blender/source/gameengine/Expressions/PyObjectPlus.cpp

1220 lines
35 KiB
C++

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file gameengine/Expressions/PyObjectPlus.cpp
* \ingroup expressions
*/
/*------------------------------
* PyObjectPlus cpp
*
* C++ library routines for Crawl 3.2
*
* Derived from work by
* David Redish
* graduate student
* Computer Science Department
* Carnegie Mellon University (CMU)
* Center for the Neural Basis of Cognition (CNBC)
* http://www.python.org/doc/PyCPP.html
*
------------------------------*/
#include <stdlib.h>
#include <stddef.h>
#include "PyObjectPlus.h"
#include "STR_String.h"
#include "MT_Vector3.h"
#include "MEM_guardedalloc.h"
PyObjectPlus::~PyObjectPlus()
{
#ifdef WITH_PYTHON
if(m_proxy) {
BGE_PROXY_REF(m_proxy)= NULL;
Py_DECREF(m_proxy); /* Remove own reference, python may still have 1 */
}
// assert(ob_refcnt==0);
#endif
}
PyObjectPlus::PyObjectPlus() : SG_QList() // constructor
{
#ifdef WITH_PYTHON
m_proxy= NULL;
#endif
};
void PyObjectPlus::ProcessReplica()
{
#ifdef WITH_PYTHON
/* Clear the proxy, will be created again if needed with GetProxy()
* otherwise the PyObject will point to the wrong reference */
m_proxy= NULL;
#endif
}
/* Sometimes we might want to manually invalidate a BGE type even if
* it hasnt been released by the BGE, say for example when an object
* is removed from a scene, accessing it may cause problems.
*
* In this case the current proxy is made invalid, disowned,
* and will raise an error on access. However if python can get access
* to this class again it will make a new proxy and work as expected.
*/
void PyObjectPlus::InvalidateProxy() // check typename of each parent
{
#ifdef WITH_PYTHON
if(m_proxy) {
BGE_PROXY_REF(m_proxy)=NULL;
Py_DECREF(m_proxy);
m_proxy= NULL;
}
#endif
}
#ifdef WITH_PYTHON
/*------------------------------
* PyObjectPlus Type -- Every class, even the abstract one should have a Type
------------------------------*/
PyTypeObject PyObjectPlus::Type = {
PyVarObject_HEAD_INIT(NULL, 0)
"PyObjectPlus", /*tp_name*/
sizeof(PyObjectPlus_Proxy), /*tp_basicsize*/
0, /*tp_itemsize*/
/* methods */
py_base_dealloc, /* tp_dealloc */
0, /* printfunc tp_print; */
0, /* getattrfunc tp_getattr; */
0, /* setattrfunc tp_setattr; */
0, /* tp_compare */ /* DEPRECATED in python 3.0! */
py_base_repr, /* tp_repr */
0,0,0,0,0,0,0,0,0, /* Method suites for standard classes */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,/* long tp_flags; */
0,0,0,0,
/* weak reference enabler */
#ifdef USE_WEAKREFS
offsetof(PyObjectPlus_Proxy, in_weakreflist), /* long tp_weaklistoffset; */
#else
0,
#endif
0,0,
Methods,
0,
0,
NULL // no subtype
};
PyObject *PyObjectPlus::py_base_repr(PyObject *self) // This should be the entry in Type.
{
PyObjectPlus *self_plus= BGE_PROXY_REF(self);
if(self_plus==NULL) {
PyErr_SetString(PyExc_SystemError, BGE_PROXY_ERROR_MSG);
return NULL;
}
return self_plus->py_repr();
}
PyObject * PyObjectPlus::py_base_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
PyTypeObject *base_type;
PyObjectPlus_Proxy *base = NULL;
if (!PyArg_ParseTuple(args, "O:Base PyObjectPlus", &base))
return NULL;
/* the 'base' PyObject may be subclassed (multiple times even)
* we need to find the first C++ defined class to check 'type'
* is a subclass of the base arguments type.
*
* This way we can share one tp_new function for every PyObjectPlus
*
* eg.
*
* # CustomOb is called 'type' in this C code
* class CustomOb(GameTypes.KX_GameObject):
* pass
*
* # this calls py_base_new(...), the type of 'CustomOb' is checked to be a subclass of the 'cont.owner' type
* ob = CustomOb(cont.owner)
*
* */
base_type= Py_TYPE(base);
while(base_type && !BGE_PROXY_CHECK_TYPE(base_type))
base_type= base_type->tp_base;
if(base_type==NULL || !BGE_PROXY_CHECK_TYPE(base_type)) {
PyErr_SetString(PyExc_TypeError, "can't subclass from a blender game type because the argument given is not a game class or subclass");
return NULL;
}
/* use base_type rather than Py_TYPE(base) because we could already be subtyped */
if(!PyType_IsSubtype(type, base_type)) {
PyErr_Format(PyExc_TypeError, "can't subclass blender game type <%s> from <%s> because it is not a subclass", base_type->tp_name, type->tp_name);
return NULL;
}
/* invalidate the existing base and return a new subclassed one,
* this is a bit dodgy in that it also attaches its self to the existing object
* which is not really 'correct' python OO but for our use its OK. */
PyObjectPlus_Proxy *ret = (PyObjectPlus_Proxy *) type->tp_alloc(type, 0); /* starts with 1 ref, used for the return ref' */
ret->ref= base->ref;
ret->ptr= base->ptr;
ret->py_owns= base->py_owns;
ret->py_ref = base->py_ref;
if (ret->py_ref) {
base->ref= NULL; /* invalidate! disallow further access */
base->ptr = NULL;
if (ret->ref)
ret->ref->m_proxy= NULL;
/* 'base' may be free'd after this func finished but not necessarily
* there is no reference to the BGE data now so it will throw an error on access */
Py_DECREF(base);
if (ret->ref) {
ret->ref->m_proxy= (PyObject *)ret; /* no need to add a ref because one is added when creating. */
Py_INCREF(ret); /* we return a new ref but m_proxy holds a ref so we need to add one */
}
} else {
// generic structures don't hold a reference to this proxy, so don't increment ref count
if (ret->py_owns)
// but if the proxy owns the structure, there can be only one owner
base->ptr= NULL;
}
return (PyObject *)ret;
}
/**
* @param self A PyObjectPlus_Proxy
*/
void PyObjectPlus::py_base_dealloc(PyObject *self) // python wrapper
{
#ifdef USE_WEAKREFS
if (BGE_PROXY_WKREF(self) != NULL)
PyObject_ClearWeakRefs((PyObject *) self);
#endif
if (BGE_PROXY_PYREF(self)) {
PyObjectPlus *self_plus= BGE_PROXY_REF(self);
if(self_plus) {
if(BGE_PROXY_PYOWNS(self)) { /* Does python own this?, then delete it */
self_plus->m_proxy = NULL; /* Need this to stop ~PyObjectPlus from decrefing m_proxy otherwise its decref'd twice and py-debug crashes */
delete self_plus;
}
BGE_PROXY_REF(self)= NULL; // not really needed
}
// the generic pointer is not deleted directly, only through self_plus
BGE_PROXY_PTR(self)= NULL; // not really needed
} else {
void *ptr= BGE_PROXY_PTR(self);
if(ptr) {
if(BGE_PROXY_PYOWNS(self)) { /* Does python own this?, then delete it */
// generic structure owned by python MUST be created though MEM_alloc
MEM_freeN(ptr);
}
BGE_PROXY_PTR(self)= NULL; // not really needed
}
}
#if 0
/* is ok normally but not for subtyping, use tp_free instead. */
PyObject_DEL( self );
#else
Py_TYPE(self)->tp_free(self);
#endif
};
/*------------------------------
* PyObjectPlus Methods -- Every class, even the abstract one should have a Methods
------------------------------*/
PyMethodDef PyObjectPlus::Methods[] = {
{NULL, NULL} /* Sentinel */
};
#define attr_invalid (&(PyObjectPlus::Attributes[0]))
PyAttributeDef PyObjectPlus::Attributes[] = {
KX_PYATTRIBUTE_RO_FUNCTION("invalid", PyObjectPlus, pyattr_get_invalid),
{NULL} //Sentinel
};
PyObject* PyObjectPlus::pyattr_get_invalid(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
{
return PyBool_FromLong(self_v ? 0:1);
}
/* note, this is called as a python 'getset, where the PyAttributeDef is the closure */
PyObject *PyObjectPlus::py_get_attrdef(PyObject *self_py, const PyAttributeDef *attrdef)
{
PyObjectPlus *ref= (BGE_PROXY_REF(self_py));
char* ptr = (attrdef->m_usePtr) ? (char*)BGE_PROXY_PTR(self_py) : (char*)ref;
if(ptr == NULL || (BGE_PROXY_PYREF(self_py) && (ref==NULL || !ref->py_is_valid()))) {
if(attrdef == attr_invalid)
Py_RETURN_TRUE; // dont bother running the function
PyErr_SetString(PyExc_SystemError, BGE_PROXY_ERROR_MSG);
return NULL;
}
if (attrdef->m_type == KX_PYATTRIBUTE_TYPE_DUMMY)
{
// fake attribute, ignore
return NULL;
}
if (attrdef->m_type == KX_PYATTRIBUTE_TYPE_FUNCTION)
{
// the attribute has no field correspondance, handover processing to function.
if (attrdef->m_getFunction == NULL)
return NULL;
return (*attrdef->m_getFunction)(ptr, attrdef);
}
ptr += attrdef->m_offset;
if (attrdef->m_length > 1)
{
PyObject* resultlist = PyList_New(attrdef->m_length);
for (unsigned int i=0; i<attrdef->m_length; i++)
{
switch (attrdef->m_type) {
case KX_PYATTRIBUTE_TYPE_BOOL:
{
bool *val = reinterpret_cast<bool*>(ptr);
ptr += sizeof(bool);
PyList_SET_ITEM(resultlist,i,PyLong_FromSsize_t(*val));
break;
}
case KX_PYATTRIBUTE_TYPE_SHORT:
{
short int *val = reinterpret_cast<short int*>(ptr);
ptr += sizeof(short int);
PyList_SET_ITEM(resultlist,i,PyLong_FromSsize_t(*val));
break;
}
case KX_PYATTRIBUTE_TYPE_ENUM:
// enum are like int, just make sure the field size is the same
if (sizeof(int) != attrdef->m_size)
{
Py_DECREF(resultlist);
return NULL;
}
// walkthrough
case KX_PYATTRIBUTE_TYPE_INT:
{
int *val = reinterpret_cast<int*>(ptr);
ptr += sizeof(int);
PyList_SET_ITEM(resultlist,i,PyLong_FromSsize_t(*val));
break;
}
case KX_PYATTRIBUTE_TYPE_FLOAT:
{
float *val = reinterpret_cast<float*>(ptr);
ptr += sizeof(float);
PyList_SET_ITEM(resultlist,i,PyFloat_FromDouble(*val));
break;
}
default:
// no support for array of complex data
Py_DECREF(resultlist);
return NULL;
}
}
return resultlist;
}
else
{
switch (attrdef->m_type) {
case KX_PYATTRIBUTE_TYPE_FLAG:
{
bool bval;
switch (attrdef->m_size) {
case 1:
{
unsigned char *val = reinterpret_cast<unsigned char*>(ptr);
bval = (*val & attrdef->m_imin);
break;
}
case 2:
{
unsigned short *val = reinterpret_cast<unsigned short*>(ptr);
bval = (*val & attrdef->m_imin);
break;
}
case 4:
{
unsigned int *val = reinterpret_cast<unsigned int*>(ptr);
bval = (*val & attrdef->m_imin);
break;
}
default:
return NULL;
}
if (attrdef->m_imax)
bval = !bval;
return PyLong_FromSsize_t(bval);
}
case KX_PYATTRIBUTE_TYPE_BOOL:
{
bool *val = reinterpret_cast<bool*>(ptr);
return PyLong_FromSsize_t(*val);
}
case KX_PYATTRIBUTE_TYPE_SHORT:
{
short int *val = reinterpret_cast<short int*>(ptr);
return PyLong_FromSsize_t(*val);
}
case KX_PYATTRIBUTE_TYPE_ENUM:
// enum are like int, just make sure the field size is the same
if (sizeof(int) != attrdef->m_size)
{
return NULL;
}
// walkthrough
case KX_PYATTRIBUTE_TYPE_INT:
{
int *val = reinterpret_cast<int*>(ptr);
return PyLong_FromSsize_t(*val);
}
case KX_PYATTRIBUTE_TYPE_FLOAT:
{
float *val = reinterpret_cast<float*>(ptr);
if (attrdef->m_imin == 0) {
if (attrdef->m_imax == 0) {
return PyFloat_FromDouble(*val);
} else {
// vector, verify size
if (attrdef->m_size != attrdef->m_imax*sizeof(float))
{
return NULL;
}
#ifdef USE_MATHUTILS
return Vector_CreatePyObject(val, attrdef->m_imax, Py_NEW, NULL);
#else
PyObject* resultlist = PyList_New(attrdef->m_imax);
for (unsigned int i=0; i<attrdef->m_imax; i++)
{
PyList_SET_ITEM(resultlist,i,PyFloat_FromDouble(val[i]));
}
return resultlist;
#endif
}
} else {
// matrix case
if (attrdef->m_size != attrdef->m_imax*attrdef->m_imin*sizeof(float))
{
return NULL;
}
#ifdef USE_MATHUTILS
return Matrix_CreatePyObject(val, attrdef->m_imin, attrdef->m_imax, Py_WRAP, NULL);
#else
PyObject* collist = PyList_New(attrdef->m_imin);
for (unsigned int i=0; i<attrdef->m_imin; i++)
{
PyObject* col = PyList_New(attrdef->m_imax);
for (unsigned int j=0; j<attrdef->m_imax; j++)
{
PyList_SET_ITEM(col,j,PyFloat_FromDouble(val[j]));
}
PyList_SET_ITEM(collist,i,col);
val += attrdef->m_imax;
}
return collist;
#endif
}
}
case KX_PYATTRIBUTE_TYPE_VECTOR:
{
MT_Vector3 *val = reinterpret_cast<MT_Vector3*>(ptr);
#ifdef USE_MATHUTILS
float fval[3]= {(*val)[0], (*val)[1], (*val)[2]};
return Vector_CreatePyObject(fval, 3, Py_NEW, NULL);
#else
PyObject* resultlist = PyList_New(3);
for (unsigned int i=0; i<3; i++)
{
PyList_SET_ITEM(resultlist,i,PyFloat_FromDouble((*val)[i]));
}
return resultlist;
#endif
}
case KX_PYATTRIBUTE_TYPE_STRING:
{
STR_String *val = reinterpret_cast<STR_String*>(ptr);
return PyUnicode_From_STR_String(*val);
}
case KX_PYATTRIBUTE_TYPE_CHAR:
{
return PyUnicode_FromString(ptr);
}
default:
return NULL;
}
}
}
static bool py_check_attr_float(float *var, PyObject *value, const PyAttributeDef *attrdef)
{
double val = PyFloat_AsDouble(value);
if (val == -1.0 && PyErr_Occurred())
{
PyErr_Format(PyExc_TypeError, "expected float value for attribute \"%s\"", attrdef->m_name);
return false;
}
if (attrdef->m_clamp)
{
if (val < attrdef->m_fmin)
val = attrdef->m_fmin;
else if (val > attrdef->m_fmax)
val = attrdef->m_fmax;
}
else if (val < attrdef->m_fmin || val > attrdef->m_fmax)
{
PyErr_Format(PyExc_ValueError, "value out of range for attribute \"%s\"", attrdef->m_name);
return false;
}
*var = (float)val;
return true;
}
/* note, this is called as a python getset */
int PyObjectPlus::py_set_attrdef(PyObject *self_py, PyObject *value, const PyAttributeDef *attrdef)
{
PyObjectPlus *ref= (BGE_PROXY_REF(self_py));
char* ptr = (attrdef->m_usePtr) ? (char*)BGE_PROXY_PTR(self_py) : (char*)ref;
if(ref==NULL || !ref->py_is_valid() || ptr==NULL) {
PyErr_SetString(PyExc_SystemError, BGE_PROXY_ERROR_MSG);
return PY_SET_ATTR_FAIL;
}
void *undoBuffer = NULL;
void *sourceBuffer = NULL;
size_t bufferSize = 0;
PyObject *item = NULL; // to store object that must be dereferenced in case of error
PyObject *list = NULL; // to store object that must be dereferenced in case of error
ptr += attrdef->m_offset;
if (attrdef->m_length > 1)
{
if (!PySequence_Check(value))
{
PyErr_Format(PyExc_TypeError, "expected a sequence for attribute \"%s\"", attrdef->m_name);
return PY_SET_ATTR_FAIL;
}
if (PySequence_Size(value) != attrdef->m_length)
{
PyErr_Format(PyExc_TypeError, "incorrect number of elements in sequence for attribute \"%s\"", attrdef->m_name);
return PY_SET_ATTR_FAIL;
}
switch (attrdef->m_type)
{
case KX_PYATTRIBUTE_TYPE_FUNCTION:
if (attrdef->m_setFunction == NULL)
{
PyErr_Format(PyExc_AttributeError, "function attribute without function for attribute \"%s\", report to blender.org", attrdef->m_name);
return PY_SET_ATTR_FAIL;
}
return (*attrdef->m_setFunction)(ref, attrdef, value);
case KX_PYATTRIBUTE_TYPE_BOOL:
bufferSize = sizeof(bool);
break;
case KX_PYATTRIBUTE_TYPE_SHORT:
bufferSize = sizeof(short int);
break;
case KX_PYATTRIBUTE_TYPE_ENUM:
case KX_PYATTRIBUTE_TYPE_INT:
bufferSize = sizeof(int);
break;
case KX_PYATTRIBUTE_TYPE_FLOAT:
bufferSize = sizeof(float);
break;
default:
// should not happen
PyErr_Format(PyExc_AttributeError, "Unsupported attribute type for attribute \"%s\", report to blender.org", attrdef->m_name);
return PY_SET_ATTR_FAIL;
}
// let's implement a smart undo method
bufferSize *= attrdef->m_length;
undoBuffer = malloc(bufferSize);
sourceBuffer = ptr;
if (undoBuffer)
{
memcpy(undoBuffer, sourceBuffer, bufferSize);
}
for (int i=0; i<attrdef->m_length; i++)
{
item = PySequence_GetItem(value, i); /* new ref */
switch (attrdef->m_type)
{
case KX_PYATTRIBUTE_TYPE_BOOL:
{
bool *var = reinterpret_cast<bool*>(ptr);
ptr += sizeof(bool);
if (PyLong_Check(item))
{
*var = (PyLong_AsSsize_t(item) != 0);
}
else if (PyBool_Check(item))
{
*var = (item == Py_True);
}
else
{
PyErr_Format(PyExc_TypeError, "expected an integer or a bool for attribute \"%s\"", attrdef->m_name);
goto UNDO_AND_ERROR;
}
break;
}
case KX_PYATTRIBUTE_TYPE_SHORT:
{
short int *var = reinterpret_cast<short int*>(ptr);
ptr += sizeof(short int);
if (PyLong_Check(item))
{
long val = PyLong_AsSsize_t(item);
if (attrdef->m_clamp)
{
if (val < attrdef->m_imin)
val = attrdef->m_imin;
else if (val > attrdef->m_imax)
val = attrdef->m_imax;
}
else if (val < attrdef->m_imin || val > attrdef->m_imax)
{
PyErr_Format(PyExc_ValueError, "item value out of range for attribute \"%s\"", attrdef->m_name);
goto UNDO_AND_ERROR;
}
*var = (short int)val;
}
else
{
PyErr_Format(PyExc_TypeError, "expected an integer for attribute \"%s\"", attrdef->m_name);
goto UNDO_AND_ERROR;
}
break;
}
case KX_PYATTRIBUTE_TYPE_ENUM:
// enum are equivalent to int, just make sure that the field size matches:
if (sizeof(int) != attrdef->m_size)
{
PyErr_Format(PyExc_AttributeError, "Size check error for attribute, \"%s\", report to blender.org", attrdef->m_name);
goto UNDO_AND_ERROR;
}
// walkthrough
case KX_PYATTRIBUTE_TYPE_INT:
{
int *var = reinterpret_cast<int*>(ptr);
ptr += sizeof(int);
if (PyLong_Check(item))
{
long val = PyLong_AsSsize_t(item);
if (attrdef->m_clamp)
{
if (val < attrdef->m_imin)
val = attrdef->m_imin;
else if (val > attrdef->m_imax)
val = attrdef->m_imax;
}
else if (val < attrdef->m_imin || val > attrdef->m_imax)
{
PyErr_Format(PyExc_ValueError, "item value out of range for attribute \"%s\"", attrdef->m_name);
goto UNDO_AND_ERROR;
}
*var = (int)val;
}
else
{
PyErr_Format(PyExc_TypeError, "expected an integer for attribute \"%s\"", attrdef->m_name);
goto UNDO_AND_ERROR;
}
break;
}
case KX_PYATTRIBUTE_TYPE_FLOAT:
{
float *var = reinterpret_cast<float*>(ptr);
ptr += sizeof(float);
double val = PyFloat_AsDouble(item);
if (val == -1.0 && PyErr_Occurred())
{
PyErr_Format(PyExc_TypeError, "expected a float for attribute \"%s\"", attrdef->m_name);
goto UNDO_AND_ERROR;
}
else if (attrdef->m_clamp)
{
if (val < attrdef->m_fmin)
val = attrdef->m_fmin;
else if (val > attrdef->m_fmax)
val = attrdef->m_fmax;
}
else if (val < attrdef->m_fmin || val > attrdef->m_fmax)
{
PyErr_Format(PyExc_ValueError, "item value out of range for attribute \"%s\"", attrdef->m_name);
goto UNDO_AND_ERROR;
}
*var = (float)val;
break;
}
default:
// should not happen
PyErr_Format(PyExc_AttributeError, "type check error for attribute \"%s\", report to blender.org", attrdef->m_name);
goto UNDO_AND_ERROR;
}
// finished using item, release
Py_DECREF(item);
item = NULL;
}
// no error, call check function if any
if (attrdef->m_checkFunction != NULL)
{
if ((*attrdef->m_checkFunction)(ref, attrdef) != 0)
{
// if the checing function didnt set an error then set a generic one here so we dont set an error with no exception
if (PyErr_Occurred()==0)
PyErr_Format(PyExc_AttributeError, "type check error for attribute \"%s\", reasion unknown", attrdef->m_name);
// post check returned an error, restore values
UNDO_AND_ERROR:
if (undoBuffer)
{
memcpy(sourceBuffer, undoBuffer, bufferSize);
free(undoBuffer);
}
if (item)
Py_DECREF(item);
return PY_SET_ATTR_FAIL;
}
}
if (undoBuffer)
free(undoBuffer);
return PY_SET_ATTR_SUCCESS;
}
else // simple attribute value
{
if (attrdef->m_type == KX_PYATTRIBUTE_TYPE_FUNCTION)
{
if (attrdef->m_setFunction == NULL)
{
PyErr_Format(PyExc_AttributeError, "function attribute without function \"%s\", report to blender.org", attrdef->m_name);
return PY_SET_ATTR_FAIL;
}
return (*attrdef->m_setFunction)(ref, attrdef, value);
}
if (attrdef->m_checkFunction != NULL || attrdef->m_type == KX_PYATTRIBUTE_TYPE_VECTOR)
{
// post check function is provided, prepare undo buffer
sourceBuffer = ptr;
switch (attrdef->m_type)
{
case KX_PYATTRIBUTE_TYPE_BOOL:
bufferSize = sizeof(bool);
break;
case KX_PYATTRIBUTE_TYPE_SHORT:
bufferSize = sizeof(short);
break;
case KX_PYATTRIBUTE_TYPE_ENUM:
case KX_PYATTRIBUTE_TYPE_FLAG:
case KX_PYATTRIBUTE_TYPE_CHAR:
bufferSize = attrdef->m_size;
break;
case KX_PYATTRIBUTE_TYPE_INT:
bufferSize = sizeof(int);
break;
case KX_PYATTRIBUTE_TYPE_FLOAT:
bufferSize = sizeof(float);
if (attrdef->m_imax)
bufferSize *= attrdef->m_imax;
if (attrdef->m_imin)
bufferSize *= attrdef->m_imin;
break;
case KX_PYATTRIBUTE_TYPE_STRING:
sourceBuffer = reinterpret_cast<STR_String*>(ptr)->Ptr();
if (sourceBuffer)
bufferSize = strlen(reinterpret_cast<char*>(sourceBuffer))+1;
break;
case KX_PYATTRIBUTE_TYPE_VECTOR:
bufferSize = sizeof(MT_Vector3);
break;
default:
PyErr_Format(PyExc_AttributeError, "unknown type for attribute \"%s\", report to blender.org", attrdef->m_name);
return PY_SET_ATTR_FAIL;
}
if (bufferSize)
{
undoBuffer = malloc(bufferSize);
if (undoBuffer)
{
memcpy(undoBuffer, sourceBuffer, bufferSize);
}
}
}
switch (attrdef->m_type)
{
case KX_PYATTRIBUTE_TYPE_BOOL:
{
bool *var = reinterpret_cast<bool*>(ptr);
if (PyLong_Check(value))
{
*var = (PyLong_AsSsize_t(value) != 0);
}
else if (PyBool_Check(value))
{
*var = (value == Py_True);
}
else
{
PyErr_Format(PyExc_TypeError, "expected an integer or a bool for attribute \"%s\"", attrdef->m_name);
goto FREE_AND_ERROR;
}
break;
}
case KX_PYATTRIBUTE_TYPE_FLAG:
{
bool bval;
if (PyLong_Check(value))
{
bval = (PyLong_AsSsize_t(value) != 0);
}
else if (PyBool_Check(value))
{
bval = (value == Py_True);
}
else
{
PyErr_Format(PyExc_TypeError, "expected an integer or a bool for attribute \"%s\"", attrdef->m_name);
goto FREE_AND_ERROR;
}
if (attrdef->m_imax)
bval = !bval;
switch (attrdef->m_size) {
case 1:
{
unsigned char *val = reinterpret_cast<unsigned char*>(ptr);
*val = (*val & ~attrdef->m_imin) | ((bval)?attrdef->m_imin:0);
break;
}
case 2:
{
unsigned short *val = reinterpret_cast<unsigned short*>(ptr);
*val = (*val & ~attrdef->m_imin) | ((bval)?attrdef->m_imin:0);
break;
}
case 4:
{
unsigned int *val = reinterpret_cast<unsigned int*>(ptr);
*val = (*val & ~attrdef->m_imin) | ((bval)?attrdef->m_imin:0);
break;
}
default:
PyErr_Format(PyExc_TypeError, "internal error: unsupported flag field \"%s\"", attrdef->m_name);
goto FREE_AND_ERROR;
}
break;
}
case KX_PYATTRIBUTE_TYPE_SHORT:
{
short int *var = reinterpret_cast<short int*>(ptr);
if (PyLong_Check(value))
{
long val = PyLong_AsSsize_t(value);
if (attrdef->m_clamp)
{
if (val < attrdef->m_imin)
val = attrdef->m_imin;
else if (val > attrdef->m_imax)
val = attrdef->m_imax;
}
else if (val < attrdef->m_imin || val > attrdef->m_imax)
{
PyErr_Format(PyExc_ValueError, "value out of range for attribute \"%s\"", attrdef->m_name);
goto FREE_AND_ERROR;
}
*var = (short int)val;
}
else
{
PyErr_Format(PyExc_TypeError, "expected an integer for attribute \"%s\"", attrdef->m_name);
goto FREE_AND_ERROR;
}
break;
}
case KX_PYATTRIBUTE_TYPE_ENUM:
// enum are equivalent to int, just make sure that the field size matches:
if (sizeof(int) != attrdef->m_size)
{
PyErr_Format(PyExc_AttributeError, "attribute size check error for attribute \"%s\", report to blender.org", attrdef->m_name);
goto FREE_AND_ERROR;
}
// walkthrough
case KX_PYATTRIBUTE_TYPE_INT:
{
int *var = reinterpret_cast<int*>(ptr);
if (PyLong_Check(value))
{
long val = PyLong_AsSsize_t(value);
if (attrdef->m_clamp)
{
if (val < attrdef->m_imin)
val = attrdef->m_imin;
else if (val > attrdef->m_imax)
val = attrdef->m_imax;
}
else if (val < attrdef->m_imin || val > attrdef->m_imax)
{
PyErr_Format(PyExc_ValueError, "value out of range for attribute \"%s\"", attrdef->m_name);
goto FREE_AND_ERROR;
}
*var = (int)val;
}
else
{
PyErr_Format(PyExc_TypeError, "expected an integer for attribute \"%s\"", attrdef->m_name);
goto FREE_AND_ERROR;
}
break;
}
case KX_PYATTRIBUTE_TYPE_FLOAT:
{
float *var = reinterpret_cast<float*>(ptr);
if (attrdef->m_imin != 0)
{
if (attrdef->m_size != attrdef->m_imin*attrdef->m_imax*sizeof(float))
{
PyErr_Format(PyExc_TypeError, "internal error: incorrect field size for attribute \"%s\"", attrdef->m_name);
goto FREE_AND_ERROR;
}
if (!PySequence_Check(value) || PySequence_Size(value) != attrdef->m_imin)
{
PyErr_Format(PyExc_TypeError, "expected a sequence of [%d][%d] floats for attribute \"%s\"", attrdef->m_imin, attrdef->m_imax, attrdef->m_name);
goto FREE_AND_ERROR;
}
for (int i=0; i<attrdef->m_imin; i++)
{
PyObject *list = PySequence_GetItem(value, i); /* new ref */
if (!PySequence_Check(list) || PySequence_Size(list) != attrdef->m_imax)
{
PyErr_Format(PyExc_TypeError, "expected a sequence of [%d][%d] floats for attribute \"%s\"", attrdef->m_imin, attrdef->m_imax, attrdef->m_name);
goto RESTORE_AND_ERROR;
}
for (int j=0; j<attrdef->m_imax; j++)
{
item = PySequence_GetItem(list, j); /* new ref */
if (!py_check_attr_float(var, item, attrdef))
{
PyErr_Format(PyExc_TypeError, "expected a sequence of [%d][%d] floats for attribute \"%s\"", attrdef->m_imin, attrdef->m_imax, attrdef->m_name);
goto RESTORE_AND_ERROR;
}
Py_DECREF(item);
item = NULL;
++var;
}
Py_DECREF(list);
list = NULL;
}
}
else if (attrdef->m_imax != 0)
{
if (attrdef->m_size != attrdef->m_imax*sizeof(float))
{
PyErr_Format(PyExc_TypeError, "internal error: incorrect field size for attribute \"%s\"", attrdef->m_name);
goto FREE_AND_ERROR;
}
if (!PySequence_Check(value) || PySequence_Size(value) != attrdef->m_imax)
{
PyErr_Format(PyExc_TypeError, "expected a sequence of [%d] floats for attribute \"%s\"", attrdef->m_imax, attrdef->m_name);
goto FREE_AND_ERROR;
}
for (int i=0; i<attrdef->m_imax; i++)
{
item = PySequence_GetItem(value, i); /* new ref */
if (!py_check_attr_float(var, item, attrdef))
{
goto RESTORE_AND_ERROR;
}
Py_DECREF(item);
item = NULL;
++var;
}
}
else
{
if (!py_check_attr_float(var, value, attrdef))
goto FREE_AND_ERROR;
}
break;
}
case KX_PYATTRIBUTE_TYPE_VECTOR:
{
if (!PySequence_Check(value) || PySequence_Size(value) != 3)
{
PyErr_Format(PyExc_TypeError, "expected a sequence of 3 floats for attribute \"%s\"", attrdef->m_name);
goto FREE_AND_ERROR;
}
MT_Vector3 *var = reinterpret_cast<MT_Vector3*>(ptr);
for (int i=0; i<3; i++)
{
item = PySequence_GetItem(value, i); /* new ref */
double val = PyFloat_AsDouble(item);
Py_DECREF(item);
item = NULL;
if (val == -1.0 && PyErr_Occurred())
{
PyErr_Format(PyExc_TypeError, "expected a sequence of 3 floats for attribute \"%s\"", attrdef->m_name);
goto RESTORE_AND_ERROR;
}
else if (attrdef->m_clamp)
{
if (val < attrdef->m_fmin)
val = attrdef->m_fmin;
else if (val > attrdef->m_fmax)
val = attrdef->m_fmax;
}
else if (val < attrdef->m_fmin || val > attrdef->m_fmax)
{
PyErr_Format(PyExc_ValueError, "value out of range for attribute \"%s\"", attrdef->m_name);
goto RESTORE_AND_ERROR;
}
(*var)[i] = (MT_Scalar)val;
}
break;
}
case KX_PYATTRIBUTE_TYPE_CHAR:
{
if (PyUnicode_Check(value))
{
Py_ssize_t val_size;
const char *val = _PyUnicode_AsStringAndSize(value, &val_size);
strncpy(ptr, val, attrdef->m_size);
ptr[attrdef->m_size-1] = 0;
}
else
{
PyErr_Format(PyExc_TypeError, "expected a string for attribute \"%s\"", attrdef->m_name);
goto FREE_AND_ERROR;
}
break;
}
case KX_PYATTRIBUTE_TYPE_STRING:
{
STR_String *var = reinterpret_cast<STR_String*>(ptr);
if (PyUnicode_Check(value))
{
Py_ssize_t val_len;
const char *val = _PyUnicode_AsStringAndSize(value, &val_len); /* XXX, should be 'const' but we do a silly trick to have a shorter string */
if (attrdef->m_clamp)
{
if (val_len < attrdef->m_imin)
{
// can't increase the length of the string
PyErr_Format(PyExc_ValueError, "string length too short for attribute \"%s\"", attrdef->m_name);
goto FREE_AND_ERROR;
}
else if (val_len > attrdef->m_imax)
{
// trim the string
var->SetLength(attrdef->m_imax);
memcpy(var->Ptr(), val, attrdef->m_imax - 1);
break;
}
} else if (val_len < attrdef->m_imin || val_len > attrdef->m_imax)
{
PyErr_Format(PyExc_ValueError, "string length out of range for attribute \"%s\"", attrdef->m_name);
goto FREE_AND_ERROR;
}
*var = val;
}
else
{
PyErr_Format(PyExc_TypeError, "expected a string for attribute \"%s\"", attrdef->m_name);
goto FREE_AND_ERROR;
}
break;
}
default:
// should not happen
PyErr_Format(PyExc_AttributeError, "unknown type for attribute \"%s\", report to blender.org", attrdef->m_name);
goto FREE_AND_ERROR;
}
}
// check if post processing is needed
if (attrdef->m_checkFunction != NULL)
{
if ((*attrdef->m_checkFunction)(ref, attrdef) != 0)
{
// restore value
RESTORE_AND_ERROR:
if (undoBuffer)
{
if (attrdef->m_type == KX_PYATTRIBUTE_TYPE_STRING)
{
// special case for STR_String: restore the string
STR_String *var = reinterpret_cast<STR_String*>(ptr);
*var = reinterpret_cast<char*>(undoBuffer);
}
else
{
// other field type have direct values
memcpy(ptr, undoBuffer, bufferSize);
}
}
FREE_AND_ERROR:
if (undoBuffer)
free(undoBuffer);
if (list)
Py_DECREF(list);
if (item)
Py_DECREF(item);
return 1;
}
}
if (undoBuffer)
free(undoBuffer);
return 0;
}
/*------------------------------
* PyObjectPlus repr -- representations
------------------------------*/
PyObject *PyObjectPlus::py_repr(void)
{
PyErr_SetString(PyExc_SystemError, "Representation not overridden by object.");
return NULL;
}
PyObject *PyObjectPlus::GetProxyPlus_Ext(PyObjectPlus *self, PyTypeObject *tp, void *ptr)
{
if (self->m_proxy==NULL)
{
self->m_proxy = reinterpret_cast<PyObject *>PyObject_NEW( PyObjectPlus_Proxy, tp);
BGE_PROXY_PYOWNS(self->m_proxy) = false;
BGE_PROXY_PYREF(self->m_proxy) = true;
#ifdef USE_WEAKREFS
BGE_PROXY_WKREF(self->m_proxy) = NULL;
#endif
}
//PyObject_Print(self->m_proxy, stdout, 0);
//printf("ref %d\n", self->m_proxy->ob_refcnt);
BGE_PROXY_REF(self->m_proxy) = self; /* Its possible this was set to NULL, so set it back here */
BGE_PROXY_PTR(self->m_proxy) = ptr;
Py_INCREF(self->m_proxy); /* we own one, thos ones fore the return */
return self->m_proxy;
}
PyObject *PyObjectPlus::NewProxyPlus_Ext(PyObjectPlus *self, PyTypeObject *tp, void *ptr, bool py_owns)
{
if (!self)
{
// in case of proxy without reference to game object
PyObject* proxy = reinterpret_cast<PyObject *>PyObject_NEW( PyObjectPlus_Proxy, tp);
BGE_PROXY_PYREF(proxy) = false;
BGE_PROXY_PYOWNS(proxy) = py_owns;
BGE_PROXY_REF(proxy) = NULL;
BGE_PROXY_PTR(proxy) = ptr;
#ifdef USE_WEAKREFS
BGE_PROXY_WKREF(proxy) = NULL;
#endif
return proxy;
}
if (self->m_proxy)
{
if(py_owns)
{ /* Free */
BGE_PROXY_REF(self->m_proxy) = NULL;
Py_DECREF(self->m_proxy);
self->m_proxy= NULL;
}
else {
Py_INCREF(self->m_proxy);
return self->m_proxy;
}
}
GetProxyPlus_Ext(self, tp, ptr);
if(py_owns) {
BGE_PROXY_PYOWNS(self->m_proxy) = py_owns;
Py_DECREF(self->m_proxy); /* could avoid thrashing here but for now its ok */
}
return self->m_proxy;
}
PyObject *PyUnicode_From_STR_String(const STR_String& str)
{
return PyUnicode_FromStringAndSize(str.ReadPtr(), str.Length());
}
///////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////
/* deprecation warning management */
bool PyObjectPlus::m_ignore_deprecation_warnings(false);
void PyObjectPlus::SetDeprecationWarnings(bool ignoreDeprecationWarnings)
{
m_ignore_deprecation_warnings = ignoreDeprecationWarnings;
}
void PyObjectPlus::ShowDeprecationWarning_func(const char* old_way,const char* new_way)
{
printf("Method %s is deprecated, please use %s instead.\n", old_way, new_way);
PyC_LineSpit();
}
void PyObjectPlus::ClearDeprecationWarning()
{
WarnLink *wlink_next;
WarnLink *wlink = GetDeprecationWarningLinkFirst();
while(wlink)
{
wlink->warn_done= false; /* no need to NULL the link, its cleared before adding to the list next time round */
wlink_next= reinterpret_cast<WarnLink *>(wlink->link);
wlink->link= NULL;
wlink= wlink_next;
}
NullDeprecationWarning();
}
WarnLink* m_base_wlink_first= NULL;
WarnLink* m_base_wlink_last= NULL;
WarnLink* PyObjectPlus::GetDeprecationWarningLinkFirst(void) {return m_base_wlink_first;}
WarnLink* PyObjectPlus::GetDeprecationWarningLinkLast(void) {return m_base_wlink_last;}
void PyObjectPlus::SetDeprecationWarningFirst(WarnLink* wlink) {m_base_wlink_first= wlink;}
void PyObjectPlus::SetDeprecationWarningLinkLast(WarnLink* wlink) {m_base_wlink_last= wlink;}
void PyObjectPlus::NullDeprecationWarning() {m_base_wlink_first= m_base_wlink_last= NULL;}
#endif // WITH_PYTHON