blender/intern/cycles/render/stats.cpp
Kevin Dietrich 2e67191c86 Cycles: internal support for the concept of procedurals
Procedurals are nodes in the scene that can generate an arbitrary number of
other nodes at render time. This will be used to implement an Alembic procedural
that can load an Alembic file into Cycles nodes. In the future we also expect to
have a USD procedural.

Direct loading of such files at render time is a standard feature in other
production renderers. Reasons to support this are memory usage and performance,
delayed loading of heavy scene data until rendering, Cycles standalone rendering
using standard file formats beyond our XML files, and shared functionality for
Cycles integration in multiple 3D apps.

Ref T79174, D3089
2021-01-25 15:51:38 +01:00

402 lines
13 KiB
C++

/*
* Copyright 2011-2018 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "render/stats.h"
#include "render/object.h"
#include "util/util_algorithm.h"
#include "util/util_foreach.h"
#include "util/util_string.h"
CCL_NAMESPACE_BEGIN
static int kIndentNumSpaces = 2;
/* Named size entry. */
namespace {
bool namedSizeEntryComparator(const NamedSizeEntry &a, const NamedSizeEntry &b)
{
/* We sort in descending order. */
return a.size > b.size;
}
bool namedTimeEntryComparator(const NamedTimeEntry &a, const NamedTimeEntry &b)
{
/* We sort in descending order. */
return a.time > b.time;
}
bool namedTimeSampleEntryComparator(const NamedNestedSampleStats &a,
const NamedNestedSampleStats &b)
{
return a.sum_samples > b.sum_samples;
}
bool namedSampleCountPairComparator(const NamedSampleCountPair &a, const NamedSampleCountPair &b)
{
return a.samples > b.samples;
}
} // namespace
NamedSizeEntry::NamedSizeEntry() : name(""), size(0)
{
}
NamedSizeEntry::NamedSizeEntry(const string &name, size_t size) : name(name), size(size)
{
}
NamedTimeEntry::NamedTimeEntry() : name(""), time(0)
{
}
NamedTimeEntry::NamedTimeEntry(const string &name, double time) : name(name), time(time)
{
}
/* Named size statistics. */
NamedSizeStats::NamedSizeStats() : total_size(0)
{
}
void NamedSizeStats::add_entry(const NamedSizeEntry &entry)
{
total_size += entry.size;
entries.push_back(entry);
}
string NamedSizeStats::full_report(int indent_level)
{
const string indent(indent_level * kIndentNumSpaces, ' ');
const string double_indent = indent + indent;
string result = "";
result += string_printf("%sTotal memory: %s (%s)\n",
indent.c_str(),
string_human_readable_size(total_size).c_str(),
string_human_readable_number(total_size).c_str());
sort(entries.begin(), entries.end(), namedSizeEntryComparator);
foreach (const NamedSizeEntry &entry, entries) {
result += string_printf("%s%-32s %s (%s)\n",
double_indent.c_str(),
entry.name.c_str(),
string_human_readable_size(entry.size).c_str(),
string_human_readable_number(entry.size).c_str());
}
return result;
}
string NamedTimeStats::full_report(int indent_level)
{
const string indent(indent_level * kIndentNumSpaces, ' ');
const string double_indent = indent + indent;
string result = "";
result += string_printf("%sTotal time: %fs\n", indent.c_str(), total_time);
sort(entries.begin(), entries.end(), namedTimeEntryComparator);
foreach (const NamedTimeEntry &entry, entries) {
result += string_printf(
"%s%-40s %fs\n", double_indent.c_str(), entry.name.c_str(), entry.time);
}
return result;
}
/* Named time sample statistics. */
NamedNestedSampleStats::NamedNestedSampleStats() : name(""), self_samples(0), sum_samples(0)
{
}
NamedNestedSampleStats::NamedNestedSampleStats(const string &name, uint64_t samples)
: name(name), self_samples(samples), sum_samples(samples)
{
}
NamedNestedSampleStats &NamedNestedSampleStats::add_entry(const string &name_, uint64_t samples_)
{
entries.push_back(NamedNestedSampleStats(name_, samples_));
return entries[entries.size() - 1];
}
void NamedNestedSampleStats::update_sum()
{
sum_samples = self_samples;
foreach (NamedNestedSampleStats &entry, entries) {
entry.update_sum();
sum_samples += entry.sum_samples;
}
}
string NamedNestedSampleStats::full_report(int indent_level, uint64_t total_samples)
{
update_sum();
if (total_samples == 0) {
total_samples = sum_samples;
}
const string indent(indent_level * kIndentNumSpaces, ' ');
const double sum_percent = 100 * ((double)sum_samples) / total_samples;
const double sum_seconds = sum_samples * 0.001;
const double self_percent = 100 * ((double)self_samples) / total_samples;
const double self_seconds = self_samples * 0.001;
string info = string_printf("%-32s: Total %3.2f%% (%.2fs), Self %3.2f%% (%.2fs)\n",
name.c_str(),
sum_percent,
sum_seconds,
self_percent,
self_seconds);
string result = indent + info;
sort(entries.begin(), entries.end(), namedTimeSampleEntryComparator);
foreach (NamedNestedSampleStats &entry, entries) {
result += entry.full_report(indent_level + 1, total_samples);
}
return result;
}
/* Named sample count pairs. */
NamedSampleCountPair::NamedSampleCountPair(const ustring &name, uint64_t samples, uint64_t hits)
: name(name), samples(samples), hits(hits)
{
}
NamedSampleCountStats::NamedSampleCountStats()
{
}
void NamedSampleCountStats::add(const ustring &name, uint64_t samples, uint64_t hits)
{
entry_map::iterator entry = entries.find(name);
if (entry != entries.end()) {
entry->second.samples += samples;
entry->second.hits += hits;
return;
}
entries.emplace(name, NamedSampleCountPair(name, samples, hits));
}
string NamedSampleCountStats::full_report(int indent_level)
{
const string indent(indent_level * kIndentNumSpaces, ' ');
vector<NamedSampleCountPair> sorted_entries;
sorted_entries.reserve(entries.size());
uint64_t total_hits = 0, total_samples = 0;
foreach (entry_map::const_reference entry, entries) {
const NamedSampleCountPair &pair = entry.second;
total_hits += pair.hits;
total_samples += pair.samples;
sorted_entries.push_back(pair);
}
const double avg_samples_per_hit = ((double)total_samples) / total_hits;
sort(sorted_entries.begin(), sorted_entries.end(), namedSampleCountPairComparator);
string result = "";
foreach (const NamedSampleCountPair &entry, sorted_entries) {
const double seconds = entry.samples * 0.001;
const double relative = ((double)entry.samples) / (entry.hits * avg_samples_per_hit);
result += indent +
string_printf(
"%-32s: %.2fs (Relative cost: %.2f)\n", entry.name.c_str(), seconds, relative);
}
return result;
}
/* Mesh statistics. */
MeshStats::MeshStats()
{
}
string MeshStats::full_report(int indent_level)
{
const string indent(indent_level * kIndentNumSpaces, ' ');
string result = "";
result += indent + "Geometry:\n" + geometry.full_report(indent_level + 1);
return result;
}
/* Image statistics. */
ImageStats::ImageStats()
{
}
string ImageStats::full_report(int indent_level)
{
const string indent(indent_level * kIndentNumSpaces, ' ');
string result = "";
result += indent + "Textures:\n" + textures.full_report(indent_level + 1);
return result;
}
/* Overall statistics. */
RenderStats::RenderStats()
{
has_profiling = false;
}
void RenderStats::collect_profiling(Scene *scene, Profiler &prof)
{
has_profiling = true;
kernel = NamedNestedSampleStats("Total render time", prof.get_event(PROFILING_UNKNOWN));
kernel.add_entry("Ray setup", prof.get_event(PROFILING_RAY_SETUP));
kernel.add_entry("Result writing", prof.get_event(PROFILING_WRITE_RESULT));
NamedNestedSampleStats &integrator = kernel.add_entry("Path integration",
prof.get_event(PROFILING_PATH_INTEGRATE));
integrator.add_entry("Scene intersection", prof.get_event(PROFILING_SCENE_INTERSECT));
integrator.add_entry("Indirect emission", prof.get_event(PROFILING_INDIRECT_EMISSION));
integrator.add_entry("Volumes", prof.get_event(PROFILING_VOLUME));
NamedNestedSampleStats &shading = integrator.add_entry("Shading", 0);
shading.add_entry("Shader Setup", prof.get_event(PROFILING_SHADER_SETUP));
shading.add_entry("Shader Eval", prof.get_event(PROFILING_SHADER_EVAL));
shading.add_entry("Shader Apply", prof.get_event(PROFILING_SHADER_APPLY));
shading.add_entry("Ambient Occlusion", prof.get_event(PROFILING_AO));
shading.add_entry("Subsurface", prof.get_event(PROFILING_SUBSURFACE));
integrator.add_entry("Connect Light", prof.get_event(PROFILING_CONNECT_LIGHT));
integrator.add_entry("Surface Bounce", prof.get_event(PROFILING_SURFACE_BOUNCE));
NamedNestedSampleStats &intersection = kernel.add_entry("Intersection", 0);
intersection.add_entry("Full Intersection", prof.get_event(PROFILING_INTERSECT));
intersection.add_entry("Local Intersection", prof.get_event(PROFILING_INTERSECT_LOCAL));
intersection.add_entry("Shadow All Intersection",
prof.get_event(PROFILING_INTERSECT_SHADOW_ALL));
intersection.add_entry("Volume Intersection", prof.get_event(PROFILING_INTERSECT_VOLUME));
intersection.add_entry("Volume All Intersection",
prof.get_event(PROFILING_INTERSECT_VOLUME_ALL));
NamedNestedSampleStats &closure = kernel.add_entry("Closures", 0);
closure.add_entry("Surface Closure Evaluation", prof.get_event(PROFILING_CLOSURE_EVAL));
closure.add_entry("Surface Closure Sampling", prof.get_event(PROFILING_CLOSURE_SAMPLE));
closure.add_entry("Volume Closure Evaluation", prof.get_event(PROFILING_CLOSURE_VOLUME_EVAL));
closure.add_entry("Volume Closure Sampling", prof.get_event(PROFILING_CLOSURE_VOLUME_SAMPLE));
NamedNestedSampleStats &denoising = kernel.add_entry("Denoising",
prof.get_event(PROFILING_DENOISING));
denoising.add_entry("Construct Transform",
prof.get_event(PROFILING_DENOISING_CONSTRUCT_TRANSFORM));
denoising.add_entry("Reconstruct", prof.get_event(PROFILING_DENOISING_RECONSTRUCT));
NamedNestedSampleStats &prefilter = denoising.add_entry("Prefiltering", 0);
prefilter.add_entry("Divide Shadow", prof.get_event(PROFILING_DENOISING_DIVIDE_SHADOW));
prefilter.add_entry("Non-Local means", prof.get_event(PROFILING_DENOISING_NON_LOCAL_MEANS));
prefilter.add_entry("Get Feature", prof.get_event(PROFILING_DENOISING_GET_FEATURE));
prefilter.add_entry("Detect Outliers", prof.get_event(PROFILING_DENOISING_DETECT_OUTLIERS));
prefilter.add_entry("Combine Halves", prof.get_event(PROFILING_DENOISING_COMBINE_HALVES));
shaders.entries.clear();
foreach (Shader *shader, scene->shaders) {
uint64_t samples, hits;
if (prof.get_shader(shader->id, samples, hits)) {
shaders.add(shader->name, samples, hits);
}
}
objects.entries.clear();
foreach (Object *object, scene->objects) {
uint64_t samples, hits;
if (prof.get_object(object->get_device_index(), samples, hits)) {
objects.add(object->name, samples, hits);
}
}
}
string RenderStats::full_report()
{
string result = "";
result += "Mesh statistics:\n" + mesh.full_report(1);
result += "Image statistics:\n" + image.full_report(1);
if (has_profiling) {
result += "Kernel statistics:\n" + kernel.full_report(1);
result += "Shader statistics:\n" + shaders.full_report(1);
result += "Object statistics:\n" + objects.full_report(1);
}
else {
result += "Profiling information not available (only works with CPU rendering)";
}
return result;
}
NamedTimeStats::NamedTimeStats() : total_time(0.0)
{
}
string UpdateTimeStats::full_report(int indent_level)
{
return times.full_report(indent_level + 1);
}
SceneUpdateStats::SceneUpdateStats()
{
}
string SceneUpdateStats::full_report()
{
string result = "";
result += "Scene:\n" + scene.full_report(1);
result += "Geometry:\n" + geometry.full_report(1);
result += "Light:\n" + light.full_report(1);
result += "Object:\n" + object.full_report(1);
result += "Image:\n" + image.full_report(1);
result += "Background:\n" + background.full_report(1);
result += "Bake:\n" + bake.full_report(1);
result += "Camera:\n" + camera.full_report(1);
result += "Film:\n" + film.full_report(1);
result += "Integrator:\n" + integrator.full_report(1);
result += "OSL:\n" + osl.full_report(1);
result += "Particles:\n" + particles.full_report(1);
result += "SVM:\n" + svm.full_report(1);
result += "Tables:\n" + tables.full_report(1);
result += "Procedurals:\n" + procedurals.full_report(1);
return result;
}
void SceneUpdateStats::clear()
{
geometry.times.clear();
image.times.clear();
light.times.clear();
object.times.clear();
background.times.clear();
bake.times.clear();
camera.times.clear();
film.times.clear();
integrator.times.clear();
osl.times.clear();
particles.times.clear();
scene.times.clear();
svm.times.clear();
tables.times.clear();
procedurals.times.clear();
}
CCL_NAMESPACE_END