blender/intern/cycles/render/buffers.cpp
Lukas Stockner 517ff40b12 Cycles: Implement tile stealing to improve CPU+GPU rendering performance
While Cycles already supports using both CPU and GPU at the same time, there
currently is a large problem with it: Since the CPU grabs one tile per thread,
at the end of the render the GPU runs out of new work but the CPU still needs
quite some time to finish its current times.

Having smaller tiles helps somewhat, but especially OpenCL rendering tends to
lose performance with smaller tiles.

Therefore, this commit adds support for tile stealing: When a GPU device runs
out of new tiles, it can signal the CPU to release one of its tiles.
This way, at the end of the render, the GPU quickly finishes the remaining
tiles instead of having to wait for the CPU.

Thanks to AMD for sponsoring this work!

Differential Revision: https://developer.blender.org/D9324
2020-10-31 01:57:39 +01:00

574 lines
16 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdlib.h>
#include "device/device.h"
#include "render/buffers.h"
#include "util/util_foreach.h"
#include "util/util_hash.h"
#include "util/util_math.h"
#include "util/util_opengl.h"
#include "util/util_time.h"
#include "util/util_types.h"
CCL_NAMESPACE_BEGIN
/* Buffer Params */
BufferParams::BufferParams()
{
width = 0;
height = 0;
full_x = 0;
full_y = 0;
full_width = 0;
full_height = 0;
denoising_data_pass = false;
denoising_clean_pass = false;
denoising_prefiltered_pass = false;
Pass::add(PASS_COMBINED, passes);
}
void BufferParams::get_offset_stride(int &offset, int &stride)
{
offset = -(full_x + full_y * width);
stride = width;
}
bool BufferParams::modified(const BufferParams &params)
{
return !(full_x == params.full_x && full_y == params.full_y && width == params.width &&
height == params.height && full_width == params.full_width &&
full_height == params.full_height && Pass::equals(passes, params.passes) &&
denoising_data_pass == params.denoising_data_pass &&
denoising_clean_pass == params.denoising_clean_pass &&
denoising_prefiltered_pass == params.denoising_prefiltered_pass);
}
int BufferParams::get_passes_size()
{
int size = 0;
for (size_t i = 0; i < passes.size(); i++)
size += passes[i].components;
if (denoising_data_pass) {
size += DENOISING_PASS_SIZE_BASE;
if (denoising_clean_pass)
size += DENOISING_PASS_SIZE_CLEAN;
if (denoising_prefiltered_pass)
size += DENOISING_PASS_SIZE_PREFILTERED;
}
return align_up(size, 4);
}
int BufferParams::get_denoising_offset()
{
int offset = 0;
for (size_t i = 0; i < passes.size(); i++)
offset += passes[i].components;
return offset;
}
int BufferParams::get_denoising_prefiltered_offset()
{
assert(denoising_prefiltered_pass);
int offset = get_denoising_offset();
offset += DENOISING_PASS_SIZE_BASE;
if (denoising_clean_pass) {
offset += DENOISING_PASS_SIZE_CLEAN;
}
return offset;
}
/* Render Buffer Task */
RenderTile::RenderTile()
{
x = 0;
y = 0;
w = 0;
h = 0;
sample = 0;
start_sample = 0;
num_samples = 0;
resolution = 0;
offset = 0;
stride = 0;
buffer = 0;
buffers = NULL;
stealing_state = NO_STEALING;
}
/* Render Buffers */
RenderBuffers::RenderBuffers(Device *device)
: buffer(device, "RenderBuffers", MEM_READ_WRITE),
map_neighbor_copied(false),
render_time(0.0f)
{
}
RenderBuffers::~RenderBuffers()
{
buffer.free();
}
void RenderBuffers::reset(BufferParams &params_)
{
params = params_;
/* re-allocate buffer */
buffer.alloc(params.width * params.get_passes_size(), params.height);
buffer.zero_to_device();
}
void RenderBuffers::zero()
{
buffer.zero_to_device();
}
bool RenderBuffers::copy_from_device()
{
if (!buffer.device_pointer)
return false;
buffer.copy_from_device(0, params.width * params.get_passes_size(), params.height);
return true;
}
bool RenderBuffers::get_denoising_pass_rect(
int type, float exposure, int sample, int components, float *pixels)
{
if (buffer.data() == NULL) {
return false;
}
float scale = 1.0f;
float alpha_scale = 1.0f / sample;
if (type == DENOISING_PASS_PREFILTERED_COLOR || type == DENOISING_PASS_CLEAN ||
type == DENOISING_PASS_PREFILTERED_INTENSITY) {
scale *= exposure;
}
else if (type == DENOISING_PASS_PREFILTERED_VARIANCE) {
scale *= exposure * exposure * (sample - 1);
}
int offset;
if (type == DENOISING_PASS_CLEAN) {
/* The clean pass isn't changed by prefiltering, so we use the original one there. */
offset = type + params.get_denoising_offset();
scale /= sample;
}
else if (params.denoising_prefiltered_pass) {
offset = type + params.get_denoising_prefiltered_offset();
}
else {
switch (type) {
case DENOISING_PASS_PREFILTERED_DEPTH:
offset = params.get_denoising_offset() + DENOISING_PASS_DEPTH;
break;
case DENOISING_PASS_PREFILTERED_NORMAL:
offset = params.get_denoising_offset() + DENOISING_PASS_NORMAL;
break;
case DENOISING_PASS_PREFILTERED_ALBEDO:
offset = params.get_denoising_offset() + DENOISING_PASS_ALBEDO;
break;
case DENOISING_PASS_PREFILTERED_COLOR:
/* If we're not saving the prefiltering result, return the original noisy pass. */
offset = params.get_denoising_offset() + DENOISING_PASS_COLOR;
break;
default:
return false;
}
scale /= sample;
}
int pass_stride = params.get_passes_size();
int size = params.width * params.height;
float *in = buffer.data() + offset;
if (components == 1) {
for (int i = 0; i < size; i++, in += pass_stride, pixels++) {
pixels[0] = in[0] * scale;
}
}
else if (components == 3) {
for (int i = 0; i < size; i++, in += pass_stride, pixels += 3) {
pixels[0] = in[0] * scale;
pixels[1] = in[1] * scale;
pixels[2] = in[2] * scale;
}
}
else if (components == 4) {
/* Since the alpha channel is not involved in denoising, output the Combined alpha channel. */
assert(params.passes[0].type == PASS_COMBINED);
float *in_combined = buffer.data();
for (int i = 0; i < size; i++, in += pass_stride, in_combined += pass_stride, pixels += 4) {
float3 val = make_float3(in[0], in[1], in[2]);
if (type == DENOISING_PASS_PREFILTERED_COLOR && params.denoising_prefiltered_pass) {
/* Remove highlight compression from the image. */
val = color_highlight_uncompress(val);
}
pixels[0] = val.x * scale;
pixels[1] = val.y * scale;
pixels[2] = val.z * scale;
pixels[3] = saturate(in_combined[3] * alpha_scale);
}
}
else {
return false;
}
return true;
}
bool RenderBuffers::get_pass_rect(
const string &name, float exposure, int sample, int components, float *pixels)
{
if (buffer.data() == NULL) {
return false;
}
float *sample_count = NULL;
if (name == "Combined") {
int sample_offset = 0;
for (size_t j = 0; j < params.passes.size(); j++) {
Pass &pass = params.passes[j];
if (pass.type != PASS_SAMPLE_COUNT) {
sample_offset += pass.components;
continue;
}
else {
sample_count = buffer.data() + sample_offset;
break;
}
}
}
int pass_offset = 0;
for (size_t j = 0; j < params.passes.size(); j++) {
Pass &pass = params.passes[j];
/* Pass is identified by both type and name, multiple of the same type
* may exist with a different name. */
if (pass.name != name) {
pass_offset += pass.components;
continue;
}
PassType type = pass.type;
float *in = buffer.data() + pass_offset;
int pass_stride = params.get_passes_size();
float scale = (pass.filter) ? 1.0f / (float)sample : 1.0f;
float scale_exposure = (pass.exposure) ? scale * exposure : scale;
int size = params.width * params.height;
if (components == 1 && type == PASS_RENDER_TIME) {
/* Render time is not stored by kernel, but measured per tile. */
float val = (float)(1000.0 * render_time / (params.width * params.height * sample));
for (int i = 0; i < size; i++, pixels++) {
pixels[0] = val;
}
}
else if (components == 1) {
assert(pass.components == components);
/* Scalar */
if (type == PASS_DEPTH) {
for (int i = 0; i < size; i++, in += pass_stride, pixels++) {
float f = *in;
pixels[0] = (f == 0.0f) ? 1e10f : f * scale_exposure;
}
}
else if (type == PASS_MIST) {
for (int i = 0; i < size; i++, in += pass_stride, pixels++) {
float f = *in;
pixels[0] = saturate(f * scale_exposure);
}
}
#ifdef WITH_CYCLES_DEBUG
else if (type == PASS_BVH_TRAVERSED_NODES || type == PASS_BVH_TRAVERSED_INSTANCES ||
type == PASS_BVH_INTERSECTIONS || type == PASS_RAY_BOUNCES) {
for (int i = 0; i < size; i++, in += pass_stride, pixels++) {
float f = *in;
pixels[0] = f * scale;
}
}
#endif
else {
for (int i = 0; i < size; i++, in += pass_stride, pixels++) {
float f = *in;
pixels[0] = f * scale_exposure;
}
}
}
else if (components == 3) {
assert(pass.components == 4);
/* RGBA */
if (type == PASS_SHADOW) {
for (int i = 0; i < size; i++, in += pass_stride, pixels += 3) {
float4 f = make_float4(in[0], in[1], in[2], in[3]);
float invw = (f.w > 0.0f) ? 1.0f / f.w : 1.0f;
pixels[0] = f.x * invw;
pixels[1] = f.y * invw;
pixels[2] = f.z * invw;
}
}
else if (pass.divide_type != PASS_NONE) {
/* RGB lighting passes that need to divide out color */
pass_offset = 0;
for (size_t k = 0; k < params.passes.size(); k++) {
Pass &color_pass = params.passes[k];
if (color_pass.type == pass.divide_type)
break;
pass_offset += color_pass.components;
}
float *in_divide = buffer.data() + pass_offset;
for (int i = 0; i < size; i++, in += pass_stride, in_divide += pass_stride, pixels += 3) {
float3 f = make_float3(in[0], in[1], in[2]);
float3 f_divide = make_float3(in_divide[0], in_divide[1], in_divide[2]);
f = safe_divide_even_color(f * exposure, f_divide);
pixels[0] = f.x;
pixels[1] = f.y;
pixels[2] = f.z;
}
}
else {
/* RGB/vector */
for (int i = 0; i < size; i++, in += pass_stride, pixels += 3) {
float3 f = make_float3(in[0], in[1], in[2]);
pixels[0] = f.x * scale_exposure;
pixels[1] = f.y * scale_exposure;
pixels[2] = f.z * scale_exposure;
}
}
}
else if (components == 4) {
assert(pass.components == components);
/* RGBA */
if (type == PASS_SHADOW) {
for (int i = 0; i < size; i++, in += pass_stride, pixels += 4) {
float4 f = make_float4(in[0], in[1], in[2], in[3]);
float invw = (f.w > 0.0f) ? 1.0f / f.w : 1.0f;
pixels[0] = f.x * invw;
pixels[1] = f.y * invw;
pixels[2] = f.z * invw;
pixels[3] = 1.0f;
}
}
else if (type == PASS_MOTION) {
/* need to normalize by number of samples accumulated for motion */
pass_offset = 0;
for (size_t k = 0; k < params.passes.size(); k++) {
Pass &color_pass = params.passes[k];
if (color_pass.type == PASS_MOTION_WEIGHT)
break;
pass_offset += color_pass.components;
}
float *in_weight = buffer.data() + pass_offset;
for (int i = 0; i < size; i++, in += pass_stride, in_weight += pass_stride, pixels += 4) {
float4 f = make_float4(in[0], in[1], in[2], in[3]);
float w = in_weight[0];
float invw = (w > 0.0f) ? 1.0f / w : 0.0f;
pixels[0] = f.x * invw;
pixels[1] = f.y * invw;
pixels[2] = f.z * invw;
pixels[3] = f.w * invw;
}
}
else if (type == PASS_CRYPTOMATTE) {
for (int i = 0; i < size; i++, in += pass_stride, pixels += 4) {
float4 f = make_float4(in[0], in[1], in[2], in[3]);
/* x and z contain integer IDs, don't rescale them.
y and w contain matte weights, they get scaled. */
pixels[0] = f.x;
pixels[1] = f.y * scale;
pixels[2] = f.z;
pixels[3] = f.w * scale;
}
}
else {
for (int i = 0; i < size; i++, in += pass_stride, pixels += 4) {
if (sample_count && sample_count[i * pass_stride] < 0.0f) {
scale = (pass.filter) ? -1.0f / (sample_count[i * pass_stride]) : 1.0f;
scale_exposure = (pass.exposure) ? scale * exposure : scale;
}
float4 f = make_float4(in[0], in[1], in[2], in[3]);
pixels[0] = f.x * scale_exposure;
pixels[1] = f.y * scale_exposure;
pixels[2] = f.z * scale_exposure;
/* clamp since alpha might be > 1.0 due to russian roulette */
pixels[3] = saturate(f.w * scale);
}
}
}
return true;
}
return false;
}
bool RenderBuffers::set_pass_rect(PassType type, int components, float *pixels, int samples)
{
if (buffer.data() == NULL) {
return false;
}
int pass_offset = 0;
for (size_t j = 0; j < params.passes.size(); j++) {
Pass &pass = params.passes[j];
if (pass.type != type) {
pass_offset += pass.components;
continue;
}
float *out = buffer.data() + pass_offset;
int pass_stride = params.get_passes_size();
int size = params.width * params.height;
assert(pass.components == components);
for (int i = 0; i < size; i++, out += pass_stride, pixels += components) {
if (pass.filter) {
/* Scale by the number of samples, inverse of what we do in get_pass_rect.
* A better solution would be to remove the need for set_pass_rect entirely,
* and change baking to bake multiple objects in a tile at once. */
for (int j = 0; j < components; j++) {
out[j] = pixels[j] * samples;
}
}
else {
/* For non-filtered passes just straight copy, these may contain non-float data. */
memcpy(out, pixels, sizeof(float) * components);
}
}
return true;
}
return false;
}
/* Display Buffer */
DisplayBuffer::DisplayBuffer(Device *device, bool linear)
: draw_width(0),
draw_height(0),
transparent(true), /* todo: determine from background */
half_float(linear),
rgba_byte(device, "display buffer byte"),
rgba_half(device, "display buffer half")
{
}
DisplayBuffer::~DisplayBuffer()
{
rgba_byte.free();
rgba_half.free();
}
void DisplayBuffer::reset(BufferParams &params_)
{
draw_width = 0;
draw_height = 0;
params = params_;
/* allocate display pixels */
if (half_float) {
rgba_half.alloc_to_device(params.width, params.height);
}
else {
rgba_byte.alloc_to_device(params.width, params.height);
}
}
void DisplayBuffer::draw_set(int width, int height)
{
assert(width <= params.width && height <= params.height);
draw_width = width;
draw_height = height;
}
void DisplayBuffer::draw(Device *device, const DeviceDrawParams &draw_params)
{
if (draw_width != 0 && draw_height != 0) {
device_memory &rgba = (half_float) ? (device_memory &)rgba_half : (device_memory &)rgba_byte;
device->draw_pixels(rgba,
0,
draw_width,
draw_height,
params.width,
params.height,
params.full_x,
params.full_y,
params.full_width,
params.full_height,
transparent,
draw_params);
}
}
bool DisplayBuffer::draw_ready()
{
return (draw_width != 0 && draw_height != 0);
}
CCL_NAMESPACE_END