blender/intern/cycles/scene/attribute.cpp
Kévin Dietrich 2890c11cd7 Cycles: add support for volume motion blur
This adds support for rendering motion blur for volumes, using their
velocity field. This works for fluid simulations and imported VDB
volumes. For the latter, the name of the velocity field can be set per
volume object, with automatic detection of velocity fields that are
split into 3 scalar grids.

A new parameter is also added to scale velocity for more artistic control.

Like for Alembic and USD caches, a parameter to set the unit of time in
which the velocity vectors are expressed is also added. For Blender gas
simulations, the velocity unit should always be in seconds, so this is
only exposed for volume objects which may come from external OpenVDB
files.

These parameters are available under the `Render` panels for the fluid
domain and the volume object data properties respectively.

Credits: kernel advection code from Tangent Animation's Blackbird based
on earlier work by Geraldine Chua

Differential Revision: https://developer.blender.org/D14629
2022-04-19 17:07:53 +02:00

930 lines
23 KiB
C++

/* SPDX-License-Identifier: Apache-2.0
* Copyright 2011-2022 Blender Foundation */
#include "scene/attribute.h"
#include "scene/hair.h"
#include "scene/image.h"
#include "scene/mesh.h"
#include "scene/pointcloud.h"
#include "util/foreach.h"
#include "util/log.h"
#include "util/transform.h"
CCL_NAMESPACE_BEGIN
/* Attribute */
Attribute::Attribute(
ustring name, TypeDesc type, AttributeElement element, Geometry *geom, AttributePrimitive prim)
: name(name), std(ATTR_STD_NONE), type(type), element(element), flags(0), modified(true)
{
/* string and matrix not supported! */
assert(type == TypeDesc::TypeFloat || type == TypeDesc::TypeColor ||
type == TypeDesc::TypePoint || type == TypeDesc::TypeVector ||
type == TypeDesc::TypeNormal || type == TypeDesc::TypeMatrix || type == TypeFloat2 ||
type == TypeFloat4 || type == TypeRGBA);
if (element == ATTR_ELEMENT_VOXEL) {
buffer.resize(sizeof(ImageHandle));
new (buffer.data()) ImageHandle();
}
else {
resize(geom, prim, false);
}
}
Attribute::~Attribute()
{
/* For voxel data, we need to free the image handle. */
if (element == ATTR_ELEMENT_VOXEL && buffer.size()) {
ImageHandle &handle = data_voxel();
handle.~ImageHandle();
}
}
void Attribute::resize(Geometry *geom, AttributePrimitive prim, bool reserve_only)
{
if (element != ATTR_ELEMENT_VOXEL) {
if (reserve_only) {
buffer.reserve(buffer_size(geom, prim));
}
else {
buffer.resize(buffer_size(geom, prim), 0);
}
}
}
void Attribute::resize(size_t num_elements)
{
if (element != ATTR_ELEMENT_VOXEL) {
buffer.resize(num_elements * data_sizeof(), 0);
}
}
void Attribute::add(const float &f)
{
assert(data_sizeof() == sizeof(float));
char *data = (char *)&f;
size_t size = sizeof(f);
for (size_t i = 0; i < size; i++)
buffer.push_back(data[i]);
modified = true;
}
void Attribute::add(const uchar4 &f)
{
assert(data_sizeof() == sizeof(uchar4));
char *data = (char *)&f;
size_t size = sizeof(f);
for (size_t i = 0; i < size; i++)
buffer.push_back(data[i]);
modified = true;
}
void Attribute::add(const float2 &f)
{
assert(data_sizeof() == sizeof(float2));
char *data = (char *)&f;
size_t size = sizeof(f);
for (size_t i = 0; i < size; i++)
buffer.push_back(data[i]);
modified = true;
}
void Attribute::add(const float3 &f)
{
assert(data_sizeof() == sizeof(float3));
char *data = (char *)&f;
size_t size = sizeof(f);
for (size_t i = 0; i < size; i++)
buffer.push_back(data[i]);
modified = true;
}
void Attribute::add(const Transform &f)
{
assert(data_sizeof() == sizeof(Transform));
char *data = (char *)&f;
size_t size = sizeof(f);
for (size_t i = 0; i < size; i++)
buffer.push_back(data[i]);
modified = true;
}
void Attribute::add(const char *data)
{
size_t size = data_sizeof();
for (size_t i = 0; i < size; i++)
buffer.push_back(data[i]);
modified = true;
}
void Attribute::set_data_from(Attribute &&other)
{
assert(other.std == std);
assert(other.type == type);
assert(other.element == element);
this->flags = other.flags;
if (this->buffer.size() != other.buffer.size()) {
this->buffer = std::move(other.buffer);
modified = true;
}
else if (memcmp(this->data(), other.data(), other.buffer.size()) != 0) {
this->buffer = std::move(other.buffer);
modified = true;
}
}
size_t Attribute::data_sizeof() const
{
if (element == ATTR_ELEMENT_VOXEL)
return sizeof(ImageHandle);
else if (element == ATTR_ELEMENT_CORNER_BYTE)
return sizeof(uchar4);
else if (type == TypeDesc::TypeFloat)
return sizeof(float);
else if (type == TypeFloat2)
return sizeof(float2);
else if (type == TypeDesc::TypeMatrix)
return sizeof(Transform);
else
return sizeof(float3);
}
size_t Attribute::element_size(Geometry *geom, AttributePrimitive prim) const
{
if (flags & ATTR_FINAL_SIZE) {
return buffer.size() / data_sizeof();
}
size_t size = 0;
switch (element) {
case ATTR_ELEMENT_OBJECT:
case ATTR_ELEMENT_MESH:
case ATTR_ELEMENT_VOXEL:
size = 1;
break;
case ATTR_ELEMENT_VERTEX:
if (geom->geometry_type == Geometry::MESH || geom->geometry_type == Geometry::VOLUME) {
Mesh *mesh = static_cast<Mesh *>(geom);
size = mesh->get_verts().size() + mesh->get_num_ngons();
if (prim == ATTR_PRIM_SUBD) {
size -= mesh->get_num_subd_verts();
}
}
else if (geom->geometry_type == Geometry::POINTCLOUD) {
PointCloud *pointcloud = static_cast<PointCloud *>(geom);
size = pointcloud->num_points();
}
break;
case ATTR_ELEMENT_VERTEX_MOTION:
if (geom->geometry_type == Geometry::MESH) {
Mesh *mesh = static_cast<Mesh *>(geom);
DCHECK_GT(mesh->get_motion_steps(), 0);
size = (mesh->get_verts().size() + mesh->get_num_ngons()) * (mesh->get_motion_steps() - 1);
if (prim == ATTR_PRIM_SUBD) {
size -= mesh->get_num_subd_verts() * (mesh->get_motion_steps() - 1);
}
}
else if (geom->geometry_type == Geometry::POINTCLOUD) {
PointCloud *pointcloud = static_cast<PointCloud *>(geom);
size = pointcloud->num_points() * (pointcloud->get_motion_steps() - 1);
}
break;
case ATTR_ELEMENT_FACE:
if (geom->geometry_type == Geometry::MESH || geom->geometry_type == Geometry::VOLUME) {
Mesh *mesh = static_cast<Mesh *>(geom);
if (prim == ATTR_PRIM_GEOMETRY) {
size = mesh->num_triangles();
}
else {
size = mesh->get_num_subd_faces() + mesh->get_num_ngons();
}
}
break;
case ATTR_ELEMENT_CORNER:
case ATTR_ELEMENT_CORNER_BYTE:
if (geom->geometry_type == Geometry::MESH) {
Mesh *mesh = static_cast<Mesh *>(geom);
if (prim == ATTR_PRIM_GEOMETRY) {
size = mesh->num_triangles() * 3;
}
else {
size = mesh->get_subd_face_corners().size() + mesh->get_num_ngons();
}
}
break;
case ATTR_ELEMENT_CURVE:
if (geom->geometry_type == Geometry::HAIR) {
Hair *hair = static_cast<Hair *>(geom);
size = hair->num_curves();
}
break;
case ATTR_ELEMENT_CURVE_KEY:
if (geom->geometry_type == Geometry::HAIR) {
Hair *hair = static_cast<Hair *>(geom);
size = hair->get_curve_keys().size();
}
break;
case ATTR_ELEMENT_CURVE_KEY_MOTION:
if (geom->geometry_type == Geometry::HAIR) {
Hair *hair = static_cast<Hair *>(geom);
DCHECK_GT(hair->get_motion_steps(), 0);
size = hair->get_curve_keys().size() * (hair->get_motion_steps() - 1);
}
break;
default:
break;
}
return size;
}
size_t Attribute::buffer_size(Geometry *geom, AttributePrimitive prim) const
{
return element_size(geom, prim) * data_sizeof();
}
bool Attribute::same_storage(TypeDesc a, TypeDesc b)
{
if (a == b)
return true;
if (a == TypeDesc::TypeColor || a == TypeDesc::TypePoint || a == TypeDesc::TypeVector ||
a == TypeDesc::TypeNormal) {
if (b == TypeDesc::TypeColor || b == TypeDesc::TypePoint || b == TypeDesc::TypeVector ||
b == TypeDesc::TypeNormal) {
return true;
}
}
return false;
}
void Attribute::zero_data(void *dst)
{
memset(dst, 0, data_sizeof());
}
void Attribute::add_with_weight(void *dst, void *src, float weight)
{
if (element == ATTR_ELEMENT_CORNER_BYTE) {
for (int i = 0; i < 4; i++) {
((uchar *)dst)[i] += uchar(((uchar *)src)[i] * weight);
}
}
else if (same_storage(type, TypeDesc::TypeFloat)) {
*((float *)dst) += *((float *)src) * weight;
}
else if (same_storage(type, TypeFloat2)) {
*((float2 *)dst) += *((float2 *)src) * weight;
}
else if (same_storage(type, TypeDesc::TypeVector)) {
*((float4 *)dst) += *((float4 *)src) * weight;
}
else {
assert(!"not implemented for this type");
}
}
const char *Attribute::standard_name(AttributeStandard std)
{
switch (std) {
case ATTR_STD_VERTEX_NORMAL:
return "N";
case ATTR_STD_FACE_NORMAL:
return "Ng";
case ATTR_STD_UV:
return "uv";
case ATTR_STD_GENERATED:
return "generated";
case ATTR_STD_GENERATED_TRANSFORM:
return "generated_transform";
case ATTR_STD_UV_TANGENT:
return "tangent";
case ATTR_STD_UV_TANGENT_SIGN:
return "tangent_sign";
case ATTR_STD_VERTEX_COLOR:
return "vertex_color";
case ATTR_STD_POSITION_UNDEFORMED:
return "undeformed";
case ATTR_STD_POSITION_UNDISPLACED:
return "undisplaced";
case ATTR_STD_MOTION_VERTEX_POSITION:
return "motion_P";
case ATTR_STD_MOTION_VERTEX_NORMAL:
return "motion_N";
case ATTR_STD_PARTICLE:
return "particle";
case ATTR_STD_CURVE_INTERCEPT:
return "curve_intercept";
case ATTR_STD_CURVE_LENGTH:
return "curve_length";
case ATTR_STD_CURVE_RANDOM:
return "curve_random";
case ATTR_STD_POINT_RANDOM:
return "point_random";
case ATTR_STD_PTEX_FACE_ID:
return "ptex_face_id";
case ATTR_STD_PTEX_UV:
return "ptex_uv";
case ATTR_STD_VOLUME_DENSITY:
return "density";
case ATTR_STD_VOLUME_COLOR:
return "color";
case ATTR_STD_VOLUME_FLAME:
return "flame";
case ATTR_STD_VOLUME_HEAT:
return "heat";
case ATTR_STD_VOLUME_TEMPERATURE:
return "temperature";
case ATTR_STD_VOLUME_VELOCITY:
return "velocity";
case ATTR_STD_VOLUME_VELOCITY_X:
return "velocity_x";
case ATTR_STD_VOLUME_VELOCITY_Y:
return "velocity_y";
case ATTR_STD_VOLUME_VELOCITY_Z:
return "velocity_z";
case ATTR_STD_POINTINESS:
return "pointiness";
case ATTR_STD_RANDOM_PER_ISLAND:
return "random_per_island";
case ATTR_STD_SHADOW_TRANSPARENCY:
return "shadow_transparency";
case ATTR_STD_NOT_FOUND:
case ATTR_STD_NONE:
case ATTR_STD_NUM:
return "";
}
return "";
}
AttributeStandard Attribute::name_standard(const char *name)
{
if (name) {
for (int std = ATTR_STD_NONE; std < ATTR_STD_NUM; std++) {
if (strcmp(name, Attribute::standard_name((AttributeStandard)std)) == 0) {
return (AttributeStandard)std;
}
}
}
return ATTR_STD_NONE;
}
AttrKernelDataType Attribute::kernel_type(const Attribute &attr)
{
if (attr.element == ATTR_ELEMENT_CORNER) {
return AttrKernelDataType::UCHAR4;
}
if (attr.type == TypeDesc::TypeFloat) {
return AttrKernelDataType::FLOAT;
}
if (attr.type == TypeFloat2) {
return AttrKernelDataType::FLOAT2;
}
if (attr.type == TypeFloat4 || attr.type == TypeRGBA || attr.type == TypeDesc::TypeMatrix) {
return AttrKernelDataType::FLOAT4;
}
return AttrKernelDataType::FLOAT3;
}
void Attribute::get_uv_tiles(Geometry *geom,
AttributePrimitive prim,
unordered_set<int> &tiles) const
{
if (type != TypeFloat2) {
return;
}
const int num = element_size(geom, prim);
const float2 *uv = data_float2();
for (int i = 0; i < num; i++, uv++) {
float u = uv->x, v = uv->y;
int x = (int)u, y = (int)v;
if (x < 0 || y < 0 || x >= 10) {
continue;
}
/* Be conservative in corners - precisely touching the right or upper edge of a tile
* should not load its right/upper neighbor as well. */
if (x > 0 && (u < x + 1e-6f)) {
x--;
}
if (y > 0 && (v < y + 1e-6f)) {
y--;
}
tiles.insert(1001 + 10 * y + x);
}
}
/* Attribute Set */
AttributeSet::AttributeSet(Geometry *geometry, AttributePrimitive prim)
: modified_flag(~0u), geometry(geometry), prim(prim)
{
}
AttributeSet::~AttributeSet()
{
}
Attribute *AttributeSet::add(ustring name, TypeDesc type, AttributeElement element)
{
Attribute *attr = find(name);
if (attr) {
/* return if same already exists */
if (attr->type == type && attr->element == element)
return attr;
/* overwrite attribute with same name but different type/element */
remove(name);
}
Attribute new_attr(name, type, element, geometry, prim);
attributes.emplace_back(std::move(new_attr));
tag_modified(attributes.back());
return &attributes.back();
}
Attribute *AttributeSet::find(ustring name) const
{
foreach (const Attribute &attr, attributes)
if (attr.name == name)
return (Attribute *)&attr;
return NULL;
}
void AttributeSet::remove(ustring name)
{
Attribute *attr = find(name);
if (attr) {
list<Attribute>::iterator it;
for (it = attributes.begin(); it != attributes.end(); it++) {
if (&*it == attr) {
remove(it);
return;
}
}
}
}
Attribute *AttributeSet::add(AttributeStandard std, ustring name)
{
Attribute *attr = NULL;
if (name == ustring())
name = Attribute::standard_name(std);
if (geometry->geometry_type == Geometry::MESH) {
switch (std) {
case ATTR_STD_VERTEX_NORMAL:
attr = add(name, TypeDesc::TypeNormal, ATTR_ELEMENT_VERTEX);
break;
case ATTR_STD_FACE_NORMAL:
attr = add(name, TypeDesc::TypeNormal, ATTR_ELEMENT_FACE);
break;
case ATTR_STD_UV:
attr = add(name, TypeFloat2, ATTR_ELEMENT_CORNER);
break;
case ATTR_STD_UV_TANGENT:
attr = add(name, TypeDesc::TypeVector, ATTR_ELEMENT_CORNER);
break;
case ATTR_STD_UV_TANGENT_SIGN:
attr = add(name, TypeDesc::TypeFloat, ATTR_ELEMENT_CORNER);
break;
case ATTR_STD_VERTEX_COLOR:
attr = add(name, TypeRGBA, ATTR_ELEMENT_CORNER_BYTE);
break;
case ATTR_STD_GENERATED:
case ATTR_STD_POSITION_UNDEFORMED:
case ATTR_STD_POSITION_UNDISPLACED:
attr = add(name, TypeDesc::TypePoint, ATTR_ELEMENT_VERTEX);
break;
case ATTR_STD_MOTION_VERTEX_POSITION:
attr = add(name, TypeDesc::TypePoint, ATTR_ELEMENT_VERTEX_MOTION);
break;
case ATTR_STD_MOTION_VERTEX_NORMAL:
attr = add(name, TypeDesc::TypeNormal, ATTR_ELEMENT_VERTEX_MOTION);
break;
case ATTR_STD_PTEX_FACE_ID:
attr = add(name, TypeDesc::TypeFloat, ATTR_ELEMENT_FACE);
break;
case ATTR_STD_PTEX_UV:
attr = add(name, TypeDesc::TypePoint, ATTR_ELEMENT_VERTEX);
break;
case ATTR_STD_GENERATED_TRANSFORM:
attr = add(name, TypeDesc::TypeMatrix, ATTR_ELEMENT_MESH);
break;
case ATTR_STD_POINTINESS:
attr = add(name, TypeDesc::TypeFloat, ATTR_ELEMENT_VERTEX);
break;
case ATTR_STD_RANDOM_PER_ISLAND:
attr = add(name, TypeDesc::TypeFloat, ATTR_ELEMENT_FACE);
break;
default:
assert(0);
break;
}
}
else if (geometry->geometry_type == Geometry::POINTCLOUD) {
switch (std) {
case ATTR_STD_UV:
attr = add(name, TypeFloat2, ATTR_ELEMENT_VERTEX);
break;
case ATTR_STD_GENERATED:
attr = add(name, TypeDesc::TypePoint, ATTR_ELEMENT_VERTEX);
break;
case ATTR_STD_MOTION_VERTEX_POSITION:
attr = add(name, TypeDesc::TypeFloat4, ATTR_ELEMENT_VERTEX_MOTION);
break;
case ATTR_STD_POINT_RANDOM:
attr = add(name, TypeDesc::TypeFloat, ATTR_ELEMENT_VERTEX);
break;
case ATTR_STD_GENERATED_TRANSFORM:
attr = add(name, TypeDesc::TypeMatrix, ATTR_ELEMENT_MESH);
break;
default:
assert(0);
break;
}
}
else if (geometry->geometry_type == Geometry::VOLUME) {
switch (std) {
case ATTR_STD_VERTEX_NORMAL:
attr = add(name, TypeDesc::TypeNormal, ATTR_ELEMENT_VERTEX);
break;
case ATTR_STD_FACE_NORMAL:
attr = add(name, TypeDesc::TypeNormal, ATTR_ELEMENT_FACE);
break;
case ATTR_STD_VOLUME_DENSITY:
case ATTR_STD_VOLUME_FLAME:
case ATTR_STD_VOLUME_HEAT:
case ATTR_STD_VOLUME_TEMPERATURE:
case ATTR_STD_VOLUME_VELOCITY_X:
case ATTR_STD_VOLUME_VELOCITY_Y:
case ATTR_STD_VOLUME_VELOCITY_Z:
attr = add(name, TypeDesc::TypeFloat, ATTR_ELEMENT_VOXEL);
break;
case ATTR_STD_VOLUME_COLOR:
attr = add(name, TypeDesc::TypeColor, ATTR_ELEMENT_VOXEL);
break;
case ATTR_STD_VOLUME_VELOCITY:
attr = add(name, TypeDesc::TypeVector, ATTR_ELEMENT_VOXEL);
break;
default:
assert(0);
break;
}
}
else if (geometry->geometry_type == Geometry::HAIR) {
switch (std) {
case ATTR_STD_UV:
attr = add(name, TypeFloat2, ATTR_ELEMENT_CURVE);
break;
case ATTR_STD_GENERATED:
attr = add(name, TypeDesc::TypePoint, ATTR_ELEMENT_CURVE);
break;
case ATTR_STD_MOTION_VERTEX_POSITION:
attr = add(name, TypeDesc::TypeFloat4, ATTR_ELEMENT_CURVE_KEY_MOTION);
break;
case ATTR_STD_CURVE_INTERCEPT:
attr = add(name, TypeDesc::TypeFloat, ATTR_ELEMENT_CURVE_KEY);
break;
case ATTR_STD_CURVE_LENGTH:
attr = add(name, TypeDesc::TypeFloat, ATTR_ELEMENT_CURVE);
break;
case ATTR_STD_CURVE_RANDOM:
attr = add(name, TypeDesc::TypeFloat, ATTR_ELEMENT_CURVE);
break;
case ATTR_STD_GENERATED_TRANSFORM:
attr = add(name, TypeDesc::TypeMatrix, ATTR_ELEMENT_MESH);
break;
case ATTR_STD_POINTINESS:
attr = add(name, TypeDesc::TypeFloat, ATTR_ELEMENT_VERTEX);
break;
case ATTR_STD_RANDOM_PER_ISLAND:
attr = add(name, TypeDesc::TypeFloat, ATTR_ELEMENT_FACE);
break;
case ATTR_STD_SHADOW_TRANSPARENCY:
attr = add(name, TypeDesc::TypeFloat, ATTR_ELEMENT_CURVE_KEY);
break;
default:
assert(0);
break;
}
}
attr->std = std;
return attr;
}
Attribute *AttributeSet::find(AttributeStandard std) const
{
foreach (const Attribute &attr, attributes)
if (attr.std == std)
return (Attribute *)&attr;
return NULL;
}
void AttributeSet::remove(AttributeStandard std)
{
Attribute *attr = find(std);
if (attr) {
list<Attribute>::iterator it;
for (it = attributes.begin(); it != attributes.end(); it++) {
if (&*it == attr) {
remove(it);
return;
}
}
}
}
Attribute *AttributeSet::find(AttributeRequest &req)
{
if (req.std == ATTR_STD_NONE)
return find(req.name);
else
return find(req.std);
}
void AttributeSet::remove(Attribute *attribute)
{
if (attribute->std == ATTR_STD_NONE) {
remove(attribute->name);
}
else {
remove(attribute->std);
}
}
void AttributeSet::remove(list<Attribute>::iterator it)
{
tag_modified(*it);
attributes.erase(it);
}
void AttributeSet::resize(bool reserve_only)
{
foreach (Attribute &attr, attributes) {
attr.resize(geometry, prim, reserve_only);
}
}
void AttributeSet::clear(bool preserve_voxel_data)
{
if (preserve_voxel_data) {
list<Attribute>::iterator it;
for (it = attributes.begin(); it != attributes.end();) {
if (it->element == ATTR_ELEMENT_VOXEL || it->std == ATTR_STD_GENERATED_TRANSFORM) {
it++;
}
else {
attributes.erase(it++);
}
}
}
else {
attributes.clear();
}
}
void AttributeSet::update(AttributeSet &&new_attributes)
{
/* add or update old_attributes based on the new_attributes */
foreach (Attribute &attr, new_attributes.attributes) {
Attribute *nattr = add(attr.name, attr.type, attr.element);
nattr->std = attr.std;
nattr->set_data_from(std::move(attr));
}
/* remove any attributes not on new_attributes */
list<Attribute>::iterator it;
for (it = attributes.begin(); it != attributes.end();) {
if (it->std != ATTR_STD_NONE) {
if (new_attributes.find(it->std) == nullptr) {
remove(it++);
continue;
}
}
else if (it->name != "") {
if (new_attributes.find(it->name) == nullptr) {
remove(it++);
continue;
}
}
it++;
}
/* If all attributes were replaced, transform is no longer applied. */
geometry->transform_applied = false;
}
void AttributeSet::clear_modified()
{
foreach (Attribute &attr, attributes) {
attr.modified = false;
}
modified_flag = 0;
}
void AttributeSet::tag_modified(const Attribute &attr)
{
/* Some attributes are not stored in the various kernel attribute arrays
* (DeviceScene::attribute_*), so the modified flags are only set if the associated standard
* corresponds to an attribute which will be stored in the kernel's attribute arrays. */
const bool modifies_device_array = (attr.std != ATTR_STD_FACE_NORMAL &&
attr.std != ATTR_STD_VERTEX_NORMAL);
if (modifies_device_array) {
AttrKernelDataType kernel_type = Attribute::kernel_type(attr);
modified_flag |= (1u << kernel_type);
}
}
bool AttributeSet::modified(AttrKernelDataType kernel_type) const
{
return (modified_flag & (1u << kernel_type)) != 0;
}
/* AttributeRequest */
AttributeRequest::AttributeRequest(ustring name_)
{
name = name_;
std = ATTR_STD_NONE;
type = TypeDesc::TypeFloat;
desc.element = ATTR_ELEMENT_NONE;
desc.offset = 0;
desc.type = NODE_ATTR_FLOAT;
subd_type = TypeDesc::TypeFloat;
subd_desc.element = ATTR_ELEMENT_NONE;
subd_desc.offset = 0;
subd_desc.type = NODE_ATTR_FLOAT;
}
AttributeRequest::AttributeRequest(AttributeStandard std_)
{
name = ustring();
std = std_;
type = TypeDesc::TypeFloat;
desc.element = ATTR_ELEMENT_NONE;
desc.offset = 0;
desc.type = NODE_ATTR_FLOAT;
subd_type = TypeDesc::TypeFloat;
subd_desc.element = ATTR_ELEMENT_NONE;
subd_desc.offset = 0;
subd_desc.type = NODE_ATTR_FLOAT;
}
/* AttributeRequestSet */
AttributeRequestSet::AttributeRequestSet()
{
}
AttributeRequestSet::~AttributeRequestSet()
{
}
bool AttributeRequestSet::modified(const AttributeRequestSet &other)
{
if (requests.size() != other.requests.size())
return true;
for (size_t i = 0; i < requests.size(); i++) {
bool found = false;
for (size_t j = 0; j < requests.size() && !found; j++)
if (requests[i].name == other.requests[j].name && requests[i].std == other.requests[j].std) {
found = true;
}
if (!found) {
return true;
}
}
return false;
}
void AttributeRequestSet::add(ustring name)
{
foreach (AttributeRequest &req, requests) {
if (req.name == name) {
return;
}
}
requests.push_back(AttributeRequest(name));
}
void AttributeRequestSet::add(AttributeStandard std)
{
foreach (AttributeRequest &req, requests)
if (req.std == std)
return;
requests.push_back(AttributeRequest(std));
}
void AttributeRequestSet::add(AttributeRequestSet &reqs)
{
foreach (AttributeRequest &req, reqs.requests) {
if (req.std == ATTR_STD_NONE)
add(req.name);
else
add(req.std);
}
}
void AttributeRequestSet::add_standard(ustring name)
{
if (name.empty()) {
return;
}
AttributeStandard std = Attribute::name_standard(name.c_str());
if (std) {
add(std);
}
else {
add(name);
}
}
bool AttributeRequestSet::find(ustring name)
{
foreach (AttributeRequest &req, requests)
if (req.name == name)
return true;
return false;
}
bool AttributeRequestSet::find(AttributeStandard std)
{
foreach (AttributeRequest &req, requests)
if (req.std == std)
return true;
return false;
}
size_t AttributeRequestSet::size()
{
return requests.size();
}
void AttributeRequestSet::clear()
{
requests.clear();
}
CCL_NAMESPACE_END