blender/intern/cycles/kernel/kernel_path_volume.h
Brecht Van Lommel d133934ea4 Cycles: code to optionally zero initialize some structs in the kernel
This will be used by Optix to help the compiler figure out scoping. It is not
used by other devices currently, but worth testing if it helps there too.

Ref D5363
2019-08-26 16:07:01 +02:00

261 lines
9.4 KiB
C

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
CCL_NAMESPACE_BEGIN
#ifdef __VOLUME_SCATTER__
ccl_device_inline void kernel_path_volume_connect_light(KernelGlobals *kg,
ShaderData *sd,
ShaderData *emission_sd,
float3 throughput,
ccl_addr_space PathState *state,
PathRadiance *L)
{
# ifdef __EMISSION__
/* sample illumination from lights to find path contribution */
Ray light_ray ccl_optional_struct_init;
BsdfEval L_light ccl_optional_struct_init;
bool is_lamp = false;
bool has_emission = false;
light_ray.t = 0.0f;
# ifdef __OBJECT_MOTION__
/* connect to light from given point where shader has been evaluated */
light_ray.time = sd->time;
# endif
if (kernel_data.integrator.use_direct_light) {
float light_u, light_v;
path_state_rng_2D(kg, state, PRNG_LIGHT_U, &light_u, &light_v);
LightSample ls ccl_optional_struct_init;
if (light_sample(kg, -1, light_u, light_v, sd->time, sd->P, state->bounce, &ls)) {
float terminate = path_state_rng_light_termination(kg, state);
has_emission = direct_emission(
kg, sd, emission_sd, &ls, state, &light_ray, &L_light, &is_lamp, terminate);
}
}
/* trace shadow ray */
float3 shadow;
const bool blocked = shadow_blocked(kg, sd, emission_sd, state, &light_ray, &shadow);
if (has_emission && !blocked) {
/* accumulate */
path_radiance_accum_light(L, state, throughput, &L_light, shadow, 1.0f, is_lamp);
}
# endif /* __EMISSION__ */
}
ccl_device_noinline_cpu bool kernel_path_volume_bounce(KernelGlobals *kg,
ShaderData *sd,
ccl_addr_space float3 *throughput,
ccl_addr_space PathState *state,
PathRadianceState *L_state,
ccl_addr_space Ray *ray)
{
/* sample phase function */
float phase_pdf;
BsdfEval phase_eval ccl_optional_struct_init;
float3 phase_omega_in ccl_optional_struct_init;
differential3 phase_domega_in ccl_optional_struct_init;
float phase_u, phase_v;
path_state_rng_2D(kg, state, PRNG_BSDF_U, &phase_u, &phase_v);
int label;
label = shader_volume_phase_sample(
kg, sd, phase_u, phase_v, &phase_eval, &phase_omega_in, &phase_domega_in, &phase_pdf);
if (phase_pdf == 0.0f || bsdf_eval_is_zero(&phase_eval))
return false;
/* modify throughput */
path_radiance_bsdf_bounce(kg, L_state, throughput, &phase_eval, phase_pdf, state->bounce, label);
/* set labels */
state->ray_pdf = phase_pdf;
# ifdef __LAMP_MIS__
state->ray_t = 0.0f;
# endif
state->min_ray_pdf = fminf(phase_pdf, state->min_ray_pdf);
/* update path state */
path_state_next(kg, state, label);
/* Russian roulette termination of volume ray scattering. */
float probability = path_state_continuation_probability(kg, state, *throughput);
if (probability == 0.0f) {
return false;
}
else if (probability != 1.0f) {
/* Use dimension from the previous bounce, has not been used yet. */
float terminate = path_state_rng_1D(kg, state, PRNG_TERMINATE - PRNG_BOUNCE_NUM);
if (terminate >= probability) {
return false;
}
*throughput /= probability;
}
/* setup ray */
ray->P = sd->P;
ray->D = phase_omega_in;
ray->t = FLT_MAX;
# ifdef __RAY_DIFFERENTIALS__
ray->dP = sd->dP;
ray->dD = phase_domega_in;
# endif
return true;
}
# if !defined(__SPLIT_KERNEL__) && (defined(__BRANCHED_PATH__) || defined(__VOLUME_DECOUPLED__))
ccl_device void kernel_branched_path_volume_connect_light(KernelGlobals *kg,
ShaderData *sd,
ShaderData *emission_sd,
float3 throughput,
ccl_addr_space PathState *state,
PathRadiance *L,
bool sample_all_lights,
Ray *ray,
const VolumeSegment *segment)
{
# ifdef __EMISSION__
BsdfEval L_light ccl_optional_struct_init;
int num_lights = 1;
if (sample_all_lights) {
num_lights = kernel_data.integrator.num_all_lights;
if (kernel_data.integrator.pdf_triangles != 0.0f) {
num_lights += 1;
}
}
for (int i = 0; i < num_lights; ++i) {
/* sample one light at random */
int num_samples = 1;
int num_all_lights = 1;
uint lamp_rng_hash = state->rng_hash;
bool double_pdf = false;
bool is_mesh_light = false;
bool is_lamp = false;
if (sample_all_lights) {
/* lamp sampling */
is_lamp = i < kernel_data.integrator.num_all_lights;
if (is_lamp) {
if (UNLIKELY(light_select_reached_max_bounces(kg, i, state->bounce))) {
continue;
}
num_samples = light_select_num_samples(kg, i);
num_all_lights = kernel_data.integrator.num_all_lights;
lamp_rng_hash = cmj_hash(state->rng_hash, i);
double_pdf = kernel_data.integrator.pdf_triangles != 0.0f;
}
/* mesh light sampling */
else {
num_samples = kernel_data.integrator.mesh_light_samples;
double_pdf = kernel_data.integrator.num_all_lights != 0;
is_mesh_light = true;
}
}
float num_samples_inv = 1.0f / (num_samples * num_all_lights);
for (int j = 0; j < num_samples; j++) {
Ray light_ray ccl_optional_struct_init;
light_ray.t = 0.0f; /* reset ray */
# ifdef __OBJECT_MOTION__
light_ray.time = sd->time;
# endif
bool has_emission = false;
float3 tp = throughput;
if (kernel_data.integrator.use_direct_light) {
/* sample random position on random light/triangle */
float light_u, light_v;
path_branched_rng_2D(
kg, lamp_rng_hash, state, j, num_samples, PRNG_LIGHT_U, &light_u, &light_v);
/* only sample triangle lights */
if (is_mesh_light && double_pdf) {
light_u = 0.5f * light_u;
}
LightSample ls ccl_optional_struct_init;
const int lamp = is_lamp ? i : -1;
light_sample(kg, lamp, light_u, light_v, sd->time, ray->P, state->bounce, &ls);
/* sample position on volume segment */
float rphase = path_branched_rng_1D(
kg, state->rng_hash, state, j, num_samples, PRNG_PHASE_CHANNEL);
float rscatter = path_branched_rng_1D(
kg, state->rng_hash, state, j, num_samples, PRNG_SCATTER_DISTANCE);
VolumeIntegrateResult result = kernel_volume_decoupled_scatter(kg,
state,
ray,
sd,
&tp,
rphase,
rscatter,
segment,
(ls.t != FLT_MAX) ? &ls.P :
NULL,
false);
if (result == VOLUME_PATH_SCATTERED) {
/* todo: split up light_sample so we don't have to call it again with new position */
if (light_sample(kg, lamp, light_u, light_v, sd->time, sd->P, state->bounce, &ls)) {
if (double_pdf) {
ls.pdf *= 2.0f;
}
/* sample random light */
float terminate = path_branched_rng_light_termination(
kg, state->rng_hash, state, j, num_samples);
has_emission = direct_emission(
kg, sd, emission_sd, &ls, state, &light_ray, &L_light, &is_lamp, terminate);
}
}
}
/* trace shadow ray */
float3 shadow;
const bool blocked = shadow_blocked(kg, sd, emission_sd, state, &light_ray, &shadow);
if (has_emission && !blocked) {
/* accumulate */
path_radiance_accum_light(
L, state, tp * num_samples_inv, &L_light, shadow, num_samples_inv, is_lamp);
}
}
}
# endif /* __EMISSION__ */
}
# endif /* __SPLIT_KERNEL__ */
#endif /* __VOLUME_SCATTER__ */
CCL_NAMESPACE_END