blender/intern/openvdb/openvdb_capi.cc
Pablo Dobarro 9ac3964be1 OpenVDB: mesh/level set conversion, filters and CSG operations
This code is needed to implement the Voxel Remesher as well as other features like a better remesh modifier with filters and CSG operations.

Done by Martin Felke and Pablo Dobarro

Reviewed By: brecht

Differential Revision: https://developer.blender.org/D5364
2019-08-14 18:13:56 +02:00

373 lines
13 KiB
C++

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2015 Blender Foundation.
* All rights reserved.
*/
#include "openvdb_capi.h"
#include "openvdb_dense_convert.h"
#include "openvdb_util.h"
#include "openvdb_level_set.h"
#include "openvdb_transform.h"
int OpenVDB_getVersionHex()
{
return openvdb::OPENVDB_LIBRARY_VERSION;
}
OpenVDBFloatGrid *OpenVDB_export_grid_fl(OpenVDBWriter *writer,
const char *name,
float *data,
const int res[3],
float matrix[4][4],
const float clipping,
OpenVDBFloatGrid *mask)
{
Timer(__func__);
using openvdb::FloatGrid;
FloatGrid *mask_grid = reinterpret_cast<FloatGrid *>(mask);
FloatGrid *grid = internal::OpenVDB_export_grid<FloatGrid>(
writer, name, data, res, matrix, clipping, mask_grid);
return reinterpret_cast<OpenVDBFloatGrid *>(grid);
}
OpenVDBIntGrid *OpenVDB_export_grid_ch(OpenVDBWriter *writer,
const char *name,
unsigned char *data,
const int res[3],
float matrix[4][4],
const float clipping,
OpenVDBFloatGrid *mask)
{
Timer(__func__);
using openvdb::FloatGrid;
using openvdb::Int32Grid;
FloatGrid *mask_grid = reinterpret_cast<FloatGrid *>(mask);
Int32Grid *grid = internal::OpenVDB_export_grid<Int32Grid>(
writer, name, data, res, matrix, clipping, mask_grid);
return reinterpret_cast<OpenVDBIntGrid *>(grid);
}
OpenVDBVectorGrid *OpenVDB_export_grid_vec(struct OpenVDBWriter *writer,
const char *name,
const float *data_x,
const float *data_y,
const float *data_z,
const int res[3],
float matrix[4][4],
short vec_type,
const float clipping,
const bool is_color,
OpenVDBFloatGrid *mask)
{
Timer(__func__);
using openvdb::FloatGrid;
using openvdb::GridBase;
using openvdb::VecType;
FloatGrid *mask_grid = reinterpret_cast<FloatGrid *>(mask);
GridBase *grid = internal::OpenVDB_export_vector_grid(writer,
name,
data_x,
data_y,
data_z,
res,
matrix,
static_cast<VecType>(vec_type),
is_color,
clipping,
mask_grid);
return reinterpret_cast<OpenVDBVectorGrid *>(grid);
}
void OpenVDB_import_grid_fl(OpenVDBReader *reader,
const char *name,
float **data,
const int res[3])
{
Timer(__func__);
internal::OpenVDB_import_grid<openvdb::FloatGrid>(reader, name, data, res);
}
void OpenVDB_import_grid_ch(OpenVDBReader *reader,
const char *name,
unsigned char **data,
const int res[3])
{
internal::OpenVDB_import_grid<openvdb::Int32Grid>(reader, name, data, res);
}
void OpenVDB_import_grid_vec(struct OpenVDBReader *reader,
const char *name,
float **data_x,
float **data_y,
float **data_z,
const int res[3])
{
Timer(__func__);
internal::OpenVDB_import_grid_vector(reader, name, data_x, data_y, data_z, res);
}
OpenVDBWriter *OpenVDBWriter_create()
{
return new OpenVDBWriter();
}
void OpenVDBWriter_free(OpenVDBWriter *writer)
{
delete writer;
}
void OpenVDBWriter_set_flags(OpenVDBWriter *writer, const int flag, const bool half)
{
int compression_flags = openvdb::io::COMPRESS_ACTIVE_MASK;
#ifdef WITH_OPENVDB_BLOSC
if (flag == 0) {
compression_flags |= openvdb::io::COMPRESS_BLOSC;
}
else
#endif
if (flag == 1) {
compression_flags |= openvdb::io::COMPRESS_ZIP;
}
else {
compression_flags = openvdb::io::COMPRESS_NONE;
}
writer->setFlags(compression_flags, half);
}
void OpenVDBWriter_add_meta_fl(OpenVDBWriter *writer, const char *name, const float value)
{
writer->insertFloatMeta(name, value);
}
void OpenVDBWriter_add_meta_int(OpenVDBWriter *writer, const char *name, const int value)
{
writer->insertIntMeta(name, value);
}
void OpenVDBWriter_add_meta_v3(OpenVDBWriter *writer, const char *name, const float value[3])
{
writer->insertVec3sMeta(name, value);
}
void OpenVDBWriter_add_meta_v3_int(OpenVDBWriter *writer, const char *name, const int value[3])
{
writer->insertVec3IMeta(name, value);
}
void OpenVDBWriter_add_meta_mat4(OpenVDBWriter *writer, const char *name, float value[4][4])
{
writer->insertMat4sMeta(name, value);
}
void OpenVDBWriter_write(OpenVDBWriter *writer, const char *filename)
{
writer->write(filename);
}
OpenVDBReader *OpenVDBReader_create()
{
return new OpenVDBReader();
}
void OpenVDBReader_free(OpenVDBReader *reader)
{
delete reader;
}
void OpenVDBReader_open(OpenVDBReader *reader, const char *filename)
{
reader->open(filename);
}
void OpenVDBReader_get_meta_fl(OpenVDBReader *reader, const char *name, float *value)
{
reader->floatMeta(name, *value);
}
void OpenVDBReader_get_meta_int(OpenVDBReader *reader, const char *name, int *value)
{
reader->intMeta(name, *value);
}
void OpenVDBReader_get_meta_v3(OpenVDBReader *reader, const char *name, float value[3])
{
reader->vec3sMeta(name, value);
}
void OpenVDBReader_get_meta_v3_int(OpenVDBReader *reader, const char *name, int value[3])
{
reader->vec3IMeta(name, value);
}
void OpenVDBReader_get_meta_mat4(OpenVDBReader *reader, const char *name, float value[4][4])
{
reader->mat4sMeta(name, value);
}
OpenVDBLevelSet *OpenVDBLevelSet_create(bool initGrid, OpenVDBTransform *xform)
{
OpenVDBLevelSet *level_set = new OpenVDBLevelSet();
if (initGrid) {
openvdb::FloatGrid::Ptr grid = openvdb::FloatGrid::create();
grid->setGridClass(openvdb::GRID_LEVEL_SET);
if (xform) {
grid->setTransform(xform->get_transform());
}
level_set->set_grid(grid);
}
return level_set;
}
OpenVDBTransform *OpenVDBTransform_create()
{
return new OpenVDBTransform();
}
void OpenVDBTransform_free(OpenVDBTransform *transform)
{
delete transform;
}
void OpenVDBTransform_create_linear_transform(OpenVDBTransform *transform, double voxel_size)
{
transform->create_linear_transform(voxel_size);
}
void OpenVDBLevelSet_free(OpenVDBLevelSet *level_set)
{
delete level_set;
}
void OpenVDBLevelSet_mesh_to_level_set(struct OpenVDBLevelSet *level_set,
const float *vertices,
const unsigned int *faces,
const unsigned int totvertices,
const unsigned int totfaces,
OpenVDBTransform *xform)
{
level_set->mesh_to_level_set(vertices, faces, totvertices, totfaces, xform->get_transform());
}
void OpenVDBLevelSet_mesh_to_level_set_transform(struct OpenVDBLevelSet *level_set,
const float *vertices,
const unsigned int *faces,
const unsigned int totvertices,
const unsigned int totfaces,
OpenVDBTransform *transform)
{
level_set->mesh_to_level_set(vertices, faces, totvertices, totfaces, transform->get_transform());
}
void OpenVDBLevelSet_volume_to_mesh(struct OpenVDBLevelSet *level_set,
struct OpenVDBVolumeToMeshData *mesh,
const double isovalue,
const double adaptivity,
const bool relax_disoriented_triangles)
{
level_set->volume_to_mesh(mesh, isovalue, adaptivity, relax_disoriented_triangles);
}
void OpenVDBLevelSet_filter(struct OpenVDBLevelSet *level_set,
OpenVDBLevelSet_FilterType filter_type,
int width,
float distance,
OpenVDBLevelSet_FilterBias bias)
{
level_set->filter(filter_type, width, distance, bias);
}
void OpenVDBLevelSet_CSG_operation(struct OpenVDBLevelSet *out,
struct OpenVDBLevelSet *gridA,
struct OpenVDBLevelSet *gridB,
OpenVDBLevelSet_CSGOperation operation)
{
openvdb::FloatGrid::Ptr grid = out->CSG_operation_apply(
gridA->get_grid(), gridB->get_grid(), operation);
out->set_grid(grid);
}
OpenVDBLevelSet *OpenVDBLevelSet_transform_and_resample(struct OpenVDBLevelSet *level_setA,
struct OpenVDBLevelSet *level_setB,
char sampler,
float isolevel)
{
openvdb::FloatGrid::Ptr sourceGrid = level_setA->get_grid();
openvdb::FloatGrid::Ptr targetGrid = level_setB->get_grid()->deepCopy();
const openvdb::math::Transform &sourceXform = sourceGrid->transform(),
&targetXform = targetGrid->transform();
// Compute a source grid to target grid transform.
// (For this example, we assume that both grids' transforms are linear,
// so that they can be represented as 4 x 4 matrices.)
openvdb::Mat4R xform = sourceXform.baseMap()->getAffineMap()->getMat4() *
targetXform.baseMap()->getAffineMap()->getMat4().inverse();
// Create the transformer.
openvdb::tools::GridTransformer transformer(xform);
switch (sampler) {
case OPENVDB_LEVELSET_GRIDSAMPLER_POINT:
// Resample using nearest-neighbor interpolation.
transformer.transformGrid<openvdb::tools::PointSampler, openvdb::FloatGrid>(*sourceGrid,
*targetGrid);
// Prune the target tree for optimal sparsity.
targetGrid->tree().prune();
break;
case OPENVDB_LEVELSET_GRIDSAMPLER_BOX:
// Resample using trilinear interpolation.
transformer.transformGrid<openvdb::tools::BoxSampler, openvdb::FloatGrid>(*sourceGrid,
*targetGrid);
// Prune the target tree for optimal sparsity.
targetGrid->tree().prune();
break;
case OPENVDB_LEVELSET_GRIDSAMPLER_QUADRATIC:
// Resample using triquadratic interpolation.
transformer.transformGrid<openvdb::tools::QuadraticSampler, openvdb::FloatGrid>(*sourceGrid,
*targetGrid);
// Prune the target tree for optimal sparsity.
targetGrid->tree().prune();
break;
case OPENVDB_LEVELSET_GRIDSAMPLER_NONE:
break;
}
targetGrid = openvdb::tools::levelSetRebuild(*targetGrid, isolevel, 1.0f);
openvdb::tools::pruneLevelSet(targetGrid->tree());
OpenVDBLevelSet *level_set = OpenVDBLevelSet_create(false, NULL);
level_set->set_grid(targetGrid);
return level_set;
}