a 1x1 pixels pink image */
uchar *pixels = (uchar*)tex_img.resize(1, 1);
pixels[0] = (TEX_IMAGE_MISSING_R * 255);
}
{
thread_scoped_lock device_lock(device_mutex);
device->tex_alloc(name.c_str(),
tex_img,
img->interpolation,
img->extension);
}
}
else if(type == IMAGE_DATA_TYPE_HALF4){
if(dscene->tex_half4_image[slot] == NULL)
dscene->tex_half4_image[slot] = new device_vector<half4>();
device_vector<half4>& tex_img = *dscene->tex_half4_image[slot];
if(tex_img.device_pointer) {
thread_scoped_lock device_lock(device_mutex);
device->tex_free(tex_img);
}
if(!file_load_image<TypeDesc::HALF, half>(img,
type,
texture_limit,
tex_img)) {
/* on failure to load, we set a 1x1 pixels pink image */
half *pixels = (half*)tex_img.resize(1, 1);
pixels[0] = TEX_IMAGE_MISSING_R;
pixels[1] = TEX_IMAGE_MISSING_G;
pixels[2] = TEX_IMAGE_MISSING_B;
pixels[3] = TEX_IMAGE_MISSING_A;
}
{
thread_scoped_lock device_lock(device_mutex);
device->tex_alloc(name.c_str(),
tex_img,
img->interpolation,
img->extension);
}
}
else if(type == IMAGE_DATA_TYPE_HALF){
if(dscene->tex_half_image[slot] == NULL)
dscene->tex_half_image[slot] = new device_vector<half>();
device_vector<half>& tex_img = *dscene->tex_half_image[slot];
if(tex_img.device_pointer) {
thread_scoped_lock device_lock(device_mutex);
device->tex_free(tex_img);
}
if(!file_load_image<TypeDesc::HALF, half>(img,
type,
texture_limit,
tex_img)) {
/* on failure to load, we set a 1x1 pixels pink image */
half *pixels = (half*)tex_img.resize(1, 1);
pixels[0] = TEX_IMAGE_MISSING_R;
}
{
thread_scoped_lock device_lock(device_mutex);
device->tex_alloc(name.c_str(),
tex_img,
img->interpolation,
img->extension);
}
}
img->need_load = false;
}
void ImageManager::device_free_image(Device *device, DeviceScene *dscene, ImageDataType type, int slot)
{
Image *img = images[type][slot];
if(img) {
if(osl_texture_system && !img->builtin_data) {
#ifdef WITH_OSL
ustring filename(images[type][slot]->filename);
((OSL::TextureSystem*)osl_texture_system)->invalidate(filename);
#endif
}
else {
device_memory *tex_img = NULL;
switch(type) {
case IMAGE_DATA_TYPE_FLOAT4:
if(slot >= dscene->tex_float4_image.size()) {
break;
}
tex_img = dscene->tex_float4_image[slot];
dscene->tex_float4_image[slot] = NULL;
break;
case IMAGE_DATA_TYPE_BYTE4:
if(slot >= dscene->tex_byte4_image.size()) {
break;
}
tex_img = dscene->tex_byte4_image[slot];
dscene->tex_byte4_image[slot]= NULL;
break;
case IMAGE_DATA_TYPE_HALF4:
if(slot >= dscene->tex_half4_image.size()) {
break;
}
tex_img = dscene->tex_half4_image[slot];
dscene->tex_half4_image[slot]= NULL;
break;
case IMAGE_DATA_TYPE_FLOAT:
if(slot >= dscene->tex_float_image.size()) {
break;
}
tex_img = dscene->tex_float_image[slot];
dscene->tex_float_image[slot] = NULL;
break;
case IMAGE_DATA_TYPE_BYTE:
if(slot >= dscene->tex_byte_image.size()) {
break;
}
tex_img = dscene->tex_byte_image[slot];
dscene->tex_byte_image[slot]= NULL;
break;
case IMAGE_DATA_TYPE_HALF:
if(slot >= dscene->tex_half_image.size()) {
break;
}
tex_img = dscene->tex_half_image[slot];
dscene->tex_half_image[slot]= NULL;
break;
default:
assert(0);
tex_img = NULL;
}
if(tex_img) {
if(tex_img->device_pointer) {
thread_scoped_lock device_lock(device_mutex);
device->tex_free(*tex_img);
}
delete tex_img;
}
}
delete images[type][slot];
images[type][slot] = NULL;
--tex_num_images[type];
}
}
void ImageManager::device_prepare_update(DeviceScene *dscene)
{
for(int type = 0; type < IMAGE_DATA_NUM_TYPES; type++) {
switch(type) {
case IMAGE_DATA_TYPE_FLOAT4:
if(dscene->tex_float4_image.size() <= tex_num_images[IMAGE_DATA_TYPE_FLOAT4])
dscene->tex_float4_image.resize(tex_num_images[IMAGE_DATA_TYPE_FLOAT4]);
break;
case IMAGE_DATA_TYPE_BYTE4:
if(dscene->tex_byte4_image.size() <= tex_num_images[IMAGE_DATA_TYPE_BYTE4])
dscene->tex_byte4_image.resize(tex_num_images[IMAGE_DATA_TYPE_BYTE4]);
break;
case IMAGE_DATA_TYPE_HALF4:
if(dscene->tex_half4_image.size() <= tex_num_images[IMAGE_DATA_TYPE_HALF4])
dscene->tex_half4_image.resize(tex_num_images[IMAGE_DATA_TYPE_HALF4]);
break;
case IMAGE_DATA_TYPE_BYTE:
if(dscene->tex_byte_image.size() <= tex_num_images[IMAGE_DATA_TYPE_BYTE])
dscene->tex_byte_image.resize(tex_num_images[IMAGE_DATA_TYPE_BYTE]);
break;
case IMAGE_DATA_TYPE_FLOAT:
if(dscene->tex_float_image.size() <= tex_num_images[IMAGE_DATA_TYPE_FLOAT])
dscene->tex_float_image.resize(tex_num_images[IMAGE_DATA_TYPE_FLOAT]);
break;
case IMAGE_DATA_TYPE_HALF:
if(dscene->tex_half_image.size() <= tex_num_images[IMAGE_DATA_TYPE_HALF])
dscene->tex_half_image.resize(tex_num_images[IMAGE_DATA_TYPE_HALF]);
break;
}
}
}
void ImageManager::device_update(Device *device,
DeviceScene *dscene,
Scene *scene,
Progress& progress)
{
if(!need_update) {
return;
}
/* Make sure arrays are proper size. */
device_prepare_update(dscene);
TaskPool pool;
for(int type = 0; type < IMAGE_DATA_NUM_TYPES; type++) {
for(size_t slot = 0; slot < images[type].size(); slot++) {
if(!images[type][slot])
continue;
if(images[type][slot]->users == 0) {
device_free_image(device, dscene, (ImageDataType)type, slot);
}
else if(images[type][slot]->need_load) {
if(!osl_texture_system || images[type][slot]->builtin_data)
pool.push(function_bind(&ImageManager::device_load_image,
this,
device,
dscene,
scene,
(ImageDataType)type,
slot,
&progress));
}
}
}
pool.wait_work();
need_update = false;
}
void ImageManager::device_update_slot(Device *device,
DeviceScene *dscene,
Scene *scene,
int flat_slot,
Progress *progress)
{
ImageDataType type;
int slot = flattened_slot_to_type_index(flat_slot, &type);
Image *image = images[type][slot];
assert(image != NULL);
if(image->users == 0) {
device_free_image(device, dscene, type, slot);
}
else if(image->need_load) {
if(!osl_texture_system || image->builtin_data)
device_load_image(device,
dscene,
scene,
type,
slot,
progress);
}
}
void ImageManager::device_free_builtin(Device *device, DeviceScene *dscene)
{
for(int type = 0; type < IMAGE_DATA_NUM_TYPES; type++) {
for(size_t slot = 0; slot < images[type].size(); slot++) {
if(images[type][slot] && images[type][slot]->builtin_data)
device_free_image(device, dscene, (ImageDataType)type, slot);
}
}
}
void ImageManager::device_free(Device *device, DeviceScene *dscene)
{
for(int type = 0; type < IMAGE_DATA_NUM_TYPES; type++) {
for(size_t slot = 0; slot < images[type].size(); slot++) {
device_free_image(device, dscene, (ImageDataType)type, slot);
}
images[type].clear();
}
dscene->tex_float4_image.clear();
dscene->tex_byte4_image.clear();
dscene->tex_half4_image.clear();
dscene->tex_float_image.clear();
dscene->tex_byte_image.clear();
dscene->tex_half_image.clear();
}
CCL_NAMESPACE_END