blender/intern/cycles/device/device_memory.h
Brian Savery 044a77352f Cycles: add HIP device support for AMD GPUs
NOTE: this feature is not ready for user testing, and not yet enabled in daily
builds. It is being merged now for easier collaboration on development.

HIP is a heterogenous compute interface allowing C++ code to be executed on
GPUs similar to CUDA. It is intended to bring back AMD GPU rendering support
on Windows and Linux.

https://github.com/ROCm-Developer-Tools/HIP.

As of the time of writing, it should compile and run on Linux with existing
HIP compilers and driver runtimes. Publicly available compilers and drivers
for Windows will come later.

See task T91571 for more details on the current status and work remaining
to be done.

Credits:

Sayak Biswas (AMD)
Arya Rafii (AMD)
Brian Savery (AMD)

Differential Revision: https://developer.blender.org/D12578
2021-09-28 19:18:55 +02:00

651 lines
16 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef __DEVICE_MEMORY_H__
#define __DEVICE_MEMORY_H__
/* Device Memory
*
* Data types for allocating, copying and freeing device memory. */
#include "util/util_array.h"
#include "util/util_half.h"
#include "util/util_string.h"
#include "util/util_texture.h"
#include "util/util_types.h"
#include "util/util_vector.h"
CCL_NAMESPACE_BEGIN
class Device;
enum MemoryType {
MEM_READ_ONLY,
MEM_READ_WRITE,
MEM_DEVICE_ONLY,
MEM_GLOBAL,
MEM_TEXTURE,
};
/* Supported Data Types */
enum DataType {
TYPE_UNKNOWN,
TYPE_UCHAR,
TYPE_UINT16,
TYPE_UINT,
TYPE_INT,
TYPE_FLOAT,
TYPE_HALF,
TYPE_UINT64,
};
static constexpr size_t datatype_size(DataType datatype)
{
switch (datatype) {
case TYPE_UNKNOWN:
return 1;
case TYPE_UCHAR:
return sizeof(uchar);
case TYPE_FLOAT:
return sizeof(float);
case TYPE_UINT:
return sizeof(uint);
case TYPE_UINT16:
return sizeof(uint16_t);
case TYPE_INT:
return sizeof(int);
case TYPE_HALF:
return sizeof(half);
case TYPE_UINT64:
return sizeof(uint64_t);
default:
return 0;
}
}
/* Traits for data types */
template<typename T> struct device_type_traits {
static const DataType data_type = TYPE_UNKNOWN;
static const size_t num_elements_cpu = sizeof(T);
static const size_t num_elements_gpu = sizeof(T);
};
template<> struct device_type_traits<uchar> {
static const DataType data_type = TYPE_UCHAR;
static const size_t num_elements_cpu = 1;
static const size_t num_elements_gpu = 1;
static_assert(sizeof(uchar) == num_elements_cpu * datatype_size(data_type));
};
template<> struct device_type_traits<uchar2> {
static const DataType data_type = TYPE_UCHAR;
static const size_t num_elements_cpu = 2;
static const size_t num_elements_gpu = 2;
static_assert(sizeof(uchar2) == num_elements_cpu * datatype_size(data_type));
};
template<> struct device_type_traits<uchar3> {
static const DataType data_type = TYPE_UCHAR;
static const size_t num_elements_cpu = 3;
static const size_t num_elements_gpu = 3;
static_assert(sizeof(uchar3) == num_elements_cpu * datatype_size(data_type));
};
template<> struct device_type_traits<uchar4> {
static const DataType data_type = TYPE_UCHAR;
static const size_t num_elements_cpu = 4;
static const size_t num_elements_gpu = 4;
static_assert(sizeof(uchar4) == num_elements_cpu * datatype_size(data_type));
};
template<> struct device_type_traits<uint> {
static const DataType data_type = TYPE_UINT;
static const size_t num_elements_cpu = 1;
static const size_t num_elements_gpu = 1;
static_assert(sizeof(uint) == num_elements_cpu * datatype_size(data_type));
};
template<> struct device_type_traits<uint2> {
static const DataType data_type = TYPE_UINT;
static const size_t num_elements_cpu = 2;
static const size_t num_elements_gpu = 2;
static_assert(sizeof(uint2) == num_elements_cpu * datatype_size(data_type));
};
template<> struct device_type_traits<uint3> {
static const DataType data_type = TYPE_UINT;
static const size_t num_elements_cpu = 3;
static const size_t num_elements_gpu = 3;
static_assert(sizeof(uint3) == num_elements_cpu * datatype_size(data_type));
};
template<> struct device_type_traits<uint4> {
static const DataType data_type = TYPE_UINT;
static const size_t num_elements_cpu = 4;
static const size_t num_elements_gpu = 4;
static_assert(sizeof(uint4) == num_elements_cpu * datatype_size(data_type));
};
template<> struct device_type_traits<int> {
static const DataType data_type = TYPE_INT;
static const size_t num_elements_cpu = 1;
static const size_t num_elements_gpu = 1;
static_assert(sizeof(int) == num_elements_cpu * datatype_size(data_type));
};
template<> struct device_type_traits<int2> {
static const DataType data_type = TYPE_INT;
static const size_t num_elements_cpu = 2;
static const size_t num_elements_gpu = 2;
static_assert(sizeof(int2) == num_elements_cpu * datatype_size(data_type));
};
template<> struct device_type_traits<int3> {
static const DataType data_type = TYPE_INT;
static const size_t num_elements_cpu = 4;
static const size_t num_elements_gpu = 3;
static_assert(sizeof(int3) == num_elements_cpu * datatype_size(data_type));
};
template<> struct device_type_traits<int4> {
static const DataType data_type = TYPE_INT;
static const size_t num_elements_cpu = 4;
static const size_t num_elements_gpu = 4;
static_assert(sizeof(int4) == num_elements_cpu * datatype_size(data_type));
};
template<> struct device_type_traits<float> {
static const DataType data_type = TYPE_FLOAT;
static const size_t num_elements_cpu = 1;
static const size_t num_elements_gpu = 1;
static_assert(sizeof(float) == num_elements_cpu * datatype_size(data_type));
};
template<> struct device_type_traits<float2> {
static const DataType data_type = TYPE_FLOAT;
static const size_t num_elements_cpu = 2;
static const size_t num_elements_gpu = 2;
static_assert(sizeof(float2) == num_elements_cpu * datatype_size(data_type));
};
template<> struct device_type_traits<float3> {
static const DataType data_type = TYPE_FLOAT;
static const size_t num_elements_cpu = 4;
static const size_t num_elements_gpu = 3;
static_assert(sizeof(float3) == num_elements_cpu * datatype_size(data_type));
};
template<> struct device_type_traits<float4> {
static const DataType data_type = TYPE_FLOAT;
static const size_t num_elements_cpu = 4;
static const size_t num_elements_gpu = 4;
static_assert(sizeof(float4) == num_elements_cpu * datatype_size(data_type));
};
template<> struct device_type_traits<half> {
static const DataType data_type = TYPE_HALF;
static const size_t num_elements_cpu = 1;
static const size_t num_elements_gpu = 1;
static_assert(sizeof(half) == num_elements_cpu * datatype_size(data_type));
};
template<> struct device_type_traits<ushort4> {
static const DataType data_type = TYPE_UINT16;
static const size_t num_elements_cpu = 4;
static const size_t num_elements_gpu = 4;
static_assert(sizeof(ushort4) == num_elements_cpu * datatype_size(data_type));
};
template<> struct device_type_traits<uint16_t> {
static const DataType data_type = TYPE_UINT16;
static const size_t num_elements_cpu = 1;
static const size_t num_elements_gpu = 1;
static_assert(sizeof(uint16_t) == num_elements_cpu * datatype_size(data_type));
};
template<> struct device_type_traits<half4> {
static const DataType data_type = TYPE_HALF;
static const size_t num_elements_cpu = 4;
static const size_t num_elements_gpu = 4;
static_assert(sizeof(half4) == num_elements_cpu * datatype_size(data_type));
};
template<> struct device_type_traits<uint64_t> {
static const DataType data_type = TYPE_UINT64;
static const size_t num_elements_cpu = 1;
static const size_t num_elements_gpu = 1;
static_assert(sizeof(uint64_t) == num_elements_cpu * datatype_size(data_type));
};
/* Device Memory
*
* Base class for all device memory. This should not be allocated directly,
* instead the appropriate subclass can be used. */
class device_memory {
public:
size_t memory_size()
{
return data_size * data_elements * datatype_size(data_type);
}
size_t memory_elements_size(int elements)
{
return elements * data_elements * datatype_size(data_type);
}
/* Data information. */
DataType data_type;
int data_elements;
size_t data_size;
size_t device_size;
size_t data_width;
size_t data_height;
size_t data_depth;
MemoryType type;
const char *name;
/* Pointers. */
Device *device;
device_ptr device_pointer;
void *host_pointer;
void *shared_pointer;
/* reference counter for shared_pointer */
int shared_counter;
virtual ~device_memory();
void swap_device(Device *new_device, size_t new_device_size, device_ptr new_device_ptr);
void restore_device();
bool is_resident(Device *sub_device) const;
protected:
friend class CUDADevice;
friend class OptiXDevice;
friend class HIPDevice;
/* Only create through subclasses. */
device_memory(Device *device, const char *name, MemoryType type);
device_memory(device_memory &&other) noexcept;
/* No copying allowed. */
device_memory(const device_memory &) = delete;
device_memory &operator=(const device_memory &) = delete;
/* Host allocation on the device. All host_pointer memory should be
* allocated with these functions, for devices that support using
* the same pointer for host and device. */
void *host_alloc(size_t size);
void host_free();
/* Device memory allocation and copying. */
void device_alloc();
void device_free();
void device_copy_to();
void device_copy_from(size_t y, size_t w, size_t h, size_t elem);
void device_zero();
bool device_is_cpu();
device_ptr original_device_ptr;
size_t original_device_size;
Device *original_device;
bool need_realloc_;
bool modified;
};
/* Device Only Memory
*
* Working memory only needed by the device, with no corresponding allocation
* on the host. Only used internally in the device implementations. */
template<typename T> class device_only_memory : public device_memory {
public:
device_only_memory(Device *device, const char *name, bool allow_host_memory_fallback = false)
: device_memory(device, name, allow_host_memory_fallback ? MEM_READ_WRITE : MEM_DEVICE_ONLY)
{
data_type = device_type_traits<T>::data_type;
data_elements = max(device_is_cpu() ? device_type_traits<T>::num_elements_cpu :
device_type_traits<T>::num_elements_gpu,
1);
}
device_only_memory(device_only_memory &&other) noexcept : device_memory(std::move(other))
{
}
virtual ~device_only_memory()
{
free();
}
void alloc_to_device(size_t num, bool shrink_to_fit = true)
{
size_t new_size = num;
bool reallocate;
if (shrink_to_fit) {
reallocate = (data_size != new_size);
}
else {
reallocate = (data_size < new_size);
}
if (reallocate) {
device_free();
data_size = new_size;
device_alloc();
}
}
void free()
{
device_free();
data_size = 0;
}
void zero_to_device()
{
device_zero();
}
};
/* Device Vector
*
* Data vector to exchange data between host and device. Memory will be
* allocated on the host first with alloc() and resize, and then filled
* in and copied to the device with copy_to_device(). Or alternatively
* allocated and set to zero on the device with zero_to_device().
*
* When using memory type MEM_GLOBAL, a pointer to this memory will be
* automatically attached to kernel globals, using the provided name
* matching an entry in kernel_textures.h. */
template<typename T> class device_vector : public device_memory {
public:
/* Can only use this for types that have the same size on CPU and GPU. */
static_assert(device_type_traits<T>::num_elements_cpu ==
device_type_traits<T>::num_elements_gpu);
device_vector(Device *device, const char *name, MemoryType type)
: device_memory(device, name, type)
{
data_type = device_type_traits<T>::data_type;
data_elements = device_type_traits<T>::num_elements_cpu;
modified = true;
need_realloc_ = true;
assert(data_elements > 0);
}
virtual ~device_vector()
{
free();
}
/* Host memory allocation. */
T *alloc(size_t width, size_t height = 0, size_t depth = 0)
{
size_t new_size = size(width, height, depth);
if (new_size != data_size) {
device_free();
host_free();
host_pointer = host_alloc(sizeof(T) * new_size);
modified = true;
assert(device_pointer == 0);
}
data_size = new_size;
data_width = width;
data_height = height;
data_depth = depth;
return data();
}
/* Host memory resize. Only use this if the original data needs to be
* preserved, it is faster to call alloc() if it can be discarded. */
T *resize(size_t width, size_t height = 0, size_t depth = 0)
{
size_t new_size = size(width, height, depth);
if (new_size != data_size) {
void *new_ptr = host_alloc(sizeof(T) * new_size);
if (new_size && data_size) {
size_t min_size = ((new_size < data_size) ? new_size : data_size);
memcpy((T *)new_ptr, (T *)host_pointer, sizeof(T) * min_size);
}
device_free();
host_free();
host_pointer = new_ptr;
assert(device_pointer == 0);
}
data_size = new_size;
data_width = width;
data_height = height;
data_depth = depth;
return data();
}
/* Take over data from an existing array. */
void steal_data(array<T> &from)
{
device_free();
host_free();
data_size = from.size();
data_width = 0;
data_height = 0;
data_depth = 0;
host_pointer = from.steal_pointer();
assert(device_pointer == 0);
}
void give_data(array<T> &to)
{
device_free();
to.set_data((T *)host_pointer, data_size);
data_size = 0;
data_width = 0;
data_height = 0;
data_depth = 0;
host_pointer = 0;
assert(device_pointer == 0);
}
/* Free device and host memory. */
void free()
{
device_free();
host_free();
data_size = 0;
data_width = 0;
data_height = 0;
data_depth = 0;
host_pointer = 0;
modified = true;
need_realloc_ = true;
assert(device_pointer == 0);
}
void free_if_need_realloc(bool force_free)
{
if (need_realloc_ || force_free) {
free();
}
}
bool is_modified() const
{
return modified;
}
bool need_realloc()
{
return need_realloc_;
}
void tag_modified()
{
modified = true;
}
void tag_realloc()
{
need_realloc_ = true;
tag_modified();
}
size_t size() const
{
return data_size;
}
T *data()
{
return (T *)host_pointer;
}
const T *data() const
{
return (T *)host_pointer;
}
T &operator[](size_t i)
{
assert(i < data_size);
return data()[i];
}
void copy_to_device()
{
if (data_size != 0) {
device_copy_to();
}
}
void copy_to_device_if_modified()
{
if (!modified) {
return;
}
copy_to_device();
}
void clear_modified()
{
modified = false;
need_realloc_ = false;
}
void copy_from_device()
{
device_copy_from(0, data_width, (data_height == 0) ? 1 : data_height, sizeof(T));
}
void copy_from_device(size_t y, size_t w, size_t h)
{
device_copy_from(y, w, h, sizeof(T));
}
void zero_to_device()
{
device_zero();
}
void move_device(Device *new_device)
{
copy_from_device();
device_free();
device = new_device;
copy_to_device();
}
protected:
size_t size(size_t width, size_t height, size_t depth)
{
return width * ((height == 0) ? 1 : height) * ((depth == 0) ? 1 : depth);
}
};
/* Device Sub Memory
*
* Pointer into existing memory. It is not allocated separately, but created
* from an already allocated base memory. It is freed automatically when it
* goes out of scope, which should happen before base memory is freed.
*
* Note: some devices require offset and size of the sub_ptr to be properly
* aligned to device->mem_address_alingment(). */
class device_sub_ptr {
public:
device_sub_ptr(device_memory &mem, size_t offset, size_t size);
~device_sub_ptr();
device_ptr operator*() const
{
return ptr;
}
protected:
/* No copying. */
device_sub_ptr &operator=(const device_sub_ptr &);
Device *device;
device_ptr ptr;
};
/* Device Texture
*
* 2D or 3D image texture memory. */
class device_texture : public device_memory {
public:
device_texture(Device *device,
const char *name,
const uint slot,
ImageDataType image_data_type,
InterpolationType interpolation,
ExtensionType extension);
~device_texture();
void *alloc(const size_t width, const size_t height, const size_t depth = 0);
void copy_to_device();
uint slot;
TextureInfo info;
protected:
size_t size(const size_t width, const size_t height, const size_t depth)
{
return width * ((height == 0) ? 1 : height) * ((depth == 0) ? 1 : depth);
}
};
CCL_NAMESPACE_END
#endif /* __DEVICE_MEMORY_H__ */