83e73a2100
This commit changes the way how we pass bounce information to the Light Path node. Instead of manualy copying the bounces into ShaderData, we now directly pass PathState. This reduces the arguments that we need to pass around and also makes it easier to extend the feature. This commit also exposes the Transmission Bounce Depth to the Light Path node. It works similar to the Transparent Depth Output: Replace a Transmission lightpath after X bounces with another shader, e.g a Diffuse one. This can be used to avoid black surfaces, due to low amount of max bounces. Reviewed by Sergey and Brecht, thanks for some hlp with this. I tested compilation and usage on CPU (SVM and OSL), CUDA, OpenCL Split and Mega kernel. Hopefully this covers all devices. :)
4817 lines
131 KiB
C++
4817 lines
131 KiB
C++
/*
|
|
* Copyright 2011-2013 Blender Foundation
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "image.h"
|
|
#include "integrator.h"
|
|
#include "nodes.h"
|
|
#include "scene.h"
|
|
#include "svm.h"
|
|
#include "svm_math_util.h"
|
|
#include "osl.h"
|
|
#include "sky_model.h"
|
|
|
|
#include "util_foreach.h"
|
|
#include "util_transform.h"
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
/* Texture Mapping */
|
|
|
|
TextureMapping::TextureMapping()
|
|
{
|
|
translation = make_float3(0.0f, 0.0f, 0.0f);
|
|
rotation = make_float3(0.0f, 0.0f, 0.0f);
|
|
scale = make_float3(1.0f, 1.0f, 1.0f);
|
|
|
|
min = make_float3(-FLT_MAX, -FLT_MAX, -FLT_MAX);
|
|
max = make_float3(FLT_MAX, FLT_MAX, FLT_MAX);
|
|
|
|
use_minmax = false;
|
|
|
|
x_mapping = X;
|
|
y_mapping = Y;
|
|
z_mapping = Z;
|
|
|
|
type = TEXTURE;
|
|
|
|
projection = FLAT;
|
|
}
|
|
|
|
Transform TextureMapping::compute_transform()
|
|
{
|
|
Transform mmat = transform_scale(make_float3(0.0f, 0.0f, 0.0f));
|
|
|
|
if(x_mapping != NONE)
|
|
mmat[0][x_mapping-1] = 1.0f;
|
|
if(y_mapping != NONE)
|
|
mmat[1][y_mapping-1] = 1.0f;
|
|
if(z_mapping != NONE)
|
|
mmat[2][z_mapping-1] = 1.0f;
|
|
|
|
float3 scale_clamped = scale;
|
|
|
|
if(type == TEXTURE || type == NORMAL) {
|
|
/* keep matrix invertible */
|
|
if(fabsf(scale.x) < 1e-5f)
|
|
scale_clamped.x = signf(scale.x)*1e-5f;
|
|
if(fabsf(scale.y) < 1e-5f)
|
|
scale_clamped.y = signf(scale.y)*1e-5f;
|
|
if(fabsf(scale.z) < 1e-5f)
|
|
scale_clamped.z = signf(scale.z)*1e-5f;
|
|
}
|
|
|
|
Transform smat = transform_scale(scale_clamped);
|
|
Transform rmat = transform_euler(rotation);
|
|
Transform tmat = transform_translate(translation);
|
|
|
|
Transform mat;
|
|
|
|
switch(type) {
|
|
case TEXTURE:
|
|
/* inverse transform on texture coordinate gives
|
|
* forward transform on texture */
|
|
mat = tmat*rmat*smat;
|
|
mat = transform_inverse(mat);
|
|
break;
|
|
case POINT:
|
|
/* full transform */
|
|
mat = tmat*rmat*smat;
|
|
break;
|
|
case VECTOR:
|
|
/* no translation for vectors */
|
|
mat = rmat*smat;
|
|
break;
|
|
case NORMAL:
|
|
/* no translation for normals, and inverse transpose */
|
|
mat = rmat*smat;
|
|
mat = transform_inverse(mat);
|
|
mat = transform_transpose(mat);
|
|
break;
|
|
}
|
|
|
|
/* projection last */
|
|
mat = mat*mmat;
|
|
|
|
return mat;
|
|
}
|
|
|
|
bool TextureMapping::skip()
|
|
{
|
|
if(translation != make_float3(0.0f, 0.0f, 0.0f))
|
|
return false;
|
|
if(rotation != make_float3(0.0f, 0.0f, 0.0f))
|
|
return false;
|
|
if(scale != make_float3(1.0f, 1.0f, 1.0f))
|
|
return false;
|
|
|
|
if(x_mapping != X || y_mapping != Y || z_mapping != Z)
|
|
return false;
|
|
if(use_minmax)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
void TextureMapping::compile(SVMCompiler& compiler, int offset_in, int offset_out)
|
|
{
|
|
if(offset_in == SVM_STACK_INVALID || offset_out == SVM_STACK_INVALID)
|
|
return;
|
|
|
|
compiler.add_node(NODE_MAPPING, offset_in, offset_out);
|
|
|
|
Transform tfm = compute_transform();
|
|
compiler.add_node(tfm.x);
|
|
compiler.add_node(tfm.y);
|
|
compiler.add_node(tfm.z);
|
|
compiler.add_node(tfm.w);
|
|
|
|
if(use_minmax) {
|
|
compiler.add_node(NODE_MIN_MAX, offset_out, offset_out);
|
|
compiler.add_node(float3_to_float4(min));
|
|
compiler.add_node(float3_to_float4(max));
|
|
}
|
|
|
|
if(type == NORMAL) {
|
|
compiler.add_node(NODE_VECTOR_MATH, NODE_VECTOR_MATH_NORMALIZE, offset_out, offset_out);
|
|
compiler.add_node(NODE_VECTOR_MATH, SVM_STACK_INVALID, offset_out);
|
|
}
|
|
}
|
|
|
|
void TextureMapping::compile(OSLCompiler &compiler)
|
|
{
|
|
if(!skip()) {
|
|
Transform tfm = transform_transpose(compute_transform());
|
|
|
|
compiler.parameter("mapping", tfm);
|
|
compiler.parameter("use_mapping", 1);
|
|
}
|
|
}
|
|
|
|
/* Image Texture */
|
|
|
|
static ShaderEnum color_space_init()
|
|
{
|
|
ShaderEnum enm;
|
|
|
|
enm.insert("None", 0);
|
|
enm.insert("Color", 1);
|
|
|
|
return enm;
|
|
}
|
|
|
|
static ShaderEnum image_projection_init()
|
|
{
|
|
ShaderEnum enm;
|
|
|
|
enm.insert("Flat", NODE_IMAGE_PROJ_FLAT);
|
|
enm.insert("Box", NODE_IMAGE_PROJ_BOX);
|
|
enm.insert("Sphere", NODE_IMAGE_PROJ_SPHERE);
|
|
enm.insert("Tube", NODE_IMAGE_PROJ_TUBE);
|
|
|
|
return enm;
|
|
}
|
|
|
|
static const char* get_osl_interpolation_parameter(InterpolationType interpolation)
|
|
{
|
|
switch(interpolation) {
|
|
case INTERPOLATION_CLOSEST:
|
|
return "closest";
|
|
case INTERPOLATION_CUBIC:
|
|
return "cubic";
|
|
case INTERPOLATION_SMART:
|
|
return "smart";
|
|
case INTERPOLATION_LINEAR:
|
|
default:
|
|
return "linear";
|
|
}
|
|
}
|
|
|
|
ShaderEnum ImageTextureNode::color_space_enum = color_space_init();
|
|
ShaderEnum ImageTextureNode::projection_enum = image_projection_init();
|
|
|
|
ImageTextureNode::ImageTextureNode()
|
|
: ImageSlotTextureNode("image_texture")
|
|
{
|
|
image_manager = NULL;
|
|
slot = -1;
|
|
is_float = -1;
|
|
is_linear = false;
|
|
use_alpha = true;
|
|
filename = "";
|
|
builtin_data = NULL;
|
|
color_space = ustring("Color");
|
|
projection = ustring("Flat");
|
|
interpolation = INTERPOLATION_LINEAR;
|
|
extension = EXTENSION_REPEAT;
|
|
projection_blend = 0.0f;
|
|
animated = false;
|
|
|
|
add_input("Vector", SHADER_SOCKET_POINT, ShaderInput::TEXTURE_UV);
|
|
add_output("Color", SHADER_SOCKET_COLOR);
|
|
add_output("Alpha", SHADER_SOCKET_FLOAT);
|
|
}
|
|
|
|
ImageTextureNode::~ImageTextureNode()
|
|
{
|
|
if(image_manager) {
|
|
image_manager->remove_image(filename,
|
|
builtin_data,
|
|
interpolation,
|
|
extension);
|
|
}
|
|
}
|
|
|
|
ShaderNode *ImageTextureNode::clone() const
|
|
{
|
|
ImageTextureNode *node = new ImageTextureNode(*this);
|
|
node->image_manager = NULL;
|
|
node->slot = -1;
|
|
node->is_float = -1;
|
|
node->is_linear = false;
|
|
return node;
|
|
}
|
|
|
|
void ImageTextureNode::attributes(Shader *shader, AttributeRequestSet *attributes)
|
|
{
|
|
#ifdef WITH_PTEX
|
|
/* todo: avoid loading other texture coordinates when using ptex,
|
|
* and hide texture coordinate socket in the UI */
|
|
if(shader->has_surface && string_endswith(filename, ".ptx")) {
|
|
/* ptex */
|
|
attributes->add(ATTR_STD_PTEX_FACE_ID);
|
|
attributes->add(ATTR_STD_PTEX_UV);
|
|
}
|
|
#endif
|
|
|
|
ShaderNode::attributes(shader, attributes);
|
|
}
|
|
|
|
void ImageTextureNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderInput *vector_in = input("Vector");
|
|
ShaderOutput *color_out = output("Color");
|
|
ShaderOutput *alpha_out = output("Alpha");
|
|
|
|
image_manager = compiler.image_manager;
|
|
if(is_float == -1) {
|
|
bool is_float_bool;
|
|
slot = image_manager->add_image(filename,
|
|
builtin_data,
|
|
animated,
|
|
0,
|
|
is_float_bool,
|
|
is_linear,
|
|
interpolation,
|
|
extension,
|
|
use_alpha);
|
|
is_float = (int)is_float_bool;
|
|
}
|
|
|
|
if(!color_out->links.empty())
|
|
compiler.stack_assign(color_out);
|
|
if(!alpha_out->links.empty())
|
|
compiler.stack_assign(alpha_out);
|
|
|
|
if(slot != -1) {
|
|
compiler.stack_assign(vector_in);
|
|
|
|
int srgb = (is_linear || color_space != "Color")? 0: 1;
|
|
int vector_offset = vector_in->stack_offset;
|
|
|
|
if(!tex_mapping.skip()) {
|
|
vector_offset = compiler.stack_find_offset(SHADER_SOCKET_VECTOR);
|
|
tex_mapping.compile(compiler, vector_in->stack_offset, vector_offset);
|
|
}
|
|
|
|
if(projection != "Box") {
|
|
compiler.add_node(NODE_TEX_IMAGE,
|
|
slot,
|
|
compiler.encode_uchar4(
|
|
vector_offset,
|
|
color_out->stack_offset,
|
|
alpha_out->stack_offset,
|
|
srgb),
|
|
projection_enum[projection]);
|
|
}
|
|
else {
|
|
compiler.add_node(NODE_TEX_IMAGE_BOX,
|
|
slot,
|
|
compiler.encode_uchar4(
|
|
vector_offset,
|
|
color_out->stack_offset,
|
|
alpha_out->stack_offset,
|
|
srgb),
|
|
__float_as_int(projection_blend));
|
|
}
|
|
|
|
if(vector_offset != vector_in->stack_offset)
|
|
compiler.stack_clear_offset(vector_in->type, vector_offset);
|
|
}
|
|
else {
|
|
/* image not found */
|
|
if(!color_out->links.empty()) {
|
|
compiler.add_node(NODE_VALUE_V, color_out->stack_offset);
|
|
compiler.add_node(NODE_VALUE_V, make_float3(TEX_IMAGE_MISSING_R,
|
|
TEX_IMAGE_MISSING_G,
|
|
TEX_IMAGE_MISSING_B));
|
|
}
|
|
if(!alpha_out->links.empty())
|
|
compiler.add_node(NODE_VALUE_F, __float_as_int(TEX_IMAGE_MISSING_A), alpha_out->stack_offset);
|
|
}
|
|
}
|
|
|
|
void ImageTextureNode::compile(OSLCompiler& compiler)
|
|
{
|
|
ShaderOutput *alpha_out = output("Alpha");
|
|
|
|
tex_mapping.compile(compiler);
|
|
|
|
image_manager = compiler.image_manager;
|
|
if(is_float == -1) {
|
|
if(builtin_data == NULL) {
|
|
is_float = (int)image_manager->is_float_image(filename, NULL, is_linear);
|
|
}
|
|
else {
|
|
bool is_float_bool;
|
|
slot = image_manager->add_image(filename,
|
|
builtin_data,
|
|
animated,
|
|
0,
|
|
is_float_bool,
|
|
is_linear,
|
|
interpolation,
|
|
extension,
|
|
use_alpha);
|
|
is_float = (int)is_float_bool;
|
|
}
|
|
}
|
|
|
|
if(slot == -1) {
|
|
compiler.parameter("filename", filename.c_str());
|
|
}
|
|
else {
|
|
/* TODO(sergey): It's not so simple to pass custom attribute
|
|
* to the texture() function in order to make builtin images
|
|
* support more clear. So we use special file name which is
|
|
* "@<slot_number>" and check whether file name matches this
|
|
* mask in the OSLRenderServices::texture().
|
|
*/
|
|
compiler.parameter("filename", string_printf("@%d", slot).c_str());
|
|
}
|
|
if(is_linear || color_space != "Color")
|
|
compiler.parameter("color_space", "Linear");
|
|
else
|
|
compiler.parameter("color_space", "sRGB");
|
|
compiler.parameter("projection", projection);
|
|
compiler.parameter("projection_blend", projection_blend);
|
|
compiler.parameter("is_float", is_float);
|
|
compiler.parameter("use_alpha", !alpha_out->links.empty());
|
|
compiler.parameter("interpolation", get_osl_interpolation_parameter(interpolation));
|
|
|
|
switch(extension) {
|
|
case EXTENSION_EXTEND:
|
|
compiler.parameter("wrap", "clamp");
|
|
break;
|
|
case EXTENSION_CLIP:
|
|
compiler.parameter("wrap", "black");
|
|
break;
|
|
case EXTENSION_REPEAT:
|
|
default:
|
|
compiler.parameter("wrap", "periodic");
|
|
break;
|
|
}
|
|
|
|
compiler.add(this, "node_image_texture");
|
|
}
|
|
|
|
/* Environment Texture */
|
|
|
|
static ShaderEnum env_projection_init()
|
|
{
|
|
ShaderEnum enm;
|
|
|
|
enm.insert("Equirectangular", 0);
|
|
enm.insert("Mirror Ball", 1);
|
|
|
|
return enm;
|
|
}
|
|
|
|
ShaderEnum EnvironmentTextureNode::color_space_enum = color_space_init();
|
|
ShaderEnum EnvironmentTextureNode::projection_enum = env_projection_init();
|
|
|
|
EnvironmentTextureNode::EnvironmentTextureNode()
|
|
: ImageSlotTextureNode("environment_texture")
|
|
{
|
|
image_manager = NULL;
|
|
slot = -1;
|
|
is_float = -1;
|
|
is_linear = false;
|
|
use_alpha = true;
|
|
filename = "";
|
|
builtin_data = NULL;
|
|
color_space = ustring("Color");
|
|
interpolation = INTERPOLATION_LINEAR;
|
|
projection = ustring("Equirectangular");
|
|
animated = false;
|
|
|
|
add_input("Vector", SHADER_SOCKET_VECTOR, ShaderInput::POSITION);
|
|
add_output("Color", SHADER_SOCKET_COLOR);
|
|
add_output("Alpha", SHADER_SOCKET_FLOAT);
|
|
}
|
|
|
|
EnvironmentTextureNode::~EnvironmentTextureNode()
|
|
{
|
|
if(image_manager) {
|
|
image_manager->remove_image(filename,
|
|
builtin_data,
|
|
interpolation,
|
|
EXTENSION_REPEAT);
|
|
}
|
|
}
|
|
|
|
ShaderNode *EnvironmentTextureNode::clone() const
|
|
{
|
|
EnvironmentTextureNode *node = new EnvironmentTextureNode(*this);
|
|
node->image_manager = NULL;
|
|
node->slot = -1;
|
|
node->is_float = -1;
|
|
node->is_linear = false;
|
|
return node;
|
|
}
|
|
|
|
void EnvironmentTextureNode::attributes(Shader *shader, AttributeRequestSet *attributes)
|
|
{
|
|
#ifdef WITH_PTEX
|
|
if(shader->has_surface && string_endswith(filename, ".ptx")) {
|
|
/* ptex */
|
|
attributes->add(ATTR_STD_PTEX_FACE_ID);
|
|
attributes->add(ATTR_STD_PTEX_UV);
|
|
}
|
|
#endif
|
|
|
|
ShaderNode::attributes(shader, attributes);
|
|
}
|
|
|
|
void EnvironmentTextureNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderInput *vector_in = input("Vector");
|
|
ShaderOutput *color_out = output("Color");
|
|
ShaderOutput *alpha_out = output("Alpha");
|
|
|
|
image_manager = compiler.image_manager;
|
|
if(slot == -1) {
|
|
bool is_float_bool;
|
|
slot = image_manager->add_image(filename,
|
|
builtin_data,
|
|
animated,
|
|
0,
|
|
is_float_bool,
|
|
is_linear,
|
|
interpolation,
|
|
EXTENSION_REPEAT,
|
|
use_alpha);
|
|
is_float = (int)is_float_bool;
|
|
}
|
|
|
|
if(!color_out->links.empty())
|
|
compiler.stack_assign(color_out);
|
|
if(!alpha_out->links.empty())
|
|
compiler.stack_assign(alpha_out);
|
|
|
|
if(slot != -1) {
|
|
compiler.stack_assign(vector_in);
|
|
|
|
int srgb = (is_linear || color_space != "Color")? 0: 1;
|
|
int vector_offset = vector_in->stack_offset;
|
|
|
|
if(!tex_mapping.skip()) {
|
|
vector_offset = compiler.stack_find_offset(SHADER_SOCKET_VECTOR);
|
|
tex_mapping.compile(compiler, vector_in->stack_offset, vector_offset);
|
|
}
|
|
|
|
compiler.add_node(NODE_TEX_ENVIRONMENT,
|
|
slot,
|
|
compiler.encode_uchar4(
|
|
vector_offset,
|
|
color_out->stack_offset,
|
|
alpha_out->stack_offset,
|
|
srgb),
|
|
projection_enum[projection]);
|
|
|
|
if(vector_offset != vector_in->stack_offset)
|
|
compiler.stack_clear_offset(vector_in->type, vector_offset);
|
|
}
|
|
else {
|
|
/* image not found */
|
|
if(!color_out->links.empty()) {
|
|
compiler.add_node(NODE_VALUE_V, color_out->stack_offset);
|
|
compiler.add_node(NODE_VALUE_V, make_float3(TEX_IMAGE_MISSING_R,
|
|
TEX_IMAGE_MISSING_G,
|
|
TEX_IMAGE_MISSING_B));
|
|
}
|
|
if(!alpha_out->links.empty())
|
|
compiler.add_node(NODE_VALUE_F, __float_as_int(TEX_IMAGE_MISSING_A), alpha_out->stack_offset);
|
|
}
|
|
}
|
|
|
|
void EnvironmentTextureNode::compile(OSLCompiler& compiler)
|
|
{
|
|
ShaderOutput *alpha_out = output("Alpha");
|
|
|
|
tex_mapping.compile(compiler);
|
|
|
|
/* See comments in ImageTextureNode::compile about support
|
|
* of builtin images.
|
|
*/
|
|
image_manager = compiler.image_manager;
|
|
if(is_float == -1) {
|
|
if(builtin_data == NULL) {
|
|
is_float = (int)image_manager->is_float_image(filename, NULL, is_linear);
|
|
}
|
|
else {
|
|
bool is_float_bool;
|
|
slot = image_manager->add_image(filename,
|
|
builtin_data,
|
|
animated,
|
|
0,
|
|
is_float_bool,
|
|
is_linear,
|
|
interpolation,
|
|
EXTENSION_REPEAT,
|
|
use_alpha);
|
|
is_float = (int)is_float_bool;
|
|
}
|
|
}
|
|
|
|
if(slot == -1) {
|
|
compiler.parameter("filename", filename.c_str());
|
|
}
|
|
else {
|
|
compiler.parameter("filename", string_printf("@%d", slot).c_str());
|
|
}
|
|
compiler.parameter("projection", projection);
|
|
if(is_linear || color_space != "Color")
|
|
compiler.parameter("color_space", "Linear");
|
|
else
|
|
compiler.parameter("color_space", "sRGB");
|
|
|
|
compiler.parameter("interpolation", get_osl_interpolation_parameter(interpolation));
|
|
|
|
compiler.parameter("is_float", is_float);
|
|
compiler.parameter("use_alpha", !alpha_out->links.empty());
|
|
compiler.add(this, "node_environment_texture");
|
|
}
|
|
|
|
/* Sky Texture */
|
|
|
|
static float2 sky_spherical_coordinates(float3 dir)
|
|
{
|
|
return make_float2(acosf(dir.z), atan2f(dir.x, dir.y));
|
|
}
|
|
|
|
typedef struct SunSky {
|
|
/* sun direction in spherical and cartesian */
|
|
float theta, phi;
|
|
|
|
/* Parameter */
|
|
float radiance_x, radiance_y, radiance_z;
|
|
float config_x[9], config_y[9], config_z[9];
|
|
} SunSky;
|
|
|
|
/* Preetham model */
|
|
static float sky_perez_function(float lam[6], float theta, float gamma)
|
|
{
|
|
return (1.0f + lam[0]*expf(lam[1]/cosf(theta))) * (1.0f + lam[2]*expf(lam[3]*gamma) + lam[4]*cosf(gamma)*cosf(gamma));
|
|
}
|
|
|
|
static void sky_texture_precompute_old(SunSky *sunsky, float3 dir, float turbidity)
|
|
{
|
|
/*
|
|
* We re-use the SunSky struct of the new model, to avoid extra variables
|
|
* zenith_Y/x/y is now radiance_x/y/z
|
|
* perez_Y/x/y is now config_x/y/z
|
|
*/
|
|
|
|
float2 spherical = sky_spherical_coordinates(dir);
|
|
float theta = spherical.x;
|
|
float phi = spherical.y;
|
|
|
|
sunsky->theta = theta;
|
|
sunsky->phi = phi;
|
|
|
|
float theta2 = theta*theta;
|
|
float theta3 = theta2*theta;
|
|
float T = turbidity;
|
|
float T2 = T * T;
|
|
|
|
float chi = (4.0f / 9.0f - T / 120.0f) * (M_PI_F - 2.0f * theta);
|
|
sunsky->radiance_x = (4.0453f * T - 4.9710f) * tanf(chi) - 0.2155f * T + 2.4192f;
|
|
sunsky->radiance_x *= 0.06f;
|
|
|
|
sunsky->radiance_y =
|
|
(0.00166f * theta3 - 0.00375f * theta2 + 0.00209f * theta) * T2 +
|
|
(-0.02903f * theta3 + 0.06377f * theta2 - 0.03202f * theta + 0.00394f) * T +
|
|
(0.11693f * theta3 - 0.21196f * theta2 + 0.06052f * theta + 0.25886f);
|
|
|
|
sunsky->radiance_z =
|
|
(0.00275f * theta3 - 0.00610f * theta2 + 0.00317f * theta) * T2 +
|
|
(-0.04214f * theta3 + 0.08970f * theta2 - 0.04153f * theta + 0.00516f) * T +
|
|
(0.15346f * theta3 - 0.26756f * theta2 + 0.06670f * theta + 0.26688f);
|
|
|
|
sunsky->config_x[0] = (0.1787f * T - 1.4630f);
|
|
sunsky->config_x[1] = (-0.3554f * T + 0.4275f);
|
|
sunsky->config_x[2] = (-0.0227f * T + 5.3251f);
|
|
sunsky->config_x[3] = (0.1206f * T - 2.5771f);
|
|
sunsky->config_x[4] = (-0.0670f * T + 0.3703f);
|
|
|
|
sunsky->config_y[0] = (-0.0193f * T - 0.2592f);
|
|
sunsky->config_y[1] = (-0.0665f * T + 0.0008f);
|
|
sunsky->config_y[2] = (-0.0004f * T + 0.2125f);
|
|
sunsky->config_y[3] = (-0.0641f * T - 0.8989f);
|
|
sunsky->config_y[4] = (-0.0033f * T + 0.0452f);
|
|
|
|
sunsky->config_z[0] = (-0.0167f * T - 0.2608f);
|
|
sunsky->config_z[1] = (-0.0950f * T + 0.0092f);
|
|
sunsky->config_z[2] = (-0.0079f * T + 0.2102f);
|
|
sunsky->config_z[3] = (-0.0441f * T - 1.6537f);
|
|
sunsky->config_z[4] = (-0.0109f * T + 0.0529f);
|
|
|
|
/* unused for old sky model */
|
|
for(int i = 5; i < 9; i++) {
|
|
sunsky->config_x[i] = 0.0f;
|
|
sunsky->config_y[i] = 0.0f;
|
|
sunsky->config_z[i] = 0.0f;
|
|
}
|
|
|
|
sunsky->radiance_x /= sky_perez_function(sunsky->config_x, 0, theta);
|
|
sunsky->radiance_y /= sky_perez_function(sunsky->config_y, 0, theta);
|
|
sunsky->radiance_z /= sky_perez_function(sunsky->config_z, 0, theta);
|
|
}
|
|
|
|
/* Hosek / Wilkie */
|
|
static void sky_texture_precompute_new(SunSky *sunsky, float3 dir, float turbidity, float ground_albedo)
|
|
{
|
|
/* Calculate Sun Direction and save coordinates */
|
|
float2 spherical = sky_spherical_coordinates(dir);
|
|
float theta = spherical.x;
|
|
float phi = spherical.y;
|
|
|
|
/* Clamp Turbidity */
|
|
turbidity = clamp(turbidity, 0.0f, 10.0f);
|
|
|
|
/* Clamp to Horizon */
|
|
theta = clamp(theta, 0.0f, M_PI_2_F);
|
|
|
|
sunsky->theta = theta;
|
|
sunsky->phi = phi;
|
|
|
|
double solarElevation = M_PI_2_F - theta;
|
|
|
|
/* Initialize Sky Model */
|
|
ArHosekSkyModelState *sky_state;
|
|
sky_state = arhosek_xyz_skymodelstate_alloc_init(turbidity, ground_albedo, solarElevation);
|
|
|
|
/* Copy values from sky_state to SunSky */
|
|
for(int i = 0; i < 9; ++i) {
|
|
sunsky->config_x[i] = (float)sky_state->configs[0][i];
|
|
sunsky->config_y[i] = (float)sky_state->configs[1][i];
|
|
sunsky->config_z[i] = (float)sky_state->configs[2][i];
|
|
}
|
|
sunsky->radiance_x = (float)sky_state->radiances[0];
|
|
sunsky->radiance_y = (float)sky_state->radiances[1];
|
|
sunsky->radiance_z = (float)sky_state->radiances[2];
|
|
|
|
/* Free sky_state */
|
|
arhosekskymodelstate_free(sky_state);
|
|
}
|
|
|
|
static ShaderEnum sky_type_init()
|
|
{
|
|
ShaderEnum enm;
|
|
|
|
enm.insert("Preetham", NODE_SKY_OLD);
|
|
enm.insert("Hosek / Wilkie", NODE_SKY_NEW);
|
|
|
|
return enm;
|
|
}
|
|
|
|
ShaderEnum SkyTextureNode::type_enum = sky_type_init();
|
|
|
|
SkyTextureNode::SkyTextureNode()
|
|
: TextureNode("sky_texture")
|
|
{
|
|
type = ustring("Hosek / Wilkie");
|
|
|
|
sun_direction = make_float3(0.0f, 0.0f, 1.0f);
|
|
turbidity = 2.2f;
|
|
ground_albedo = 0.3f;
|
|
|
|
add_input("Vector", SHADER_SOCKET_VECTOR, ShaderInput::POSITION);
|
|
add_output("Color", SHADER_SOCKET_COLOR);
|
|
}
|
|
|
|
void SkyTextureNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderInput *vector_in = input("Vector");
|
|
ShaderOutput *color_out = output("Color");
|
|
|
|
SunSky sunsky;
|
|
if(type_enum[type] == NODE_SKY_OLD)
|
|
sky_texture_precompute_old(&sunsky, sun_direction, turbidity);
|
|
else if(type_enum[type] == NODE_SKY_NEW)
|
|
sky_texture_precompute_new(&sunsky, sun_direction, turbidity, ground_albedo);
|
|
else
|
|
assert(false);
|
|
|
|
if(vector_in->link)
|
|
compiler.stack_assign(vector_in);
|
|
|
|
int vector_offset = vector_in->stack_offset;
|
|
int sky_model = type_enum[type];
|
|
|
|
if(!tex_mapping.skip()) {
|
|
vector_offset = compiler.stack_find_offset(SHADER_SOCKET_VECTOR);
|
|
tex_mapping.compile(compiler, vector_in->stack_offset, vector_offset);
|
|
}
|
|
|
|
compiler.stack_assign(color_out);
|
|
compiler.add_node(NODE_TEX_SKY, vector_offset, color_out->stack_offset, sky_model);
|
|
compiler.add_node(__float_as_uint(sunsky.phi), __float_as_uint(sunsky.theta), __float_as_uint(sunsky.radiance_x), __float_as_uint(sunsky.radiance_y));
|
|
compiler.add_node(__float_as_uint(sunsky.radiance_z), __float_as_uint(sunsky.config_x[0]), __float_as_uint(sunsky.config_x[1]), __float_as_uint(sunsky.config_x[2]));
|
|
compiler.add_node(__float_as_uint(sunsky.config_x[3]), __float_as_uint(sunsky.config_x[4]), __float_as_uint(sunsky.config_x[5]), __float_as_uint(sunsky.config_x[6]));
|
|
compiler.add_node(__float_as_uint(sunsky.config_x[7]), __float_as_uint(sunsky.config_x[8]), __float_as_uint(sunsky.config_y[0]), __float_as_uint(sunsky.config_y[1]));
|
|
compiler.add_node(__float_as_uint(sunsky.config_y[2]), __float_as_uint(sunsky.config_y[3]), __float_as_uint(sunsky.config_y[4]), __float_as_uint(sunsky.config_y[5]));
|
|
compiler.add_node(__float_as_uint(sunsky.config_y[6]), __float_as_uint(sunsky.config_y[7]), __float_as_uint(sunsky.config_y[8]), __float_as_uint(sunsky.config_z[0]));
|
|
compiler.add_node(__float_as_uint(sunsky.config_z[1]), __float_as_uint(sunsky.config_z[2]), __float_as_uint(sunsky.config_z[3]), __float_as_uint(sunsky.config_z[4]));
|
|
compiler.add_node(__float_as_uint(sunsky.config_z[5]), __float_as_uint(sunsky.config_z[6]), __float_as_uint(sunsky.config_z[7]), __float_as_uint(sunsky.config_z[8]));
|
|
|
|
if(vector_offset != vector_in->stack_offset)
|
|
compiler.stack_clear_offset(vector_in->type, vector_offset);
|
|
}
|
|
|
|
void SkyTextureNode::compile(OSLCompiler& compiler)
|
|
{
|
|
tex_mapping.compile(compiler);
|
|
|
|
SunSky sunsky;
|
|
|
|
if(type_enum[type] == NODE_SKY_OLD)
|
|
sky_texture_precompute_old(&sunsky, sun_direction, turbidity);
|
|
else if(type_enum[type] == NODE_SKY_NEW)
|
|
sky_texture_precompute_new(&sunsky, sun_direction, turbidity, ground_albedo);
|
|
else
|
|
assert(false);
|
|
|
|
compiler.parameter("sky_model", type);
|
|
compiler.parameter("theta", sunsky.theta);
|
|
compiler.parameter("phi", sunsky.phi);
|
|
compiler.parameter_color("radiance", make_float3(sunsky.radiance_x, sunsky.radiance_y, sunsky.radiance_z));
|
|
compiler.parameter_array("config_x", sunsky.config_x, 9);
|
|
compiler.parameter_array("config_y", sunsky.config_y, 9);
|
|
compiler.parameter_array("config_z", sunsky.config_z, 9);
|
|
compiler.add(this, "node_sky_texture");
|
|
}
|
|
|
|
/* Gradient Texture */
|
|
|
|
static ShaderEnum gradient_type_init()
|
|
{
|
|
ShaderEnum enm;
|
|
|
|
enm.insert("Linear", NODE_BLEND_LINEAR);
|
|
enm.insert("Quadratic", NODE_BLEND_QUADRATIC);
|
|
enm.insert("Easing", NODE_BLEND_EASING);
|
|
enm.insert("Diagonal", NODE_BLEND_DIAGONAL);
|
|
enm.insert("Radial", NODE_BLEND_RADIAL);
|
|
enm.insert("Quadratic Sphere", NODE_BLEND_QUADRATIC_SPHERE);
|
|
enm.insert("Spherical", NODE_BLEND_SPHERICAL);
|
|
|
|
return enm;
|
|
}
|
|
|
|
ShaderEnum GradientTextureNode::type_enum = gradient_type_init();
|
|
|
|
GradientTextureNode::GradientTextureNode()
|
|
: TextureNode("gradient_texture")
|
|
{
|
|
type = ustring("Linear");
|
|
|
|
add_input("Vector", SHADER_SOCKET_POINT, ShaderInput::TEXTURE_GENERATED);
|
|
add_output("Color", SHADER_SOCKET_COLOR);
|
|
add_output("Fac", SHADER_SOCKET_FLOAT);
|
|
}
|
|
|
|
void GradientTextureNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderInput *vector_in = input("Vector");
|
|
ShaderOutput *color_out = output("Color");
|
|
ShaderOutput *fac_out = output("Fac");
|
|
|
|
if(vector_in->link) compiler.stack_assign(vector_in);
|
|
|
|
int vector_offset = vector_in->stack_offset;
|
|
|
|
if(!tex_mapping.skip()) {
|
|
vector_offset = compiler.stack_find_offset(SHADER_SOCKET_VECTOR);
|
|
tex_mapping.compile(compiler, vector_in->stack_offset, vector_offset);
|
|
}
|
|
|
|
if(!fac_out->links.empty())
|
|
compiler.stack_assign(fac_out);
|
|
if(!color_out->links.empty())
|
|
compiler.stack_assign(color_out);
|
|
|
|
compiler.add_node(NODE_TEX_GRADIENT,
|
|
compiler.encode_uchar4(type_enum[type], vector_offset, fac_out->stack_offset, color_out->stack_offset));
|
|
|
|
if(vector_offset != vector_in->stack_offset)
|
|
compiler.stack_clear_offset(vector_in->type, vector_offset);
|
|
}
|
|
|
|
void GradientTextureNode::compile(OSLCompiler& compiler)
|
|
{
|
|
tex_mapping.compile(compiler);
|
|
|
|
compiler.parameter("Type", type);
|
|
compiler.add(this, "node_gradient_texture");
|
|
}
|
|
|
|
/* Noise Texture */
|
|
|
|
NoiseTextureNode::NoiseTextureNode()
|
|
: TextureNode("noise_texture")
|
|
{
|
|
add_input("Vector", SHADER_SOCKET_POINT, ShaderInput::TEXTURE_GENERATED);
|
|
add_input("Scale", SHADER_SOCKET_FLOAT, 1.0f);
|
|
add_input("Detail", SHADER_SOCKET_FLOAT, 2.0f);
|
|
add_input("Distortion", SHADER_SOCKET_FLOAT, 0.0f);
|
|
|
|
add_output("Color", SHADER_SOCKET_COLOR);
|
|
add_output("Fac", SHADER_SOCKET_FLOAT);
|
|
}
|
|
|
|
void NoiseTextureNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderInput *distortion_in = input("Distortion");
|
|
ShaderInput *detail_in = input("Detail");
|
|
ShaderInput *scale_in = input("Scale");
|
|
ShaderInput *vector_in = input("Vector");
|
|
ShaderOutput *color_out = output("Color");
|
|
ShaderOutput *fac_out = output("Fac");
|
|
|
|
if(vector_in->link) compiler.stack_assign(vector_in);
|
|
if(scale_in->link) compiler.stack_assign(scale_in);
|
|
if(detail_in->link) compiler.stack_assign(detail_in);
|
|
if(distortion_in->link) compiler.stack_assign(distortion_in);
|
|
|
|
int vector_offset = vector_in->stack_offset;
|
|
|
|
if(!tex_mapping.skip()) {
|
|
vector_offset = compiler.stack_find_offset(SHADER_SOCKET_VECTOR);
|
|
tex_mapping.compile(compiler, vector_in->stack_offset, vector_offset);
|
|
}
|
|
|
|
if(!fac_out->links.empty())
|
|
compiler.stack_assign(fac_out);
|
|
if(!color_out->links.empty())
|
|
compiler.stack_assign(color_out);
|
|
|
|
compiler.add_node(NODE_TEX_NOISE,
|
|
compiler.encode_uchar4(vector_offset, scale_in->stack_offset, detail_in->stack_offset, distortion_in->stack_offset),
|
|
compiler.encode_uchar4(color_out->stack_offset, fac_out->stack_offset));
|
|
compiler.add_node(
|
|
__float_as_int(scale_in->value.x),
|
|
__float_as_int(detail_in->value.x),
|
|
__float_as_int(distortion_in->value.x));
|
|
|
|
if(vector_offset != vector_in->stack_offset)
|
|
compiler.stack_clear_offset(vector_in->type, vector_offset);
|
|
}
|
|
|
|
void NoiseTextureNode::compile(OSLCompiler& compiler)
|
|
{
|
|
tex_mapping.compile(compiler);
|
|
|
|
compiler.add(this, "node_noise_texture");
|
|
}
|
|
|
|
/* Voronoi Texture */
|
|
|
|
static ShaderEnum voronoi_coloring_init()
|
|
{
|
|
ShaderEnum enm;
|
|
|
|
enm.insert("Intensity", NODE_VORONOI_INTENSITY);
|
|
enm.insert("Cells", NODE_VORONOI_CELLS);
|
|
|
|
return enm;
|
|
}
|
|
|
|
ShaderEnum VoronoiTextureNode::coloring_enum = voronoi_coloring_init();
|
|
|
|
VoronoiTextureNode::VoronoiTextureNode()
|
|
: TextureNode("voronoi_texture")
|
|
{
|
|
coloring = ustring("Intensity");
|
|
|
|
add_input("Scale", SHADER_SOCKET_FLOAT, 1.0f);
|
|
add_input("Vector", SHADER_SOCKET_POINT, ShaderInput::TEXTURE_GENERATED);
|
|
|
|
add_output("Color", SHADER_SOCKET_COLOR);
|
|
add_output("Fac", SHADER_SOCKET_FLOAT);
|
|
}
|
|
|
|
void VoronoiTextureNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderInput *scale_in = input("Scale");
|
|
ShaderInput *vector_in = input("Vector");
|
|
ShaderOutput *color_out = output("Color");
|
|
ShaderOutput *fac_out = output("Fac");
|
|
|
|
if(vector_in->link) compiler.stack_assign(vector_in);
|
|
if(scale_in->link) compiler.stack_assign(scale_in);
|
|
|
|
int vector_offset = vector_in->stack_offset;
|
|
|
|
if(!tex_mapping.skip()) {
|
|
vector_offset = compiler.stack_find_offset(SHADER_SOCKET_VECTOR);
|
|
tex_mapping.compile(compiler, vector_in->stack_offset, vector_offset);
|
|
}
|
|
|
|
compiler.stack_assign(color_out);
|
|
compiler.stack_assign(fac_out);
|
|
|
|
compiler.add_node(NODE_TEX_VORONOI,
|
|
coloring_enum[coloring],
|
|
compiler.encode_uchar4(scale_in->stack_offset, vector_offset, fac_out->stack_offset, color_out->stack_offset),
|
|
__float_as_int(scale_in->value.x));
|
|
|
|
if(vector_offset != vector_in->stack_offset)
|
|
compiler.stack_clear_offset(vector_in->type, vector_offset);
|
|
}
|
|
|
|
void VoronoiTextureNode::compile(OSLCompiler& compiler)
|
|
{
|
|
tex_mapping.compile(compiler);
|
|
|
|
compiler.parameter("Coloring", coloring);
|
|
compiler.add(this, "node_voronoi_texture");
|
|
}
|
|
|
|
/* Musgrave Texture */
|
|
|
|
static ShaderEnum musgrave_type_init()
|
|
{
|
|
ShaderEnum enm;
|
|
|
|
enm.insert("Multifractal", NODE_MUSGRAVE_MULTIFRACTAL);
|
|
enm.insert("fBM", NODE_MUSGRAVE_FBM);
|
|
enm.insert("Hybrid Multifractal", NODE_MUSGRAVE_HYBRID_MULTIFRACTAL);
|
|
enm.insert("Ridged Multifractal", NODE_MUSGRAVE_RIDGED_MULTIFRACTAL);
|
|
enm.insert("Hetero Terrain", NODE_MUSGRAVE_HETERO_TERRAIN);
|
|
|
|
return enm;
|
|
}
|
|
|
|
ShaderEnum MusgraveTextureNode::type_enum = musgrave_type_init();
|
|
|
|
MusgraveTextureNode::MusgraveTextureNode()
|
|
: TextureNode("musgrave_texture")
|
|
{
|
|
type = ustring("fBM");
|
|
|
|
add_input("Scale", SHADER_SOCKET_FLOAT, 1.0f);
|
|
add_input("Detail", SHADER_SOCKET_FLOAT, 2.0f);
|
|
add_input("Vector", SHADER_SOCKET_POINT, ShaderInput::TEXTURE_GENERATED);
|
|
add_input("Dimension", SHADER_SOCKET_FLOAT, 2.0f);
|
|
add_input("Lacunarity", SHADER_SOCKET_FLOAT, 1.0f);
|
|
add_input("Offset", SHADER_SOCKET_FLOAT, 0.0f);
|
|
add_input("Gain", SHADER_SOCKET_FLOAT, 1.0f);
|
|
|
|
add_output("Fac", SHADER_SOCKET_FLOAT);
|
|
add_output("Color", SHADER_SOCKET_COLOR);
|
|
}
|
|
|
|
void MusgraveTextureNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderInput *vector_in = input("Vector");
|
|
ShaderInput *scale_in = input("Scale");
|
|
ShaderInput *dimension_in = input("Dimension");
|
|
ShaderInput *lacunarity_in = input("Lacunarity");
|
|
ShaderInput *detail_in = input("Detail");
|
|
ShaderInput *offset_in = input("Offset");
|
|
ShaderInput *gain_in = input("Gain");
|
|
ShaderOutput *fac_out = output("Fac");
|
|
ShaderOutput *color_out = output("Color");
|
|
|
|
if(vector_in->link) compiler.stack_assign(vector_in);
|
|
if(dimension_in->link) compiler.stack_assign(dimension_in);
|
|
if(lacunarity_in->link) compiler.stack_assign(lacunarity_in);
|
|
if(detail_in->link) compiler.stack_assign(detail_in);
|
|
if(offset_in->link) compiler.stack_assign(offset_in);
|
|
if(gain_in->link) compiler.stack_assign(gain_in);
|
|
if(scale_in->link) compiler.stack_assign(scale_in);
|
|
|
|
int vector_offset = vector_in->stack_offset;
|
|
|
|
if(!tex_mapping.skip()) {
|
|
vector_offset = compiler.stack_find_offset(SHADER_SOCKET_VECTOR);
|
|
tex_mapping.compile(compiler, vector_in->stack_offset, vector_offset);
|
|
}
|
|
|
|
if(!fac_out->links.empty())
|
|
compiler.stack_assign(fac_out);
|
|
if(!color_out->links.empty())
|
|
compiler.stack_assign(color_out);
|
|
|
|
compiler.add_node(NODE_TEX_MUSGRAVE,
|
|
compiler.encode_uchar4(type_enum[type], vector_offset, color_out->stack_offset, fac_out->stack_offset),
|
|
compiler.encode_uchar4(dimension_in->stack_offset, lacunarity_in->stack_offset, detail_in->stack_offset, offset_in->stack_offset),
|
|
compiler.encode_uchar4(gain_in->stack_offset, scale_in->stack_offset));
|
|
compiler.add_node(__float_as_int(dimension_in->value.x),
|
|
__float_as_int(lacunarity_in->value.x),
|
|
__float_as_int(detail_in->value.x),
|
|
__float_as_int(offset_in->value.x));
|
|
compiler.add_node(__float_as_int(gain_in->value.x),
|
|
__float_as_int(scale_in->value.x));
|
|
|
|
if(vector_offset != vector_in->stack_offset)
|
|
compiler.stack_clear_offset(vector_in->type, vector_offset);
|
|
}
|
|
|
|
void MusgraveTextureNode::compile(OSLCompiler& compiler)
|
|
{
|
|
tex_mapping.compile(compiler);
|
|
|
|
compiler.parameter("Type", type);
|
|
|
|
compiler.add(this, "node_musgrave_texture");
|
|
}
|
|
|
|
/* Wave Texture */
|
|
|
|
static ShaderEnum wave_type_init()
|
|
{
|
|
ShaderEnum enm;
|
|
|
|
enm.insert("Bands", NODE_WAVE_BANDS);
|
|
enm.insert("Rings", NODE_WAVE_RINGS);
|
|
|
|
return enm;
|
|
}
|
|
|
|
static ShaderEnum wave_profile_init()
|
|
{
|
|
ShaderEnum enm;
|
|
|
|
enm.insert("Sine", NODE_WAVE_PROFILE_SIN);
|
|
enm.insert("Saw", NODE_WAVE_PROFILE_SAW);
|
|
|
|
return enm;
|
|
}
|
|
|
|
ShaderEnum WaveTextureNode::type_enum = wave_type_init();
|
|
ShaderEnum WaveTextureNode::profile_enum = wave_profile_init();
|
|
|
|
WaveTextureNode::WaveTextureNode()
|
|
: TextureNode("wave_texture")
|
|
{
|
|
type = ustring("Bands");
|
|
profile = ustring("Sine");
|
|
|
|
add_input("Scale", SHADER_SOCKET_FLOAT, 1.0f);
|
|
add_input("Distortion", SHADER_SOCKET_FLOAT, 0.0f);
|
|
add_input("Detail", SHADER_SOCKET_FLOAT, 2.0f);
|
|
add_input("Detail Scale", SHADER_SOCKET_FLOAT, 1.0f);
|
|
add_input("Vector", SHADER_SOCKET_POINT, ShaderInput::TEXTURE_GENERATED);
|
|
|
|
add_output("Color", SHADER_SOCKET_COLOR);
|
|
add_output("Fac", SHADER_SOCKET_FLOAT);
|
|
}
|
|
|
|
void WaveTextureNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderInput *scale_in = input("Scale");
|
|
ShaderInput *distortion_in = input("Distortion");
|
|
ShaderInput *dscale_in = input("Detail Scale");
|
|
ShaderInput *detail_in = input("Detail");
|
|
ShaderInput *vector_in = input("Vector");
|
|
ShaderOutput *fac_out = output("Fac");
|
|
ShaderOutput *color_out = output("Color");
|
|
|
|
if(scale_in->link) compiler.stack_assign(scale_in);
|
|
if(detail_in->link) compiler.stack_assign(detail_in);
|
|
if(distortion_in->link) compiler.stack_assign(distortion_in);
|
|
if(dscale_in->link) compiler.stack_assign(dscale_in);
|
|
if(vector_in->link) compiler.stack_assign(vector_in);
|
|
|
|
int vector_offset = vector_in->stack_offset;
|
|
|
|
if(!tex_mapping.skip()) {
|
|
vector_offset = compiler.stack_find_offset(SHADER_SOCKET_VECTOR);
|
|
tex_mapping.compile(compiler, vector_in->stack_offset, vector_offset);
|
|
}
|
|
|
|
if(!fac_out->links.empty())
|
|
compiler.stack_assign(fac_out);
|
|
if(!color_out->links.empty())
|
|
compiler.stack_assign(color_out);
|
|
|
|
compiler.add_node(NODE_TEX_WAVE,
|
|
compiler.encode_uchar4(type_enum[type], color_out->stack_offset, fac_out->stack_offset, dscale_in->stack_offset),
|
|
compiler.encode_uchar4(vector_offset, scale_in->stack_offset, detail_in->stack_offset, distortion_in->stack_offset),
|
|
profile_enum[profile]);
|
|
|
|
compiler.add_node(
|
|
__float_as_int(scale_in->value.x),
|
|
__float_as_int(detail_in->value.x),
|
|
__float_as_int(distortion_in->value.x),
|
|
__float_as_int(dscale_in->value.x));
|
|
|
|
if(vector_offset != vector_in->stack_offset)
|
|
compiler.stack_clear_offset(vector_in->type, vector_offset);
|
|
}
|
|
|
|
void WaveTextureNode::compile(OSLCompiler& compiler)
|
|
{
|
|
tex_mapping.compile(compiler);
|
|
|
|
compiler.parameter("Type", type);
|
|
compiler.parameter("Profile", profile);
|
|
|
|
compiler.add(this, "node_wave_texture");
|
|
}
|
|
|
|
/* Magic Texture */
|
|
|
|
MagicTextureNode::MagicTextureNode()
|
|
: TextureNode("magic_texture")
|
|
{
|
|
depth = 2;
|
|
|
|
add_input("Vector", SHADER_SOCKET_POINT, ShaderInput::TEXTURE_GENERATED);
|
|
add_input("Scale", SHADER_SOCKET_FLOAT, 5.0f);
|
|
add_input("Distortion", SHADER_SOCKET_FLOAT, 1.0f);
|
|
|
|
add_output("Color", SHADER_SOCKET_COLOR);
|
|
add_output("Fac", SHADER_SOCKET_FLOAT);
|
|
}
|
|
|
|
void MagicTextureNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderInput *vector_in = input("Vector");
|
|
ShaderInput *scale_in = input("Scale");
|
|
ShaderInput *distortion_in = input("Distortion");
|
|
ShaderOutput *color_out = output("Color");
|
|
ShaderOutput *fac_out = output("Fac");
|
|
|
|
if(vector_in->link) compiler.stack_assign(vector_in);
|
|
if(distortion_in->link) compiler.stack_assign(distortion_in);
|
|
if(scale_in->link) compiler.stack_assign(scale_in);
|
|
|
|
int vector_offset = vector_in->stack_offset;
|
|
|
|
if(!tex_mapping.skip()) {
|
|
vector_offset = compiler.stack_find_offset(SHADER_SOCKET_VECTOR);
|
|
tex_mapping.compile(compiler, vector_in->stack_offset, vector_offset);
|
|
}
|
|
|
|
if(!fac_out->links.empty())
|
|
compiler.stack_assign(fac_out);
|
|
if(!color_out->links.empty())
|
|
compiler.stack_assign(color_out);
|
|
|
|
compiler.add_node(NODE_TEX_MAGIC,
|
|
compiler.encode_uchar4(depth, color_out->stack_offset, fac_out->stack_offset),
|
|
compiler.encode_uchar4(vector_offset, scale_in->stack_offset, distortion_in->stack_offset));
|
|
compiler.add_node(
|
|
__float_as_int(scale_in->value.x),
|
|
__float_as_int(distortion_in->value.x));
|
|
|
|
if(vector_offset != vector_in->stack_offset)
|
|
compiler.stack_clear_offset(vector_in->type, vector_offset);
|
|
}
|
|
|
|
void MagicTextureNode::compile(OSLCompiler& compiler)
|
|
{
|
|
tex_mapping.compile(compiler);
|
|
|
|
compiler.parameter("Depth", depth);
|
|
compiler.add(this, "node_magic_texture");
|
|
}
|
|
|
|
/* Checker Texture */
|
|
|
|
CheckerTextureNode::CheckerTextureNode()
|
|
: TextureNode("checker_texture")
|
|
{
|
|
add_input("Vector", SHADER_SOCKET_POINT, ShaderInput::TEXTURE_GENERATED);
|
|
add_input("Color1", SHADER_SOCKET_COLOR);
|
|
add_input("Color2", SHADER_SOCKET_COLOR);
|
|
add_input("Scale", SHADER_SOCKET_FLOAT, 1.0f);
|
|
|
|
add_output("Color", SHADER_SOCKET_COLOR);
|
|
add_output("Fac", SHADER_SOCKET_FLOAT);
|
|
}
|
|
|
|
void CheckerTextureNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderInput *vector_in = input("Vector");
|
|
ShaderInput *color1_in = input("Color1");
|
|
ShaderInput *color2_in = input("Color2");
|
|
ShaderInput *scale_in = input("Scale");
|
|
|
|
ShaderOutput *color_out = output("Color");
|
|
ShaderOutput *fac_out = output("Fac");
|
|
|
|
compiler.stack_assign(vector_in);
|
|
compiler.stack_assign(color1_in);
|
|
compiler.stack_assign(color2_in);
|
|
if(scale_in->link) compiler.stack_assign(scale_in);
|
|
|
|
int vector_offset = vector_in->stack_offset;
|
|
|
|
if(!tex_mapping.skip()) {
|
|
vector_offset = compiler.stack_find_offset(SHADER_SOCKET_VECTOR);
|
|
tex_mapping.compile(compiler, vector_in->stack_offset, vector_offset);
|
|
}
|
|
|
|
if(!color_out->links.empty())
|
|
compiler.stack_assign(color_out);
|
|
if(!fac_out->links.empty())
|
|
compiler.stack_assign(fac_out);
|
|
|
|
compiler.add_node(NODE_TEX_CHECKER,
|
|
compiler.encode_uchar4(vector_offset, color1_in->stack_offset, color2_in->stack_offset, scale_in->stack_offset),
|
|
compiler.encode_uchar4(color_out->stack_offset, fac_out->stack_offset),
|
|
__float_as_int(scale_in->value.x));
|
|
|
|
if(vector_offset != vector_in->stack_offset)
|
|
compiler.stack_clear_offset(vector_in->type, vector_offset);
|
|
}
|
|
|
|
void CheckerTextureNode::compile(OSLCompiler& compiler)
|
|
{
|
|
tex_mapping.compile(compiler);
|
|
|
|
compiler.add(this, "node_checker_texture");
|
|
}
|
|
|
|
/* Brick Texture */
|
|
|
|
BrickTextureNode::BrickTextureNode()
|
|
: TextureNode("brick_texture")
|
|
{
|
|
offset = 0.5f;
|
|
offset_frequency = 2;
|
|
squash = 1.0f;
|
|
squash_frequency = 2;
|
|
|
|
add_input("Vector", SHADER_SOCKET_POINT, ShaderInput::TEXTURE_GENERATED);
|
|
add_input("Color1", SHADER_SOCKET_COLOR);
|
|
add_input("Color2", SHADER_SOCKET_COLOR);
|
|
add_input("Mortar", SHADER_SOCKET_COLOR);
|
|
add_input("Scale", SHADER_SOCKET_FLOAT, 5.0f);
|
|
add_input("Mortar Size", SHADER_SOCKET_FLOAT, 0.02f);
|
|
add_input("Bias", SHADER_SOCKET_FLOAT, 0.0f);
|
|
add_input("Brick Width", SHADER_SOCKET_FLOAT, 0.5f);
|
|
add_input("Row Height", SHADER_SOCKET_FLOAT, 0.25f);
|
|
|
|
add_output("Color", SHADER_SOCKET_COLOR);
|
|
add_output("Fac", SHADER_SOCKET_FLOAT);
|
|
}
|
|
|
|
void BrickTextureNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderInput *vector_in = input("Vector");
|
|
ShaderInput *color1_in = input("Color1");
|
|
ShaderInput *color2_in = input("Color2");
|
|
ShaderInput *mortar_in = input("Mortar");
|
|
ShaderInput *scale_in = input("Scale");
|
|
ShaderInput *mortar_size_in = input("Mortar Size");
|
|
ShaderInput *bias_in = input("Bias");
|
|
ShaderInput *brick_width_in = input("Brick Width");
|
|
ShaderInput *row_height_in = input("Row Height");
|
|
|
|
ShaderOutput *color_out = output("Color");
|
|
ShaderOutput *fac_out = output("Fac");
|
|
|
|
compiler.stack_assign(vector_in);
|
|
compiler.stack_assign(color1_in);
|
|
compiler.stack_assign(color2_in);
|
|
compiler.stack_assign(mortar_in);
|
|
if(scale_in->link) compiler.stack_assign(scale_in);
|
|
if(mortar_size_in->link) compiler.stack_assign(mortar_size_in);
|
|
if(bias_in->link) compiler.stack_assign(bias_in);
|
|
if(brick_width_in->link) compiler.stack_assign(brick_width_in);
|
|
if(row_height_in->link) compiler.stack_assign(row_height_in);
|
|
|
|
int vector_offset = vector_in->stack_offset;
|
|
|
|
if(!tex_mapping.skip()) {
|
|
vector_offset = compiler.stack_find_offset(SHADER_SOCKET_VECTOR);
|
|
tex_mapping.compile(compiler, vector_in->stack_offset, vector_offset);
|
|
}
|
|
|
|
if(!color_out->links.empty())
|
|
compiler.stack_assign(color_out);
|
|
if(!fac_out->links.empty())
|
|
compiler.stack_assign(fac_out);
|
|
|
|
compiler.add_node(NODE_TEX_BRICK,
|
|
compiler.encode_uchar4(vector_offset,
|
|
color1_in->stack_offset, color2_in->stack_offset, mortar_in->stack_offset),
|
|
compiler.encode_uchar4(scale_in->stack_offset,
|
|
mortar_size_in->stack_offset, bias_in->stack_offset, brick_width_in->stack_offset),
|
|
compiler.encode_uchar4(row_height_in->stack_offset,
|
|
color_out->stack_offset, fac_out->stack_offset));
|
|
|
|
compiler.add_node(compiler.encode_uchar4(offset_frequency, squash_frequency),
|
|
__float_as_int(scale_in->value.x),
|
|
__float_as_int(mortar_size_in->value.x),
|
|
__float_as_int(bias_in->value.x));
|
|
|
|
compiler.add_node(__float_as_int(brick_width_in->value.x),
|
|
__float_as_int(row_height_in->value.x),
|
|
__float_as_int(offset),
|
|
__float_as_int(squash));
|
|
|
|
if(vector_offset != vector_in->stack_offset)
|
|
compiler.stack_clear_offset(vector_in->type, vector_offset);
|
|
}
|
|
|
|
void BrickTextureNode::compile(OSLCompiler& compiler)
|
|
{
|
|
tex_mapping.compile(compiler);
|
|
|
|
compiler.parameter("Offset", offset);
|
|
compiler.parameter("OffsetFrequency", offset_frequency);
|
|
compiler.parameter("Squash", squash);
|
|
compiler.parameter("SquashFrequency", squash_frequency);
|
|
compiler.add(this, "node_brick_texture");
|
|
}
|
|
|
|
/* Point Density Texture */
|
|
|
|
static ShaderEnum point_density_space_init()
|
|
{
|
|
ShaderEnum enm;
|
|
|
|
enm.insert("Object", NODE_TEX_VOXEL_SPACE_OBJECT);
|
|
enm.insert("World", NODE_TEX_VOXEL_SPACE_WORLD);
|
|
|
|
return enm;
|
|
}
|
|
|
|
ShaderEnum PointDensityTextureNode::space_enum = point_density_space_init();
|
|
|
|
PointDensityTextureNode::PointDensityTextureNode()
|
|
: ShaderNode("point_density")
|
|
{
|
|
image_manager = NULL;
|
|
slot = -1;
|
|
filename = "";
|
|
space = ustring("Object");
|
|
builtin_data = NULL;
|
|
interpolation = INTERPOLATION_LINEAR;
|
|
|
|
tfm = transform_identity();
|
|
|
|
add_input("Vector", SHADER_SOCKET_POINT, ShaderInput::POSITION);
|
|
add_output("Density", SHADER_SOCKET_FLOAT);
|
|
add_output("Color", SHADER_SOCKET_COLOR);
|
|
}
|
|
|
|
PointDensityTextureNode::~PointDensityTextureNode()
|
|
{
|
|
if(image_manager) {
|
|
image_manager->remove_image(filename,
|
|
builtin_data,
|
|
interpolation,
|
|
EXTENSION_CLIP);
|
|
}
|
|
}
|
|
|
|
ShaderNode *PointDensityTextureNode::clone() const
|
|
{
|
|
PointDensityTextureNode *node = new PointDensityTextureNode(*this);
|
|
node->image_manager = NULL;
|
|
node->slot = -1;
|
|
return node;
|
|
}
|
|
|
|
void PointDensityTextureNode::attributes(Shader *shader,
|
|
AttributeRequestSet *attributes)
|
|
{
|
|
if(shader->has_volume)
|
|
attributes->add(ATTR_STD_GENERATED_TRANSFORM);
|
|
|
|
ShaderNode::attributes(shader, attributes);
|
|
}
|
|
|
|
void PointDensityTextureNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderInput *vector_in = input("Vector");
|
|
ShaderOutput *density_out = output("Density");
|
|
ShaderOutput *color_out = output("Color");
|
|
|
|
const bool use_density = !density_out->links.empty();
|
|
const bool use_color = !color_out->links.empty();
|
|
|
|
image_manager = compiler.image_manager;
|
|
|
|
if(use_density || use_color) {
|
|
if(use_density)
|
|
compiler.stack_assign(density_out);
|
|
if(use_color)
|
|
compiler.stack_assign(color_out);
|
|
|
|
if(slot == -1) {
|
|
bool is_float, is_linear;
|
|
slot = image_manager->add_image(filename, builtin_data,
|
|
false, 0,
|
|
is_float, is_linear,
|
|
interpolation,
|
|
EXTENSION_CLIP,
|
|
true);
|
|
}
|
|
|
|
if(slot != -1) {
|
|
compiler.stack_assign(vector_in);
|
|
compiler.add_node(NODE_TEX_VOXEL,
|
|
slot,
|
|
compiler.encode_uchar4(vector_in->stack_offset,
|
|
density_out->stack_offset,
|
|
color_out->stack_offset,
|
|
space_enum[space]));
|
|
if(space == "World") {
|
|
compiler.add_node(tfm.x);
|
|
compiler.add_node(tfm.y);
|
|
compiler.add_node(tfm.z);
|
|
compiler.add_node(tfm.w);
|
|
}
|
|
}
|
|
else {
|
|
compiler.add_node(NODE_VALUE_F,
|
|
__float_as_int(0.0f),
|
|
density_out->stack_offset);
|
|
compiler.add_node(NODE_VALUE_V, color_out->stack_offset);
|
|
compiler.add_node(NODE_VALUE_V, make_float3(TEX_IMAGE_MISSING_R,
|
|
TEX_IMAGE_MISSING_G,
|
|
TEX_IMAGE_MISSING_B));
|
|
}
|
|
}
|
|
}
|
|
|
|
void PointDensityTextureNode::compile(OSLCompiler& compiler)
|
|
{
|
|
ShaderOutput *density_out = output("Density");
|
|
ShaderOutput *color_out = output("Color");
|
|
|
|
const bool use_density = !density_out->links.empty();
|
|
const bool use_color = !color_out->links.empty();
|
|
|
|
image_manager = compiler.image_manager;
|
|
|
|
if(use_density || use_color) {
|
|
if(slot == -1) {
|
|
bool is_float, is_linear;
|
|
slot = image_manager->add_image(filename, builtin_data,
|
|
false, 0,
|
|
is_float, is_linear,
|
|
interpolation,
|
|
EXTENSION_CLIP,
|
|
true);
|
|
}
|
|
|
|
if(slot != -1) {
|
|
compiler.parameter("filename", string_printf("@%d", slot).c_str());
|
|
}
|
|
if(space == "World") {
|
|
compiler.parameter("mapping", transform_transpose(tfm));
|
|
compiler.parameter("use_mapping", 1);
|
|
}
|
|
switch(interpolation) {
|
|
case INTERPOLATION_CLOSEST:
|
|
compiler.parameter("interpolation", "closest");
|
|
break;
|
|
case INTERPOLATION_CUBIC:
|
|
compiler.parameter("interpolation", "cubic");
|
|
break;
|
|
case INTERPOLATION_LINEAR:
|
|
default:
|
|
compiler.parameter("interpolation", "linear");
|
|
break;
|
|
}
|
|
|
|
compiler.add(this, "node_voxel_texture");
|
|
}
|
|
}
|
|
|
|
/* Normal */
|
|
|
|
NormalNode::NormalNode()
|
|
: ShaderNode("normal")
|
|
{
|
|
direction = make_float3(0.0f, 0.0f, 1.0f);
|
|
|
|
add_input("Normal", SHADER_SOCKET_NORMAL);
|
|
add_output("Normal", SHADER_SOCKET_NORMAL);
|
|
add_output("Dot", SHADER_SOCKET_FLOAT);
|
|
}
|
|
|
|
void NormalNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderInput *normal_in = input("Normal");
|
|
ShaderOutput *normal_out = output("Normal");
|
|
ShaderOutput *dot_out = output("Dot");
|
|
|
|
compiler.stack_assign(normal_in);
|
|
compiler.stack_assign(normal_out);
|
|
compiler.stack_assign(dot_out);
|
|
|
|
compiler.add_node(NODE_NORMAL, normal_in->stack_offset, normal_out->stack_offset, dot_out->stack_offset);
|
|
compiler.add_node(
|
|
__float_as_int(direction.x),
|
|
__float_as_int(direction.y),
|
|
__float_as_int(direction.z));
|
|
}
|
|
|
|
void NormalNode::compile(OSLCompiler& compiler)
|
|
{
|
|
compiler.parameter_normal("Direction", direction);
|
|
compiler.add(this, "node_normal");
|
|
}
|
|
|
|
/* Mapping */
|
|
|
|
MappingNode::MappingNode()
|
|
: ShaderNode("mapping")
|
|
{
|
|
add_input("Vector", SHADER_SOCKET_POINT);
|
|
add_output("Vector", SHADER_SOCKET_POINT);
|
|
}
|
|
|
|
void MappingNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderInput *vector_in = input("Vector");
|
|
ShaderOutput *vector_out = output("Vector");
|
|
|
|
compiler.stack_assign(vector_in);
|
|
compiler.stack_assign(vector_out);
|
|
|
|
tex_mapping.compile(compiler, vector_in->stack_offset, vector_out->stack_offset);
|
|
}
|
|
|
|
void MappingNode::compile(OSLCompiler& compiler)
|
|
{
|
|
Transform tfm = transform_transpose(tex_mapping.compute_transform());
|
|
compiler.parameter("Matrix", tfm);
|
|
compiler.parameter_point("mapping_min", tex_mapping.min);
|
|
compiler.parameter_point("mapping_max", tex_mapping.max);
|
|
compiler.parameter("use_minmax", tex_mapping.use_minmax);
|
|
|
|
compiler.add(this, "node_mapping");
|
|
}
|
|
|
|
/* Convert */
|
|
|
|
ConvertNode::ConvertNode(ShaderSocketType from_, ShaderSocketType to_, bool autoconvert)
|
|
: ShaderNode("convert")
|
|
{
|
|
from = from_;
|
|
to = to_;
|
|
|
|
if(autoconvert)
|
|
special_type = SHADER_SPECIAL_TYPE_AUTOCONVERT;
|
|
|
|
assert(from != to);
|
|
|
|
if(from == SHADER_SOCKET_FLOAT)
|
|
add_input("Val", SHADER_SOCKET_FLOAT);
|
|
else if(from == SHADER_SOCKET_INT)
|
|
add_input("ValInt", SHADER_SOCKET_INT);
|
|
else if(from == SHADER_SOCKET_COLOR)
|
|
add_input("Color", SHADER_SOCKET_COLOR);
|
|
else if(from == SHADER_SOCKET_VECTOR)
|
|
add_input("Vector", SHADER_SOCKET_VECTOR);
|
|
else if(from == SHADER_SOCKET_POINT)
|
|
add_input("Point", SHADER_SOCKET_POINT);
|
|
else if(from == SHADER_SOCKET_NORMAL)
|
|
add_input("Normal", SHADER_SOCKET_NORMAL);
|
|
else if(from == SHADER_SOCKET_STRING)
|
|
add_input("String", SHADER_SOCKET_STRING);
|
|
else
|
|
assert(0);
|
|
|
|
if(to == SHADER_SOCKET_FLOAT)
|
|
add_output("Val", SHADER_SOCKET_FLOAT);
|
|
else if(to == SHADER_SOCKET_INT)
|
|
add_output("ValInt", SHADER_SOCKET_INT);
|
|
else if(to == SHADER_SOCKET_COLOR)
|
|
add_output("Color", SHADER_SOCKET_COLOR);
|
|
else if(to == SHADER_SOCKET_VECTOR)
|
|
add_output("Vector", SHADER_SOCKET_VECTOR);
|
|
else if(to == SHADER_SOCKET_POINT)
|
|
add_output("Point", SHADER_SOCKET_POINT);
|
|
else if(to == SHADER_SOCKET_NORMAL)
|
|
add_output("Normal", SHADER_SOCKET_NORMAL);
|
|
else if(to == SHADER_SOCKET_STRING)
|
|
add_output("String", SHADER_SOCKET_STRING);
|
|
else
|
|
assert(0);
|
|
}
|
|
|
|
bool ConvertNode::constant_fold(ShaderOutput *socket, float3 *optimized_value)
|
|
{
|
|
ShaderInput *in = inputs[0];
|
|
float3 value = in->value;
|
|
|
|
/* TODO(DingTo): conversion from/to int is not supported yet, don't fold in that case */
|
|
|
|
if(socket == outputs[0] && in->link == NULL) {
|
|
if(from == SHADER_SOCKET_FLOAT) {
|
|
if(to == SHADER_SOCKET_INT)
|
|
/* float to int */
|
|
return false;
|
|
else
|
|
/* float to float3 */
|
|
*optimized_value = make_float3(value.x, value.x, value.x);
|
|
}
|
|
else if(from == SHADER_SOCKET_INT) {
|
|
if(to == SHADER_SOCKET_FLOAT)
|
|
/* int to float */
|
|
return false;
|
|
else
|
|
/* int to vector/point/normal */
|
|
return false;
|
|
}
|
|
else if(to == SHADER_SOCKET_FLOAT) {
|
|
if(from == SHADER_SOCKET_COLOR)
|
|
/* color to float */
|
|
optimized_value->x = linear_rgb_to_gray(value);
|
|
else
|
|
/* vector/point/normal to float */
|
|
optimized_value->x = average(value);
|
|
}
|
|
else if(to == SHADER_SOCKET_INT) {
|
|
if(from == SHADER_SOCKET_COLOR)
|
|
/* color to int */
|
|
return false;
|
|
else
|
|
/* vector/point/normal to int */
|
|
return false;
|
|
}
|
|
else {
|
|
*optimized_value = value;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void ConvertNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderInput *in = inputs[0];
|
|
ShaderOutput *out = outputs[0];
|
|
|
|
if(from == SHADER_SOCKET_FLOAT) {
|
|
compiler.stack_assign(in);
|
|
compiler.stack_assign(out);
|
|
|
|
if(to == SHADER_SOCKET_INT)
|
|
/* float to int */
|
|
compiler.add_node(NODE_CONVERT, NODE_CONVERT_FI, in->stack_offset, out->stack_offset);
|
|
else
|
|
/* float to float3 */
|
|
compiler.add_node(NODE_CONVERT, NODE_CONVERT_FV, in->stack_offset, out->stack_offset);
|
|
}
|
|
else if(from == SHADER_SOCKET_INT) {
|
|
compiler.stack_assign(in);
|
|
compiler.stack_assign(out);
|
|
|
|
if(to == SHADER_SOCKET_FLOAT)
|
|
/* int to float */
|
|
compiler.add_node(NODE_CONVERT, NODE_CONVERT_IF, in->stack_offset, out->stack_offset);
|
|
else
|
|
/* int to vector/point/normal */
|
|
compiler.add_node(NODE_CONVERT, NODE_CONVERT_IV, in->stack_offset, out->stack_offset);
|
|
}
|
|
else if(to == SHADER_SOCKET_FLOAT) {
|
|
compiler.stack_assign(in);
|
|
compiler.stack_assign(out);
|
|
|
|
if(from == SHADER_SOCKET_COLOR)
|
|
/* color to float */
|
|
compiler.add_node(NODE_CONVERT, NODE_CONVERT_CF, in->stack_offset, out->stack_offset);
|
|
else
|
|
/* vector/point/normal to float */
|
|
compiler.add_node(NODE_CONVERT, NODE_CONVERT_VF, in->stack_offset, out->stack_offset);
|
|
}
|
|
else if(to == SHADER_SOCKET_INT) {
|
|
compiler.stack_assign(in);
|
|
compiler.stack_assign(out);
|
|
|
|
if(from == SHADER_SOCKET_COLOR)
|
|
/* color to int */
|
|
compiler.add_node(NODE_CONVERT, NODE_CONVERT_CI, in->stack_offset, out->stack_offset);
|
|
else
|
|
/* vector/point/normal to int */
|
|
compiler.add_node(NODE_CONVERT, NODE_CONVERT_VI, in->stack_offset, out->stack_offset);
|
|
}
|
|
else {
|
|
/* float3 to float3 */
|
|
if(in->link) {
|
|
/* no op in SVM */
|
|
compiler.stack_link(in, out);
|
|
}
|
|
else {
|
|
/* set 0,0,0 value */
|
|
compiler.stack_assign(in);
|
|
compiler.stack_assign(out);
|
|
|
|
compiler.add_node(NODE_VALUE_V, out->stack_offset);
|
|
compiler.add_node(NODE_VALUE_V, in->value);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ConvertNode::compile(OSLCompiler& compiler)
|
|
{
|
|
if(from == SHADER_SOCKET_FLOAT)
|
|
compiler.add(this, "node_convert_from_float");
|
|
else if(from == SHADER_SOCKET_INT)
|
|
compiler.add(this, "node_convert_from_int");
|
|
else if(from == SHADER_SOCKET_COLOR)
|
|
compiler.add(this, "node_convert_from_color");
|
|
else if(from == SHADER_SOCKET_VECTOR)
|
|
compiler.add(this, "node_convert_from_vector");
|
|
else if(from == SHADER_SOCKET_POINT)
|
|
compiler.add(this, "node_convert_from_point");
|
|
else if(from == SHADER_SOCKET_NORMAL)
|
|
compiler.add(this, "node_convert_from_normal");
|
|
else
|
|
assert(0);
|
|
}
|
|
|
|
/* Proxy */
|
|
|
|
ProxyNode::ProxyNode(ShaderSocketType type_)
|
|
: ShaderNode("proxy")
|
|
{
|
|
type = type_;
|
|
special_type = SHADER_SPECIAL_TYPE_PROXY;
|
|
|
|
add_input("Input", type);
|
|
add_output("Output", type);
|
|
}
|
|
|
|
void ProxyNode::compile(SVMCompiler& /*compiler*/)
|
|
{
|
|
}
|
|
|
|
void ProxyNode::compile(OSLCompiler& /*compiler*/)
|
|
{
|
|
}
|
|
|
|
/* BSDF Closure */
|
|
|
|
BsdfNode::BsdfNode(bool scattering_)
|
|
: ShaderNode("bsdf"), scattering(scattering_)
|
|
{
|
|
special_type = SHADER_SPECIAL_TYPE_CLOSURE;
|
|
|
|
add_input("Color", SHADER_SOCKET_COLOR, make_float3(0.8f, 0.8f, 0.8f));
|
|
add_input("Normal", SHADER_SOCKET_NORMAL, ShaderInput::NORMAL);
|
|
add_input("SurfaceMixWeight", SHADER_SOCKET_FLOAT, 0.0f, ShaderInput::USE_SVM);
|
|
|
|
if(scattering) {
|
|
closure = CLOSURE_BSSRDF_CUBIC_ID;
|
|
add_output("BSSRDF", SHADER_SOCKET_CLOSURE);
|
|
}
|
|
else {
|
|
closure = CLOSURE_BSDF_DIFFUSE_ID;
|
|
add_output("BSDF", SHADER_SOCKET_CLOSURE);
|
|
}
|
|
}
|
|
|
|
void BsdfNode::compile(SVMCompiler& compiler, ShaderInput *param1, ShaderInput *param2, ShaderInput *param3, ShaderInput *param4)
|
|
{
|
|
ShaderInput *color_in = input("Color");
|
|
ShaderInput *normal_in = input("Normal");
|
|
ShaderInput *tangent_in = input("Tangent");
|
|
|
|
if(color_in->link) {
|
|
compiler.stack_assign(color_in);
|
|
compiler.add_node(NODE_CLOSURE_WEIGHT, color_in->stack_offset);
|
|
}
|
|
else
|
|
compiler.add_node(NODE_CLOSURE_SET_WEIGHT, color_in->value);
|
|
|
|
if(param1)
|
|
compiler.stack_assign(param1);
|
|
if(param2)
|
|
compiler.stack_assign(param2);
|
|
if(param3)
|
|
compiler.stack_assign(param3);
|
|
if(param4)
|
|
compiler.stack_assign(param4);
|
|
|
|
if(normal_in->link)
|
|
compiler.stack_assign(normal_in);
|
|
|
|
if(tangent_in && tangent_in->link)
|
|
compiler.stack_assign(tangent_in);
|
|
|
|
compiler.add_node(NODE_CLOSURE_BSDF,
|
|
compiler.encode_uchar4(closure,
|
|
(param1)? param1->stack_offset: SVM_STACK_INVALID,
|
|
(param2)? param2->stack_offset: SVM_STACK_INVALID,
|
|
compiler.closure_mix_weight_offset()),
|
|
__float_as_int((param1)? param1->value.x: 0.0f),
|
|
__float_as_int((param2)? param2->value.x: 0.0f));
|
|
|
|
if(tangent_in) {
|
|
compiler.add_node(normal_in->stack_offset, tangent_in->stack_offset,
|
|
(param3)? param3->stack_offset: SVM_STACK_INVALID,
|
|
(param4)? param4->stack_offset: SVM_STACK_INVALID);
|
|
}
|
|
else {
|
|
compiler.add_node(normal_in->stack_offset, SVM_STACK_INVALID,
|
|
(param3)? param3->stack_offset: SVM_STACK_INVALID,
|
|
(param4)? param4->stack_offset: SVM_STACK_INVALID);
|
|
}
|
|
}
|
|
|
|
void BsdfNode::compile(SVMCompiler& compiler)
|
|
{
|
|
compile(compiler, NULL, NULL);
|
|
}
|
|
|
|
void BsdfNode::compile(OSLCompiler& /*compiler*/)
|
|
{
|
|
assert(0);
|
|
}
|
|
|
|
/* Anisotropic BSDF Closure */
|
|
|
|
static ShaderEnum aniso_distribution_init()
|
|
{
|
|
ShaderEnum enm;
|
|
|
|
enm.insert("Beckmann", CLOSURE_BSDF_MICROFACET_BECKMANN_ANISO_ID);
|
|
enm.insert("GGX", CLOSURE_BSDF_MICROFACET_GGX_ANISO_ID);
|
|
enm.insert("Ashikhmin-Shirley", CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ANISO_ID);
|
|
|
|
return enm;
|
|
}
|
|
|
|
ShaderEnum AnisotropicBsdfNode::distribution_enum = aniso_distribution_init();
|
|
|
|
AnisotropicBsdfNode::AnisotropicBsdfNode()
|
|
{
|
|
closure = CLOSURE_BSDF_MICROFACET_GGX_ANISO_ID;
|
|
distribution = ustring("GGX");
|
|
|
|
add_input("Tangent", SHADER_SOCKET_VECTOR, ShaderInput::TANGENT);
|
|
|
|
add_input("Roughness", SHADER_SOCKET_FLOAT, 0.2f);
|
|
add_input("Anisotropy", SHADER_SOCKET_FLOAT, 0.5f);
|
|
add_input("Rotation", SHADER_SOCKET_FLOAT, 0.0f);
|
|
}
|
|
|
|
void AnisotropicBsdfNode::attributes(Shader *shader, AttributeRequestSet *attributes)
|
|
{
|
|
if(shader->has_surface) {
|
|
ShaderInput *tangent_in = input("Tangent");
|
|
|
|
if(!tangent_in->link)
|
|
attributes->add(ATTR_STD_GENERATED);
|
|
}
|
|
|
|
ShaderNode::attributes(shader, attributes);
|
|
}
|
|
|
|
void AnisotropicBsdfNode::compile(SVMCompiler& compiler)
|
|
{
|
|
closure = (ClosureType)distribution_enum[distribution];
|
|
|
|
BsdfNode::compile(compiler, input("Roughness"), input("Anisotropy"), input("Rotation"));
|
|
}
|
|
|
|
void AnisotropicBsdfNode::compile(OSLCompiler& compiler)
|
|
{
|
|
compiler.parameter("distribution", distribution);
|
|
compiler.add(this, "node_anisotropic_bsdf");
|
|
}
|
|
|
|
/* Glossy BSDF Closure */
|
|
|
|
static ShaderEnum glossy_distribution_init()
|
|
{
|
|
ShaderEnum enm;
|
|
|
|
enm.insert("Sharp", CLOSURE_BSDF_REFLECTION_ID);
|
|
enm.insert("Beckmann", CLOSURE_BSDF_MICROFACET_BECKMANN_ID);
|
|
enm.insert("GGX", CLOSURE_BSDF_MICROFACET_GGX_ID);
|
|
enm.insert("Ashikhmin-Shirley", CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ID);
|
|
|
|
return enm;
|
|
}
|
|
|
|
ShaderEnum GlossyBsdfNode::distribution_enum = glossy_distribution_init();
|
|
|
|
GlossyBsdfNode::GlossyBsdfNode()
|
|
{
|
|
closure = CLOSURE_BSDF_MICROFACET_GGX_ID;
|
|
distribution = ustring("GGX");
|
|
distribution_orig = ustring("");
|
|
|
|
add_input("Roughness", SHADER_SOCKET_FLOAT, 0.2f);
|
|
}
|
|
|
|
void GlossyBsdfNode::simplify_settings(Scene *scene)
|
|
{
|
|
if(distribution_orig == "") {
|
|
distribution_orig = distribution;
|
|
}
|
|
Integrator *integrator = scene->integrator;
|
|
if(integrator->filter_glossy == 0.0f) {
|
|
/* Fallback to Sharp closure for Roughness close to 0.
|
|
* Note: Keep the epsilon in sync with kernel!
|
|
*/
|
|
ShaderInput *roughness_input = input("Roughness");
|
|
if(!roughness_input->link && roughness_input->value.x <= 1e-4f) {
|
|
distribution = ustring("Sharp");
|
|
}
|
|
}
|
|
else {
|
|
/* Rollback to original distribution when filter glossy is used. */
|
|
distribution = distribution_orig;
|
|
}
|
|
closure = (ClosureType)distribution_enum[distribution];
|
|
}
|
|
|
|
bool GlossyBsdfNode::has_integrator_dependency()
|
|
{
|
|
ShaderInput *roughness_input = input("Roughness");
|
|
return !roughness_input->link && roughness_input->value.x <= 1e-4f;
|
|
}
|
|
|
|
void GlossyBsdfNode::compile(SVMCompiler& compiler)
|
|
{
|
|
closure = (ClosureType)distribution_enum[distribution];
|
|
|
|
if(closure == CLOSURE_BSDF_REFLECTION_ID)
|
|
BsdfNode::compile(compiler, NULL, NULL);
|
|
else
|
|
BsdfNode::compile(compiler, input("Roughness"), NULL);
|
|
}
|
|
|
|
void GlossyBsdfNode::compile(OSLCompiler& compiler)
|
|
{
|
|
compiler.parameter("distribution", distribution);
|
|
compiler.add(this, "node_glossy_bsdf");
|
|
}
|
|
|
|
/* Glass BSDF Closure */
|
|
|
|
static ShaderEnum glass_distribution_init()
|
|
{
|
|
ShaderEnum enm;
|
|
|
|
enm.insert("Sharp", CLOSURE_BSDF_SHARP_GLASS_ID);
|
|
enm.insert("Beckmann", CLOSURE_BSDF_MICROFACET_BECKMANN_GLASS_ID);
|
|
enm.insert("GGX", CLOSURE_BSDF_MICROFACET_GGX_GLASS_ID);
|
|
|
|
return enm;
|
|
}
|
|
|
|
ShaderEnum GlassBsdfNode::distribution_enum = glass_distribution_init();
|
|
|
|
GlassBsdfNode::GlassBsdfNode()
|
|
{
|
|
closure = CLOSURE_BSDF_SHARP_GLASS_ID;
|
|
distribution = ustring("Sharp");
|
|
distribution_orig = ustring("");
|
|
|
|
add_input("Roughness", SHADER_SOCKET_FLOAT, 0.0f);
|
|
add_input("IOR", SHADER_SOCKET_FLOAT, 0.3f);
|
|
}
|
|
|
|
void GlassBsdfNode::simplify_settings(Scene *scene)
|
|
{
|
|
if(distribution_orig == "") {
|
|
distribution_orig = distribution;
|
|
}
|
|
Integrator *integrator = scene->integrator;
|
|
if(integrator->filter_glossy == 0.0f) {
|
|
/* Fallback to Sharp closure for Roughness close to 0.
|
|
* Note: Keep the epsilon in sync with kernel!
|
|
*/
|
|
ShaderInput *roughness_input = input("Roughness");
|
|
if(!roughness_input->link && roughness_input->value.x <= 1e-4f) {
|
|
distribution = ustring("Sharp");
|
|
}
|
|
}
|
|
else {
|
|
/* Rollback to original distribution when filter glossy is used. */
|
|
distribution = distribution_orig;
|
|
}
|
|
closure = (ClosureType)distribution_enum[distribution];
|
|
}
|
|
|
|
bool GlassBsdfNode::has_integrator_dependency()
|
|
{
|
|
ShaderInput *roughness_input = input("Roughness");
|
|
return !roughness_input->link && roughness_input->value.x <= 1e-4f;
|
|
}
|
|
|
|
void GlassBsdfNode::compile(SVMCompiler& compiler)
|
|
{
|
|
closure = (ClosureType)distribution_enum[distribution];
|
|
|
|
if(closure == CLOSURE_BSDF_SHARP_GLASS_ID)
|
|
BsdfNode::compile(compiler, NULL, input("IOR"));
|
|
else
|
|
BsdfNode::compile(compiler, input("Roughness"), input("IOR"));
|
|
}
|
|
|
|
void GlassBsdfNode::compile(OSLCompiler& compiler)
|
|
{
|
|
compiler.parameter("distribution", distribution);
|
|
compiler.add(this, "node_glass_bsdf");
|
|
}
|
|
|
|
/* Refraction BSDF Closure */
|
|
|
|
static ShaderEnum refraction_distribution_init()
|
|
{
|
|
ShaderEnum enm;
|
|
|
|
enm.insert("Sharp", CLOSURE_BSDF_REFRACTION_ID);
|
|
enm.insert("Beckmann", CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID);
|
|
enm.insert("GGX", CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID);
|
|
|
|
return enm;
|
|
}
|
|
|
|
ShaderEnum RefractionBsdfNode::distribution_enum = refraction_distribution_init();
|
|
|
|
RefractionBsdfNode::RefractionBsdfNode()
|
|
{
|
|
closure = CLOSURE_BSDF_REFRACTION_ID;
|
|
distribution = ustring("Sharp");
|
|
distribution_orig = ustring("");
|
|
|
|
add_input("Roughness", SHADER_SOCKET_FLOAT, 0.0f);
|
|
add_input("IOR", SHADER_SOCKET_FLOAT, 0.3f);
|
|
}
|
|
|
|
void RefractionBsdfNode::simplify_settings(Scene *scene)
|
|
{
|
|
if(distribution_orig == "") {
|
|
distribution_orig = distribution;
|
|
}
|
|
Integrator *integrator = scene->integrator;
|
|
if(integrator->filter_glossy == 0.0f) {
|
|
/* Fallback to Sharp closure for Roughness close to 0.
|
|
* Note: Keep the epsilon in sync with kernel!
|
|
*/
|
|
ShaderInput *roughness_input = input("Roughness");
|
|
if(!roughness_input->link && roughness_input->value.x <= 1e-4f) {
|
|
distribution = ustring("Sharp");
|
|
}
|
|
}
|
|
else {
|
|
/* Rollback to original distribution when filter glossy is used. */
|
|
distribution = distribution_orig;
|
|
}
|
|
closure = (ClosureType)distribution_enum[distribution];
|
|
}
|
|
|
|
bool RefractionBsdfNode::has_integrator_dependency()
|
|
{
|
|
ShaderInput *roughness_input = input("Roughness");
|
|
return !roughness_input->link && roughness_input->value.x <= 1e-4f;
|
|
}
|
|
|
|
void RefractionBsdfNode::compile(SVMCompiler& compiler)
|
|
{
|
|
closure = (ClosureType)distribution_enum[distribution];
|
|
|
|
if(closure == CLOSURE_BSDF_REFRACTION_ID)
|
|
BsdfNode::compile(compiler, NULL, input("IOR"));
|
|
else
|
|
BsdfNode::compile(compiler, input("Roughness"), input("IOR"));
|
|
}
|
|
|
|
void RefractionBsdfNode::compile(OSLCompiler& compiler)
|
|
{
|
|
compiler.parameter("distribution", distribution);
|
|
compiler.add(this, "node_refraction_bsdf");
|
|
}
|
|
|
|
/* Toon BSDF Closure */
|
|
|
|
static ShaderEnum toon_component_init()
|
|
{
|
|
ShaderEnum enm;
|
|
|
|
enm.insert("Diffuse", CLOSURE_BSDF_DIFFUSE_TOON_ID);
|
|
enm.insert("Glossy", CLOSURE_BSDF_GLOSSY_TOON_ID);
|
|
|
|
return enm;
|
|
}
|
|
|
|
ShaderEnum ToonBsdfNode::component_enum = toon_component_init();
|
|
|
|
ToonBsdfNode::ToonBsdfNode()
|
|
{
|
|
closure = CLOSURE_BSDF_DIFFUSE_TOON_ID;
|
|
component = ustring("Diffuse");
|
|
|
|
add_input("Size", SHADER_SOCKET_FLOAT, 0.5f);
|
|
add_input("Smooth", SHADER_SOCKET_FLOAT, 0.0f);
|
|
}
|
|
|
|
void ToonBsdfNode::compile(SVMCompiler& compiler)
|
|
{
|
|
closure = (ClosureType)component_enum[component];
|
|
|
|
BsdfNode::compile(compiler, input("Size"), input("Smooth"));
|
|
}
|
|
|
|
void ToonBsdfNode::compile(OSLCompiler& compiler)
|
|
{
|
|
compiler.parameter("component", component);
|
|
compiler.add(this, "node_toon_bsdf");
|
|
}
|
|
|
|
/* Velvet BSDF Closure */
|
|
|
|
VelvetBsdfNode::VelvetBsdfNode()
|
|
{
|
|
closure = CLOSURE_BSDF_ASHIKHMIN_VELVET_ID;
|
|
|
|
add_input("Sigma", SHADER_SOCKET_FLOAT, 1.0f);
|
|
}
|
|
|
|
void VelvetBsdfNode::compile(SVMCompiler& compiler)
|
|
{
|
|
BsdfNode::compile(compiler, input("Sigma"), NULL);
|
|
}
|
|
|
|
void VelvetBsdfNode::compile(OSLCompiler& compiler)
|
|
{
|
|
compiler.add(this, "node_velvet_bsdf");
|
|
}
|
|
|
|
/* Diffuse BSDF Closure */
|
|
|
|
DiffuseBsdfNode::DiffuseBsdfNode()
|
|
{
|
|
closure = CLOSURE_BSDF_DIFFUSE_ID;
|
|
add_input("Roughness", SHADER_SOCKET_FLOAT, 0.0f);
|
|
}
|
|
|
|
void DiffuseBsdfNode::compile(SVMCompiler& compiler)
|
|
{
|
|
BsdfNode::compile(compiler, input("Roughness"), NULL);
|
|
}
|
|
|
|
void DiffuseBsdfNode::compile(OSLCompiler& compiler)
|
|
{
|
|
compiler.add(this, "node_diffuse_bsdf");
|
|
}
|
|
|
|
/* Translucent BSDF Closure */
|
|
|
|
TranslucentBsdfNode::TranslucentBsdfNode()
|
|
{
|
|
closure = CLOSURE_BSDF_TRANSLUCENT_ID;
|
|
}
|
|
|
|
void TranslucentBsdfNode::compile(SVMCompiler& compiler)
|
|
{
|
|
BsdfNode::compile(compiler, NULL, NULL);
|
|
}
|
|
|
|
void TranslucentBsdfNode::compile(OSLCompiler& compiler)
|
|
{
|
|
compiler.add(this, "node_translucent_bsdf");
|
|
}
|
|
|
|
/* Transparent BSDF Closure */
|
|
|
|
TransparentBsdfNode::TransparentBsdfNode()
|
|
{
|
|
name = "transparent";
|
|
closure = CLOSURE_BSDF_TRANSPARENT_ID;
|
|
}
|
|
|
|
void TransparentBsdfNode::compile(SVMCompiler& compiler)
|
|
{
|
|
BsdfNode::compile(compiler, NULL, NULL);
|
|
}
|
|
|
|
void TransparentBsdfNode::compile(OSLCompiler& compiler)
|
|
{
|
|
compiler.add(this, "node_transparent_bsdf");
|
|
}
|
|
|
|
/* Subsurface Scattering Closure */
|
|
|
|
static ShaderEnum subsurface_falloff_init()
|
|
{
|
|
ShaderEnum enm;
|
|
|
|
enm.insert("Cubic", CLOSURE_BSSRDF_CUBIC_ID);
|
|
enm.insert("Gaussian", CLOSURE_BSSRDF_GAUSSIAN_ID);
|
|
|
|
return enm;
|
|
}
|
|
|
|
ShaderEnum SubsurfaceScatteringNode::falloff_enum = subsurface_falloff_init();
|
|
|
|
SubsurfaceScatteringNode::SubsurfaceScatteringNode()
|
|
: BsdfNode(true)
|
|
{
|
|
name = "subsurface_scattering";
|
|
closure = CLOSURE_BSSRDF_CUBIC_ID;
|
|
|
|
add_input("Scale", SHADER_SOCKET_FLOAT, 0.01f);
|
|
add_input("Radius", SHADER_SOCKET_VECTOR, make_float3(0.1f, 0.1f, 0.1f));
|
|
add_input("Sharpness", SHADER_SOCKET_FLOAT, 0.0f);
|
|
add_input("Texture Blur", SHADER_SOCKET_FLOAT, 1.0f);
|
|
}
|
|
|
|
void SubsurfaceScatteringNode::compile(SVMCompiler& compiler)
|
|
{
|
|
BsdfNode::compile(compiler, input("Scale"), input("Texture Blur"), input("Radius"), input("Sharpness"));
|
|
}
|
|
|
|
void SubsurfaceScatteringNode::compile(OSLCompiler& compiler)
|
|
{
|
|
compiler.parameter("Falloff", falloff_enum[closure]);
|
|
compiler.add(this, "node_subsurface_scattering");
|
|
}
|
|
|
|
bool SubsurfaceScatteringNode::has_bssrdf_bump()
|
|
{
|
|
/* detect if anything is plugged into the normal input besides the default */
|
|
ShaderInput *normal_in = input("Normal");
|
|
return (normal_in->link && normal_in->link->parent->special_type != SHADER_SPECIAL_TYPE_GEOMETRY);
|
|
}
|
|
|
|
/* Emissive Closure */
|
|
|
|
EmissionNode::EmissionNode()
|
|
: ShaderNode("emission")
|
|
{
|
|
special_type = SHADER_SPECIAL_TYPE_EMISSION;
|
|
|
|
add_input("Color", SHADER_SOCKET_COLOR, make_float3(0.8f, 0.8f, 0.8f));
|
|
add_input("Strength", SHADER_SOCKET_FLOAT, 10.0f);
|
|
add_input("SurfaceMixWeight", SHADER_SOCKET_FLOAT, 0.0f, ShaderInput::USE_SVM);
|
|
|
|
add_output("Emission", SHADER_SOCKET_CLOSURE);
|
|
}
|
|
|
|
void EmissionNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderInput *color_in = input("Color");
|
|
ShaderInput *strength_in = input("Strength");
|
|
|
|
if(color_in->link || strength_in->link) {
|
|
compiler.stack_assign(color_in);
|
|
compiler.stack_assign(strength_in);
|
|
compiler.add_node(NODE_EMISSION_WEIGHT, color_in->stack_offset, strength_in->stack_offset);
|
|
}
|
|
else
|
|
compiler.add_node(NODE_CLOSURE_SET_WEIGHT, color_in->value * strength_in->value.x);
|
|
|
|
compiler.add_node(NODE_CLOSURE_EMISSION, compiler.closure_mix_weight_offset());
|
|
}
|
|
|
|
void EmissionNode::compile(OSLCompiler& compiler)
|
|
{
|
|
compiler.add(this, "node_emission");
|
|
}
|
|
|
|
/* Background Closure */
|
|
|
|
BackgroundNode::BackgroundNode()
|
|
: ShaderNode("background")
|
|
{
|
|
special_type = SHADER_SPECIAL_TYPE_BACKGROUND;
|
|
|
|
add_input("Color", SHADER_SOCKET_COLOR, make_float3(0.8f, 0.8f, 0.8f));
|
|
add_input("Strength", SHADER_SOCKET_FLOAT, 1.0f);
|
|
add_input("SurfaceMixWeight", SHADER_SOCKET_FLOAT, 0.0f, ShaderInput::USE_SVM);
|
|
|
|
add_output("Background", SHADER_SOCKET_CLOSURE);
|
|
}
|
|
|
|
void BackgroundNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderInput *color_in = input("Color");
|
|
ShaderInput *strength_in = input("Strength");
|
|
|
|
if(color_in->link || strength_in->link) {
|
|
compiler.stack_assign(color_in);
|
|
compiler.stack_assign(strength_in);
|
|
compiler.add_node(NODE_EMISSION_WEIGHT, color_in->stack_offset, strength_in->stack_offset);
|
|
}
|
|
else
|
|
compiler.add_node(NODE_CLOSURE_SET_WEIGHT, color_in->value*strength_in->value.x);
|
|
|
|
compiler.add_node(NODE_CLOSURE_BACKGROUND, compiler.closure_mix_weight_offset());
|
|
}
|
|
|
|
void BackgroundNode::compile(OSLCompiler& compiler)
|
|
{
|
|
compiler.add(this, "node_background");
|
|
}
|
|
|
|
/* Holdout Closure */
|
|
|
|
HoldoutNode::HoldoutNode()
|
|
: ShaderNode("holdout")
|
|
{
|
|
add_input("SurfaceMixWeight", SHADER_SOCKET_FLOAT, 0.0f, ShaderInput::USE_SVM);
|
|
add_input("VolumeMixWeight", SHADER_SOCKET_FLOAT, 0.0f, ShaderInput::USE_SVM);
|
|
|
|
add_output("Holdout", SHADER_SOCKET_CLOSURE);
|
|
}
|
|
|
|
void HoldoutNode::compile(SVMCompiler& compiler)
|
|
{
|
|
float3 value = make_float3(1.0f, 1.0f, 1.0f);
|
|
|
|
compiler.add_node(NODE_CLOSURE_SET_WEIGHT, value);
|
|
compiler.add_node(NODE_CLOSURE_HOLDOUT, compiler.closure_mix_weight_offset());
|
|
}
|
|
|
|
void HoldoutNode::compile(OSLCompiler& compiler)
|
|
{
|
|
compiler.add(this, "node_holdout");
|
|
}
|
|
|
|
/* Ambient Occlusion */
|
|
|
|
AmbientOcclusionNode::AmbientOcclusionNode()
|
|
: ShaderNode("ambient_occlusion")
|
|
{
|
|
add_input("NormalIn", SHADER_SOCKET_NORMAL, ShaderInput::NORMAL, ShaderInput::USE_OSL);
|
|
add_input("Color", SHADER_SOCKET_COLOR, make_float3(0.8f, 0.8f, 0.8f));
|
|
add_input("SurfaceMixWeight", SHADER_SOCKET_FLOAT, 0.0f, ShaderInput::USE_SVM);
|
|
|
|
add_output("AO", SHADER_SOCKET_CLOSURE);
|
|
}
|
|
|
|
void AmbientOcclusionNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderInput *color_in = input("Color");
|
|
|
|
if(color_in->link) {
|
|
compiler.stack_assign(color_in);
|
|
compiler.add_node(NODE_CLOSURE_WEIGHT, color_in->stack_offset);
|
|
}
|
|
else
|
|
compiler.add_node(NODE_CLOSURE_SET_WEIGHT, color_in->value);
|
|
|
|
compiler.add_node(NODE_CLOSURE_AMBIENT_OCCLUSION, compiler.closure_mix_weight_offset());
|
|
}
|
|
|
|
void AmbientOcclusionNode::compile(OSLCompiler& compiler)
|
|
{
|
|
compiler.add(this, "node_ambient_occlusion");
|
|
}
|
|
|
|
/* Volume Closure */
|
|
|
|
VolumeNode::VolumeNode()
|
|
: ShaderNode("volume")
|
|
{
|
|
closure = CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID;
|
|
|
|
add_input("Color", SHADER_SOCKET_COLOR, make_float3(0.8f, 0.8f, 0.8f));
|
|
add_input("Density", SHADER_SOCKET_FLOAT, 1.0f);
|
|
add_input("VolumeMixWeight", SHADER_SOCKET_FLOAT, 0.0f, ShaderInput::USE_SVM);
|
|
|
|
add_output("Volume", SHADER_SOCKET_CLOSURE);
|
|
}
|
|
|
|
void VolumeNode::compile(SVMCompiler& compiler, ShaderInput *param1, ShaderInput *param2)
|
|
{
|
|
ShaderInput *color_in = input("Color");
|
|
|
|
if(color_in->link) {
|
|
compiler.stack_assign(color_in);
|
|
compiler.add_node(NODE_CLOSURE_WEIGHT, color_in->stack_offset);
|
|
}
|
|
else
|
|
compiler.add_node(NODE_CLOSURE_SET_WEIGHT, color_in->value);
|
|
|
|
if(param1)
|
|
compiler.stack_assign(param1);
|
|
if(param2)
|
|
compiler.stack_assign(param2);
|
|
|
|
compiler.add_node(NODE_CLOSURE_VOLUME,
|
|
compiler.encode_uchar4(closure,
|
|
(param1)? param1->stack_offset: SVM_STACK_INVALID,
|
|
(param2)? param2->stack_offset: SVM_STACK_INVALID,
|
|
compiler.closure_mix_weight_offset()),
|
|
__float_as_int((param1)? param1->value.x: 0.0f),
|
|
__float_as_int((param2)? param2->value.x: 0.0f));
|
|
}
|
|
|
|
void VolumeNode::compile(SVMCompiler& compiler)
|
|
{
|
|
compile(compiler, NULL, NULL);
|
|
}
|
|
|
|
void VolumeNode::compile(OSLCompiler& /*compiler*/)
|
|
{
|
|
assert(0);
|
|
}
|
|
|
|
/* Absorption Volume Closure */
|
|
|
|
AbsorptionVolumeNode::AbsorptionVolumeNode()
|
|
{
|
|
closure = CLOSURE_VOLUME_ABSORPTION_ID;
|
|
}
|
|
|
|
void AbsorptionVolumeNode::compile(SVMCompiler& compiler)
|
|
{
|
|
VolumeNode::compile(compiler, input("Density"), NULL);
|
|
}
|
|
|
|
void AbsorptionVolumeNode::compile(OSLCompiler& compiler)
|
|
{
|
|
compiler.add(this, "node_absorption_volume");
|
|
}
|
|
|
|
/* Scatter Volume Closure */
|
|
|
|
ScatterVolumeNode::ScatterVolumeNode()
|
|
{
|
|
closure = CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID;
|
|
|
|
add_input("Anisotropy", SHADER_SOCKET_FLOAT, 0.0f);
|
|
}
|
|
|
|
void ScatterVolumeNode::compile(SVMCompiler& compiler)
|
|
{
|
|
VolumeNode::compile(compiler, input("Density"), input("Anisotropy"));
|
|
}
|
|
|
|
void ScatterVolumeNode::compile(OSLCompiler& compiler)
|
|
{
|
|
compiler.add(this, "node_scatter_volume");
|
|
}
|
|
|
|
/* Hair BSDF Closure */
|
|
|
|
static ShaderEnum hair_component_init()
|
|
{
|
|
ShaderEnum enm;
|
|
|
|
enm.insert("Reflection", CLOSURE_BSDF_HAIR_REFLECTION_ID);
|
|
enm.insert("Transmission", CLOSURE_BSDF_HAIR_TRANSMISSION_ID);
|
|
|
|
return enm;
|
|
}
|
|
|
|
ShaderEnum HairBsdfNode::component_enum = hair_component_init();
|
|
|
|
HairBsdfNode::HairBsdfNode()
|
|
{
|
|
closure = CLOSURE_BSDF_HAIR_REFLECTION_ID;
|
|
component = ustring("Reflection");
|
|
|
|
add_input("Offset", SHADER_SOCKET_FLOAT);
|
|
add_input("RoughnessU", SHADER_SOCKET_FLOAT);
|
|
add_input("RoughnessV", SHADER_SOCKET_FLOAT);
|
|
add_input("Tangent", SHADER_SOCKET_VECTOR);
|
|
}
|
|
|
|
void HairBsdfNode::compile(SVMCompiler& compiler)
|
|
{
|
|
closure = (ClosureType)component_enum[component];
|
|
|
|
BsdfNode::compile(compiler, input("RoughnessU"), input("RoughnessV"), input("Offset"));
|
|
}
|
|
|
|
void HairBsdfNode::compile(OSLCompiler& compiler)
|
|
{
|
|
compiler.parameter("component", component);
|
|
|
|
compiler.add(this, "node_hair_bsdf");
|
|
}
|
|
|
|
/* Geometry */
|
|
|
|
GeometryNode::GeometryNode()
|
|
: ShaderNode("geometry")
|
|
{
|
|
special_type = SHADER_SPECIAL_TYPE_GEOMETRY;
|
|
|
|
add_input("NormalIn", SHADER_SOCKET_NORMAL, ShaderInput::NORMAL, ShaderInput::USE_OSL);
|
|
add_output("Position", SHADER_SOCKET_POINT);
|
|
add_output("Normal", SHADER_SOCKET_NORMAL);
|
|
add_output("Tangent", SHADER_SOCKET_NORMAL);
|
|
add_output("True Normal", SHADER_SOCKET_NORMAL);
|
|
add_output("Incoming", SHADER_SOCKET_VECTOR);
|
|
add_output("Parametric", SHADER_SOCKET_POINT);
|
|
add_output("Backfacing", SHADER_SOCKET_FLOAT);
|
|
add_output("Pointiness", SHADER_SOCKET_FLOAT);
|
|
}
|
|
|
|
void GeometryNode::attributes(Shader *shader, AttributeRequestSet *attributes)
|
|
{
|
|
if(shader->has_surface) {
|
|
if(!output("Tangent")->links.empty()) {
|
|
attributes->add(ATTR_STD_GENERATED);
|
|
}
|
|
if(!output("Pointiness")->links.empty()) {
|
|
attributes->add(ATTR_STD_POINTINESS);
|
|
}
|
|
}
|
|
|
|
ShaderNode::attributes(shader, attributes);
|
|
}
|
|
|
|
void GeometryNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderOutput *out;
|
|
NodeType geom_node = NODE_GEOMETRY;
|
|
NodeType attr_node = NODE_ATTR;
|
|
|
|
if(bump == SHADER_BUMP_DX) {
|
|
geom_node = NODE_GEOMETRY_BUMP_DX;
|
|
attr_node = NODE_ATTR_BUMP_DX;
|
|
}
|
|
else if(bump == SHADER_BUMP_DY) {
|
|
geom_node = NODE_GEOMETRY_BUMP_DY;
|
|
attr_node = NODE_ATTR_BUMP_DY;
|
|
}
|
|
|
|
out = output("Position");
|
|
if(!out->links.empty()) {
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(geom_node, NODE_GEOM_P, out->stack_offset);
|
|
}
|
|
|
|
out = output("Normal");
|
|
if(!out->links.empty()) {
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(geom_node, NODE_GEOM_N, out->stack_offset);
|
|
}
|
|
|
|
out = output("Tangent");
|
|
if(!out->links.empty()) {
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(geom_node, NODE_GEOM_T, out->stack_offset);
|
|
}
|
|
|
|
out = output("True Normal");
|
|
if(!out->links.empty()) {
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(geom_node, NODE_GEOM_Ng, out->stack_offset);
|
|
}
|
|
|
|
out = output("Incoming");
|
|
if(!out->links.empty()) {
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(geom_node, NODE_GEOM_I, out->stack_offset);
|
|
}
|
|
|
|
out = output("Parametric");
|
|
if(!out->links.empty()) {
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(geom_node, NODE_GEOM_uv, out->stack_offset);
|
|
}
|
|
|
|
out = output("Backfacing");
|
|
if(!out->links.empty()) {
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(NODE_LIGHT_PATH, NODE_LP_backfacing, out->stack_offset);
|
|
}
|
|
|
|
out = output("Pointiness");
|
|
if(!out->links.empty()) {
|
|
compiler.stack_assign(out);
|
|
if(compiler.output_type() != SHADER_TYPE_VOLUME) {
|
|
compiler.add_node(attr_node,
|
|
ATTR_STD_POINTINESS,
|
|
out->stack_offset,
|
|
NODE_ATTR_FLOAT);
|
|
}
|
|
else {
|
|
compiler.add_node(NODE_VALUE_F, __float_as_int(0.0f), out->stack_offset);
|
|
}
|
|
}
|
|
}
|
|
|
|
void GeometryNode::compile(OSLCompiler& compiler)
|
|
{
|
|
if(bump == SHADER_BUMP_DX)
|
|
compiler.parameter("bump_offset", "dx");
|
|
else if(bump == SHADER_BUMP_DY)
|
|
compiler.parameter("bump_offset", "dy");
|
|
else
|
|
compiler.parameter("bump_offset", "center");
|
|
|
|
compiler.add(this, "node_geometry");
|
|
}
|
|
|
|
/* TextureCoordinate */
|
|
|
|
TextureCoordinateNode::TextureCoordinateNode()
|
|
: ShaderNode("texture_coordinate")
|
|
{
|
|
add_input("NormalIn", SHADER_SOCKET_NORMAL, ShaderInput::NORMAL, ShaderInput::USE_OSL);
|
|
add_output("Generated", SHADER_SOCKET_POINT);
|
|
add_output("Normal", SHADER_SOCKET_NORMAL);
|
|
add_output("UV", SHADER_SOCKET_POINT);
|
|
add_output("Object", SHADER_SOCKET_POINT);
|
|
add_output("Camera", SHADER_SOCKET_POINT);
|
|
add_output("Window", SHADER_SOCKET_POINT);
|
|
add_output("Reflection", SHADER_SOCKET_NORMAL);
|
|
|
|
from_dupli = false;
|
|
use_transform = false;
|
|
ob_tfm = transform_identity();
|
|
}
|
|
|
|
void TextureCoordinateNode::attributes(Shader *shader, AttributeRequestSet *attributes)
|
|
{
|
|
if(shader->has_surface) {
|
|
if(!from_dupli) {
|
|
if(!output("Generated")->links.empty())
|
|
attributes->add(ATTR_STD_GENERATED);
|
|
if(!output("UV")->links.empty())
|
|
attributes->add(ATTR_STD_UV);
|
|
}
|
|
}
|
|
|
|
if(shader->has_volume) {
|
|
if(!from_dupli) {
|
|
if(!output("Generated")->links.empty()) {
|
|
attributes->add(ATTR_STD_GENERATED_TRANSFORM);
|
|
}
|
|
}
|
|
}
|
|
|
|
ShaderNode::attributes(shader, attributes);
|
|
}
|
|
|
|
void TextureCoordinateNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderOutput *out;
|
|
NodeType texco_node = NODE_TEX_COORD;
|
|
NodeType attr_node = NODE_ATTR;
|
|
NodeType geom_node = NODE_GEOMETRY;
|
|
|
|
if(bump == SHADER_BUMP_DX) {
|
|
texco_node = NODE_TEX_COORD_BUMP_DX;
|
|
attr_node = NODE_ATTR_BUMP_DX;
|
|
geom_node = NODE_GEOMETRY_BUMP_DX;
|
|
}
|
|
else if(bump == SHADER_BUMP_DY) {
|
|
texco_node = NODE_TEX_COORD_BUMP_DY;
|
|
attr_node = NODE_ATTR_BUMP_DY;
|
|
geom_node = NODE_GEOMETRY_BUMP_DY;
|
|
}
|
|
|
|
out = output("Generated");
|
|
if(!out->links.empty()) {
|
|
if(compiler.background) {
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(geom_node, NODE_GEOM_P, out->stack_offset);
|
|
}
|
|
else {
|
|
if(from_dupli) {
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(texco_node, NODE_TEXCO_DUPLI_GENERATED, out->stack_offset);
|
|
}
|
|
else if(compiler.output_type() == SHADER_TYPE_VOLUME) {
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(texco_node, NODE_TEXCO_VOLUME_GENERATED, out->stack_offset);
|
|
}
|
|
else {
|
|
int attr = compiler.attribute(ATTR_STD_GENERATED);
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(attr_node, attr, out->stack_offset, NODE_ATTR_FLOAT3);
|
|
}
|
|
}
|
|
}
|
|
|
|
out = output("Normal");
|
|
if(!out->links.empty()) {
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(texco_node, NODE_TEXCO_NORMAL, out->stack_offset);
|
|
}
|
|
|
|
out = output("UV");
|
|
if(!out->links.empty()) {
|
|
if(from_dupli) {
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(texco_node, NODE_TEXCO_DUPLI_UV, out->stack_offset);
|
|
}
|
|
else {
|
|
int attr = compiler.attribute(ATTR_STD_UV);
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(attr_node, attr, out->stack_offset, NODE_ATTR_FLOAT3);
|
|
}
|
|
}
|
|
|
|
out = output("Object");
|
|
if(!out->links.empty()) {
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(texco_node, NODE_TEXCO_OBJECT, out->stack_offset, use_transform);
|
|
if(use_transform) {
|
|
Transform ob_itfm = transform_inverse(ob_tfm);
|
|
compiler.add_node(ob_itfm.x);
|
|
compiler.add_node(ob_itfm.y);
|
|
compiler.add_node(ob_itfm.z);
|
|
compiler.add_node(ob_itfm.w);
|
|
}
|
|
}
|
|
|
|
out = output("Camera");
|
|
if(!out->links.empty()) {
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(texco_node, NODE_TEXCO_CAMERA, out->stack_offset);
|
|
}
|
|
|
|
out = output("Window");
|
|
if(!out->links.empty()) {
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(texco_node, NODE_TEXCO_WINDOW, out->stack_offset);
|
|
}
|
|
|
|
out = output("Reflection");
|
|
if(!out->links.empty()) {
|
|
if(compiler.background) {
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(geom_node, NODE_GEOM_I, out->stack_offset);
|
|
}
|
|
else {
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(texco_node, NODE_TEXCO_REFLECTION, out->stack_offset);
|
|
}
|
|
}
|
|
}
|
|
|
|
void TextureCoordinateNode::compile(OSLCompiler& compiler)
|
|
{
|
|
if(bump == SHADER_BUMP_DX)
|
|
compiler.parameter("bump_offset", "dx");
|
|
else if(bump == SHADER_BUMP_DY)
|
|
compiler.parameter("bump_offset", "dy");
|
|
else
|
|
compiler.parameter("bump_offset", "center");
|
|
|
|
if(compiler.background)
|
|
compiler.parameter("is_background", true);
|
|
if(compiler.output_type() == SHADER_TYPE_VOLUME)
|
|
compiler.parameter("is_volume", true);
|
|
compiler.parameter("use_transform", use_transform);
|
|
Transform ob_itfm = transform_transpose(transform_inverse(ob_tfm));
|
|
compiler.parameter("object_itfm", ob_itfm);
|
|
|
|
compiler.parameter("from_dupli", from_dupli);
|
|
|
|
compiler.add(this, "node_texture_coordinate");
|
|
}
|
|
|
|
UVMapNode::UVMapNode()
|
|
: ShaderNode("uvmap")
|
|
{
|
|
attribute = "";
|
|
from_dupli = false;
|
|
|
|
add_output("UV", SHADER_SOCKET_POINT);
|
|
}
|
|
|
|
void UVMapNode::attributes(Shader *shader, AttributeRequestSet *attributes)
|
|
{
|
|
if(shader->has_surface) {
|
|
if(!from_dupli) {
|
|
if(!output("UV")->links.empty()) {
|
|
if(attribute != "")
|
|
attributes->add(attribute);
|
|
else
|
|
attributes->add(ATTR_STD_UV);
|
|
}
|
|
}
|
|
}
|
|
|
|
ShaderNode::attributes(shader, attributes);
|
|
}
|
|
|
|
void UVMapNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderOutput *out = output("UV");
|
|
NodeType texco_node = NODE_TEX_COORD;
|
|
NodeType attr_node = NODE_ATTR;
|
|
int attr;
|
|
|
|
if(bump == SHADER_BUMP_DX) {
|
|
texco_node = NODE_TEX_COORD_BUMP_DX;
|
|
attr_node = NODE_ATTR_BUMP_DX;
|
|
}
|
|
else if(bump == SHADER_BUMP_DY) {
|
|
texco_node = NODE_TEX_COORD_BUMP_DY;
|
|
attr_node = NODE_ATTR_BUMP_DY;
|
|
}
|
|
|
|
if(!out->links.empty()) {
|
|
if(from_dupli) {
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(texco_node, NODE_TEXCO_DUPLI_UV, out->stack_offset);
|
|
}
|
|
else {
|
|
if(attribute != "")
|
|
attr = compiler.attribute(attribute);
|
|
else
|
|
attr = compiler.attribute(ATTR_STD_UV);
|
|
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(attr_node, attr, out->stack_offset, NODE_ATTR_FLOAT3);
|
|
}
|
|
}
|
|
}
|
|
|
|
void UVMapNode::compile(OSLCompiler& compiler)
|
|
{
|
|
if(bump == SHADER_BUMP_DX)
|
|
compiler.parameter("bump_offset", "dx");
|
|
else if(bump == SHADER_BUMP_DY)
|
|
compiler.parameter("bump_offset", "dy");
|
|
else
|
|
compiler.parameter("bump_offset", "center");
|
|
|
|
compiler.parameter("from_dupli", from_dupli);
|
|
compiler.parameter("name", attribute.c_str());
|
|
compiler.add(this, "node_uv_map");
|
|
}
|
|
|
|
/* Light Path */
|
|
|
|
LightPathNode::LightPathNode()
|
|
: ShaderNode("light_path")
|
|
{
|
|
add_output("Is Camera Ray", SHADER_SOCKET_FLOAT);
|
|
add_output("Is Shadow Ray", SHADER_SOCKET_FLOAT);
|
|
add_output("Is Diffuse Ray", SHADER_SOCKET_FLOAT);
|
|
add_output("Is Glossy Ray", SHADER_SOCKET_FLOAT);
|
|
add_output("Is Singular Ray", SHADER_SOCKET_FLOAT);
|
|
add_output("Is Reflection Ray", SHADER_SOCKET_FLOAT);
|
|
add_output("Is Transmission Ray", SHADER_SOCKET_FLOAT);
|
|
add_output("Is Volume Scatter Ray", SHADER_SOCKET_FLOAT);
|
|
add_output("Ray Length", SHADER_SOCKET_FLOAT);
|
|
add_output("Ray Depth", SHADER_SOCKET_FLOAT);
|
|
add_output("Transparent Depth", SHADER_SOCKET_FLOAT);
|
|
add_output("Transmission Depth", SHADER_SOCKET_FLOAT);
|
|
}
|
|
|
|
void LightPathNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderOutput *out;
|
|
|
|
out = output("Is Camera Ray");
|
|
if(!out->links.empty()) {
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(NODE_LIGHT_PATH, NODE_LP_camera, out->stack_offset);
|
|
}
|
|
|
|
out = output("Is Shadow Ray");
|
|
if(!out->links.empty()) {
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(NODE_LIGHT_PATH, NODE_LP_shadow, out->stack_offset);
|
|
}
|
|
|
|
out = output("Is Diffuse Ray");
|
|
if(!out->links.empty()) {
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(NODE_LIGHT_PATH, NODE_LP_diffuse, out->stack_offset);
|
|
}
|
|
|
|
out = output("Is Glossy Ray");
|
|
if(!out->links.empty()) {
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(NODE_LIGHT_PATH, NODE_LP_glossy, out->stack_offset);
|
|
}
|
|
|
|
out = output("Is Singular Ray");
|
|
if(!out->links.empty()) {
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(NODE_LIGHT_PATH, NODE_LP_singular, out->stack_offset);
|
|
}
|
|
|
|
out = output("Is Reflection Ray");
|
|
if(!out->links.empty()) {
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(NODE_LIGHT_PATH, NODE_LP_reflection, out->stack_offset);
|
|
}
|
|
|
|
|
|
out = output("Is Transmission Ray");
|
|
if(!out->links.empty()) {
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(NODE_LIGHT_PATH, NODE_LP_transmission, out->stack_offset);
|
|
}
|
|
|
|
out = output("Is Volume Scatter Ray");
|
|
if(!out->links.empty()) {
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(NODE_LIGHT_PATH, NODE_LP_volume_scatter, out->stack_offset);
|
|
}
|
|
|
|
out = output("Ray Length");
|
|
if(!out->links.empty()) {
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(NODE_LIGHT_PATH, NODE_LP_ray_length, out->stack_offset);
|
|
}
|
|
|
|
out = output("Ray Depth");
|
|
if(!out->links.empty()) {
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(NODE_LIGHT_PATH, NODE_LP_ray_depth, out->stack_offset);
|
|
}
|
|
|
|
out = output("Transparent Depth");
|
|
if(!out->links.empty()) {
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(NODE_LIGHT_PATH, NODE_LP_ray_transparent, out->stack_offset);
|
|
}
|
|
|
|
out = output("Transmission Depth");
|
|
if(!out->links.empty()) {
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(NODE_LIGHT_PATH, NODE_LP_ray_transmission, out->stack_offset);
|
|
}
|
|
}
|
|
|
|
void LightPathNode::compile(OSLCompiler& compiler)
|
|
{
|
|
compiler.add(this, "node_light_path");
|
|
}
|
|
|
|
/* Light Falloff */
|
|
|
|
LightFalloffNode::LightFalloffNode()
|
|
: ShaderNode("light_fallof")
|
|
{
|
|
add_input("Strength", SHADER_SOCKET_FLOAT, 100.0f);
|
|
add_input("Smooth", SHADER_SOCKET_FLOAT, 0.0f);
|
|
add_output("Quadratic", SHADER_SOCKET_FLOAT);
|
|
add_output("Linear", SHADER_SOCKET_FLOAT);
|
|
add_output("Constant", SHADER_SOCKET_FLOAT);
|
|
}
|
|
|
|
void LightFalloffNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderInput *strength_in = input("Strength");
|
|
ShaderInput *smooth_in = input("Smooth");
|
|
|
|
compiler.stack_assign(strength_in);
|
|
compiler.stack_assign(smooth_in);
|
|
|
|
ShaderOutput *out = output("Quadratic");
|
|
if(!out->links.empty()) {
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(NODE_LIGHT_FALLOFF, NODE_LIGHT_FALLOFF_QUADRATIC,
|
|
compiler.encode_uchar4(strength_in->stack_offset, smooth_in->stack_offset, out->stack_offset));
|
|
}
|
|
|
|
out = output("Linear");
|
|
if(!out->links.empty()) {
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(NODE_LIGHT_FALLOFF, NODE_LIGHT_FALLOFF_LINEAR,
|
|
compiler.encode_uchar4(strength_in->stack_offset, smooth_in->stack_offset, out->stack_offset));
|
|
}
|
|
|
|
out = output("Constant");
|
|
if(!out->links.empty()) {
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(NODE_LIGHT_FALLOFF, NODE_LIGHT_FALLOFF_CONSTANT,
|
|
compiler.encode_uchar4(strength_in->stack_offset, smooth_in->stack_offset, out->stack_offset));
|
|
}
|
|
}
|
|
|
|
void LightFalloffNode::compile(OSLCompiler& compiler)
|
|
{
|
|
compiler.add(this, "node_light_falloff");
|
|
}
|
|
|
|
/* Object Info */
|
|
|
|
ObjectInfoNode::ObjectInfoNode()
|
|
: ShaderNode("object_info")
|
|
{
|
|
add_output("Location", SHADER_SOCKET_VECTOR);
|
|
add_output("Object Index", SHADER_SOCKET_FLOAT);
|
|
add_output("Material Index", SHADER_SOCKET_FLOAT);
|
|
add_output("Random", SHADER_SOCKET_FLOAT);
|
|
}
|
|
|
|
void ObjectInfoNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderOutput *out = output("Location");
|
|
if(!out->links.empty()) {
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(NODE_OBJECT_INFO, NODE_INFO_OB_LOCATION, out->stack_offset);
|
|
}
|
|
|
|
out = output("Object Index");
|
|
if(!out->links.empty()) {
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(NODE_OBJECT_INFO, NODE_INFO_OB_INDEX, out->stack_offset);
|
|
}
|
|
|
|
out = output("Material Index");
|
|
if(!out->links.empty()) {
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(NODE_OBJECT_INFO, NODE_INFO_MAT_INDEX, out->stack_offset);
|
|
}
|
|
|
|
out = output("Random");
|
|
if(!out->links.empty()) {
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(NODE_OBJECT_INFO, NODE_INFO_OB_RANDOM, out->stack_offset);
|
|
}
|
|
}
|
|
|
|
void ObjectInfoNode::compile(OSLCompiler& compiler)
|
|
{
|
|
compiler.add(this, "node_object_info");
|
|
}
|
|
|
|
/* Particle Info */
|
|
|
|
ParticleInfoNode::ParticleInfoNode()
|
|
: ShaderNode("particle_info")
|
|
{
|
|
add_output("Index", SHADER_SOCKET_FLOAT);
|
|
add_output("Age", SHADER_SOCKET_FLOAT);
|
|
add_output("Lifetime", SHADER_SOCKET_FLOAT);
|
|
add_output("Location", SHADER_SOCKET_POINT);
|
|
#if 0 /* not yet supported */
|
|
add_output("Rotation", SHADER_SOCKET_QUATERNION);
|
|
#endif
|
|
add_output("Size", SHADER_SOCKET_FLOAT);
|
|
add_output("Velocity", SHADER_SOCKET_VECTOR);
|
|
add_output("Angular Velocity", SHADER_SOCKET_VECTOR);
|
|
}
|
|
|
|
void ParticleInfoNode::attributes(Shader *shader, AttributeRequestSet *attributes)
|
|
{
|
|
if(!output("Index")->links.empty())
|
|
attributes->add(ATTR_STD_PARTICLE);
|
|
if(!output("Age")->links.empty())
|
|
attributes->add(ATTR_STD_PARTICLE);
|
|
if(!output("Lifetime")->links.empty())
|
|
attributes->add(ATTR_STD_PARTICLE);
|
|
if(!output("Location")->links.empty())
|
|
attributes->add(ATTR_STD_PARTICLE);
|
|
#if 0 /* not yet supported */
|
|
if(!output("Rotation")->links.empty())
|
|
attributes->add(ATTR_STD_PARTICLE);
|
|
#endif
|
|
if(!output("Size")->links.empty())
|
|
attributes->add(ATTR_STD_PARTICLE);
|
|
if(!output("Velocity")->links.empty())
|
|
attributes->add(ATTR_STD_PARTICLE);
|
|
if(!output("Angular Velocity")->links.empty())
|
|
attributes->add(ATTR_STD_PARTICLE);
|
|
|
|
ShaderNode::attributes(shader, attributes);
|
|
}
|
|
|
|
void ParticleInfoNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderOutput *out;
|
|
|
|
out = output("Index");
|
|
if(!out->links.empty()) {
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(NODE_PARTICLE_INFO, NODE_INFO_PAR_INDEX, out->stack_offset);
|
|
}
|
|
|
|
out = output("Age");
|
|
if(!out->links.empty()) {
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(NODE_PARTICLE_INFO, NODE_INFO_PAR_AGE, out->stack_offset);
|
|
}
|
|
|
|
out = output("Lifetime");
|
|
if(!out->links.empty()) {
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(NODE_PARTICLE_INFO, NODE_INFO_PAR_LIFETIME, out->stack_offset);
|
|
}
|
|
|
|
out = output("Location");
|
|
if(!out->links.empty()) {
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(NODE_PARTICLE_INFO, NODE_INFO_PAR_LOCATION, out->stack_offset);
|
|
}
|
|
|
|
/* quaternion data is not yet supported by Cycles */
|
|
#if 0
|
|
out = output("Rotation");
|
|
if(!out->links.empty()) {
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(NODE_PARTICLE_INFO, NODE_INFO_PAR_ROTATION, out->stack_offset);
|
|
}
|
|
#endif
|
|
|
|
out = output("Size");
|
|
if(!out->links.empty()) {
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(NODE_PARTICLE_INFO, NODE_INFO_PAR_SIZE, out->stack_offset);
|
|
}
|
|
|
|
out = output("Velocity");
|
|
if(!out->links.empty()) {
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(NODE_PARTICLE_INFO, NODE_INFO_PAR_VELOCITY, out->stack_offset);
|
|
}
|
|
|
|
out = output("Angular Velocity");
|
|
if(!out->links.empty()) {
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(NODE_PARTICLE_INFO, NODE_INFO_PAR_ANGULAR_VELOCITY, out->stack_offset);
|
|
}
|
|
}
|
|
|
|
void ParticleInfoNode::compile(OSLCompiler& compiler)
|
|
{
|
|
compiler.add(this, "node_particle_info");
|
|
}
|
|
|
|
/* Hair Info */
|
|
|
|
HairInfoNode::HairInfoNode()
|
|
: ShaderNode("hair_info")
|
|
{
|
|
add_output("Is Strand", SHADER_SOCKET_FLOAT);
|
|
add_output("Intercept", SHADER_SOCKET_FLOAT);
|
|
add_output("Thickness", SHADER_SOCKET_FLOAT);
|
|
add_output("Tangent Normal", SHADER_SOCKET_NORMAL);
|
|
/*output for minimum hair width transparency - deactivated*/
|
|
/*add_output("Fade", SHADER_SOCKET_FLOAT);*/
|
|
}
|
|
|
|
void HairInfoNode::attributes(Shader *shader, AttributeRequestSet *attributes)
|
|
{
|
|
if(shader->has_surface) {
|
|
ShaderOutput *intercept_out = output("Intercept");
|
|
|
|
if(!intercept_out->links.empty())
|
|
attributes->add(ATTR_STD_CURVE_INTERCEPT);
|
|
}
|
|
|
|
ShaderNode::attributes(shader, attributes);
|
|
}
|
|
|
|
void HairInfoNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderOutput *out;
|
|
|
|
out = output("Is Strand");
|
|
if(!out->links.empty()) {
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(NODE_HAIR_INFO, NODE_INFO_CURVE_IS_STRAND, out->stack_offset);
|
|
}
|
|
|
|
out = output("Intercept");
|
|
if(!out->links.empty()) {
|
|
int attr = compiler.attribute(ATTR_STD_CURVE_INTERCEPT);
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(NODE_ATTR, attr, out->stack_offset, NODE_ATTR_FLOAT);
|
|
}
|
|
|
|
out = output("Thickness");
|
|
if(!out->links.empty()) {
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(NODE_HAIR_INFO, NODE_INFO_CURVE_THICKNESS, out->stack_offset);
|
|
}
|
|
|
|
out = output("Tangent Normal");
|
|
if(!out->links.empty()) {
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(NODE_HAIR_INFO, NODE_INFO_CURVE_TANGENT_NORMAL, out->stack_offset);
|
|
}
|
|
|
|
/*out = output("Fade");
|
|
if(!out->links.empty()) {
|
|
compiler.stack_assign(out);
|
|
compiler.add_node(NODE_HAIR_INFO, NODE_INFO_CURVE_FADE, out->stack_offset);
|
|
}*/
|
|
|
|
}
|
|
|
|
void HairInfoNode::compile(OSLCompiler& compiler)
|
|
{
|
|
compiler.add(this, "node_hair_info");
|
|
}
|
|
|
|
/* Value */
|
|
|
|
ValueNode::ValueNode()
|
|
: ShaderNode("value")
|
|
{
|
|
value = 0.0f;
|
|
|
|
add_output("Value", SHADER_SOCKET_FLOAT);
|
|
}
|
|
|
|
bool ValueNode::constant_fold(ShaderOutput * /*socket*/,
|
|
float3 *optimized_value)
|
|
{
|
|
*optimized_value = make_float3(value, value, value);
|
|
return true;
|
|
}
|
|
|
|
void ValueNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderOutput *val_out = output("Value");
|
|
|
|
compiler.stack_assign(val_out);
|
|
compiler.add_node(NODE_VALUE_F, __float_as_int(value), val_out->stack_offset);
|
|
}
|
|
|
|
void ValueNode::compile(OSLCompiler& compiler)
|
|
{
|
|
compiler.parameter("value_value", value);
|
|
compiler.add(this, "node_value");
|
|
}
|
|
|
|
/* Color */
|
|
|
|
ColorNode::ColorNode()
|
|
: ShaderNode("color")
|
|
{
|
|
value = make_float3(0.0f, 0.0f, 0.0f);
|
|
|
|
add_output("Color", SHADER_SOCKET_COLOR);
|
|
}
|
|
|
|
bool ColorNode::constant_fold(ShaderOutput * /*socket*/,
|
|
float3 *optimized_value)
|
|
{
|
|
*optimized_value = value;
|
|
return true;
|
|
}
|
|
|
|
void ColorNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderOutput *color_out = output("Color");
|
|
|
|
if(color_out && !color_out->links.empty()) {
|
|
compiler.stack_assign(color_out);
|
|
compiler.add_node(NODE_VALUE_V, color_out->stack_offset);
|
|
compiler.add_node(NODE_VALUE_V, value);
|
|
}
|
|
}
|
|
|
|
void ColorNode::compile(OSLCompiler& compiler)
|
|
{
|
|
compiler.parameter_color("color_value", value);
|
|
|
|
compiler.add(this, "node_value");
|
|
}
|
|
|
|
/* Add Closure */
|
|
|
|
AddClosureNode::AddClosureNode()
|
|
: ShaderNode("add_closure")
|
|
{
|
|
add_input("Closure1", SHADER_SOCKET_CLOSURE);
|
|
add_input("Closure2", SHADER_SOCKET_CLOSURE);
|
|
add_output("Closure", SHADER_SOCKET_CLOSURE);
|
|
}
|
|
|
|
void AddClosureNode::compile(SVMCompiler& /*compiler*/)
|
|
{
|
|
/* handled in the SVM compiler */
|
|
}
|
|
|
|
void AddClosureNode::compile(OSLCompiler& compiler)
|
|
{
|
|
compiler.add(this, "node_add_closure");
|
|
}
|
|
|
|
/* Mix Closure */
|
|
|
|
MixClosureNode::MixClosureNode()
|
|
: ShaderNode("mix_closure")
|
|
{
|
|
special_type = SHADER_SPECIAL_TYPE_MIX_CLOSURE;
|
|
|
|
add_input("Fac", SHADER_SOCKET_FLOAT, 0.5f);
|
|
add_input("Closure1", SHADER_SOCKET_CLOSURE);
|
|
add_input("Closure2", SHADER_SOCKET_CLOSURE);
|
|
add_output("Closure", SHADER_SOCKET_CLOSURE);
|
|
}
|
|
|
|
void MixClosureNode::compile(SVMCompiler& /*compiler*/)
|
|
{
|
|
/* handled in the SVM compiler */
|
|
}
|
|
|
|
void MixClosureNode::compile(OSLCompiler& compiler)
|
|
{
|
|
compiler.add(this, "node_mix_closure");
|
|
}
|
|
|
|
/* Mix Closure */
|
|
|
|
MixClosureWeightNode::MixClosureWeightNode()
|
|
: ShaderNode("mix_closure_weight")
|
|
{
|
|
add_input("Weight", SHADER_SOCKET_FLOAT, 1.0f);
|
|
add_input("Fac", SHADER_SOCKET_FLOAT, 1.0f);
|
|
add_output("Weight1", SHADER_SOCKET_FLOAT);
|
|
add_output("Weight2", SHADER_SOCKET_FLOAT);
|
|
}
|
|
|
|
void MixClosureWeightNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderInput *weight_in = input("Weight");
|
|
ShaderInput *fac_in = input("Fac");
|
|
ShaderOutput *weight1_out = output("Weight1");
|
|
ShaderOutput *weight2_out = output("Weight2");
|
|
|
|
compiler.stack_assign(weight_in);
|
|
compiler.stack_assign(fac_in);
|
|
compiler.stack_assign(weight1_out);
|
|
compiler.stack_assign(weight2_out);
|
|
|
|
compiler.add_node(NODE_MIX_CLOSURE,
|
|
compiler.encode_uchar4(fac_in->stack_offset, weight_in->stack_offset,
|
|
weight1_out->stack_offset, weight2_out->stack_offset));
|
|
}
|
|
|
|
void MixClosureWeightNode::compile(OSLCompiler& /*compiler*/)
|
|
{
|
|
assert(0);
|
|
}
|
|
|
|
/* Invert */
|
|
|
|
InvertNode::InvertNode()
|
|
: ShaderNode("invert")
|
|
{
|
|
add_input("Fac", SHADER_SOCKET_FLOAT, 1.0f);
|
|
add_input("Color", SHADER_SOCKET_COLOR);
|
|
add_output("Color", SHADER_SOCKET_COLOR);
|
|
}
|
|
|
|
void InvertNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderInput *fac_in = input("Fac");
|
|
ShaderInput *color_in = input("Color");
|
|
ShaderOutput *color_out = output("Color");
|
|
|
|
compiler.stack_assign(fac_in);
|
|
compiler.stack_assign(color_in);
|
|
compiler.stack_assign(color_out);
|
|
|
|
compiler.add_node(NODE_INVERT, fac_in->stack_offset, color_in->stack_offset, color_out->stack_offset);
|
|
}
|
|
|
|
void InvertNode::compile(OSLCompiler& compiler)
|
|
{
|
|
compiler.add(this, "node_invert");
|
|
}
|
|
|
|
/* Mix */
|
|
|
|
MixNode::MixNode()
|
|
: ShaderNode("mix")
|
|
{
|
|
type = ustring("Mix");
|
|
|
|
use_clamp = false;
|
|
|
|
add_input("Fac", SHADER_SOCKET_FLOAT, 0.5f);
|
|
add_input("Color1", SHADER_SOCKET_COLOR);
|
|
add_input("Color2", SHADER_SOCKET_COLOR);
|
|
add_output("Color", SHADER_SOCKET_COLOR);
|
|
}
|
|
|
|
static ShaderEnum mix_type_init()
|
|
{
|
|
ShaderEnum enm;
|
|
|
|
enm.insert("Mix", NODE_MIX_BLEND);
|
|
enm.insert("Add", NODE_MIX_ADD);
|
|
enm.insert("Multiply", NODE_MIX_MUL);
|
|
enm.insert("Screen", NODE_MIX_SCREEN);
|
|
enm.insert("Overlay", NODE_MIX_OVERLAY);
|
|
enm.insert("Subtract", NODE_MIX_SUB);
|
|
enm.insert("Divide", NODE_MIX_DIV);
|
|
enm.insert("Difference", NODE_MIX_DIFF);
|
|
enm.insert("Darken", NODE_MIX_DARK);
|
|
enm.insert("Lighten", NODE_MIX_LIGHT);
|
|
enm.insert("Dodge", NODE_MIX_DODGE);
|
|
enm.insert("Burn", NODE_MIX_BURN);
|
|
enm.insert("Hue", NODE_MIX_HUE);
|
|
enm.insert("Saturation", NODE_MIX_SAT);
|
|
enm.insert("Value", NODE_MIX_VAL);
|
|
enm.insert("Color", NODE_MIX_COLOR);
|
|
enm.insert("Soft Light", NODE_MIX_SOFT);
|
|
enm.insert("Linear Light", NODE_MIX_LINEAR);
|
|
|
|
return enm;
|
|
}
|
|
|
|
ShaderEnum MixNode::type_enum = mix_type_init();
|
|
|
|
void MixNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderInput *fac_in = input("Fac");
|
|
ShaderInput *color1_in = input("Color1");
|
|
ShaderInput *color2_in = input("Color2");
|
|
ShaderOutput *color_out = output("Color");
|
|
|
|
compiler.stack_assign(fac_in);
|
|
compiler.stack_assign(color1_in);
|
|
compiler.stack_assign(color2_in);
|
|
compiler.stack_assign(color_out);
|
|
|
|
compiler.add_node(NODE_MIX, fac_in->stack_offset, color1_in->stack_offset, color2_in->stack_offset);
|
|
compiler.add_node(NODE_MIX, type_enum[type], color_out->stack_offset);
|
|
|
|
if(use_clamp) {
|
|
compiler.add_node(NODE_MIX, 0, color_out->stack_offset);
|
|
compiler.add_node(NODE_MIX, NODE_MIX_CLAMP, color_out->stack_offset);
|
|
}
|
|
}
|
|
|
|
void MixNode::compile(OSLCompiler& compiler)
|
|
{
|
|
compiler.parameter("type", type);
|
|
compiler.parameter("Clamp", use_clamp);
|
|
compiler.add(this, "node_mix");
|
|
}
|
|
|
|
/* Combine RGB */
|
|
CombineRGBNode::CombineRGBNode()
|
|
: ShaderNode("combine_rgb")
|
|
{
|
|
add_input("R", SHADER_SOCKET_FLOAT);
|
|
add_input("G", SHADER_SOCKET_FLOAT);
|
|
add_input("B", SHADER_SOCKET_FLOAT);
|
|
add_output("Image", SHADER_SOCKET_COLOR);
|
|
}
|
|
|
|
void CombineRGBNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderInput *red_in = input("R");
|
|
ShaderInput *green_in = input("G");
|
|
ShaderInput *blue_in = input("B");
|
|
ShaderOutput *color_out = output("Image");
|
|
|
|
compiler.stack_assign(color_out);
|
|
|
|
compiler.stack_assign(red_in);
|
|
compiler.add_node(NODE_COMBINE_VECTOR, red_in->stack_offset, 0, color_out->stack_offset);
|
|
|
|
compiler.stack_assign(green_in);
|
|
compiler.add_node(NODE_COMBINE_VECTOR, green_in->stack_offset, 1, color_out->stack_offset);
|
|
|
|
compiler.stack_assign(blue_in);
|
|
compiler.add_node(NODE_COMBINE_VECTOR, blue_in->stack_offset, 2, color_out->stack_offset);
|
|
}
|
|
|
|
void CombineRGBNode::compile(OSLCompiler& compiler)
|
|
{
|
|
compiler.add(this, "node_combine_rgb");
|
|
}
|
|
|
|
/* Combine XYZ */
|
|
CombineXYZNode::CombineXYZNode()
|
|
: ShaderNode("combine_xyz")
|
|
{
|
|
add_input("X", SHADER_SOCKET_FLOAT);
|
|
add_input("Y", SHADER_SOCKET_FLOAT);
|
|
add_input("Z", SHADER_SOCKET_FLOAT);
|
|
add_output("Vector", SHADER_SOCKET_VECTOR);
|
|
}
|
|
|
|
void CombineXYZNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderInput *x_in = input("X");
|
|
ShaderInput *y_in = input("Y");
|
|
ShaderInput *z_in = input("Z");
|
|
ShaderOutput *vector_out = output("Vector");
|
|
|
|
compiler.stack_assign(vector_out);
|
|
|
|
compiler.stack_assign(x_in);
|
|
compiler.add_node(NODE_COMBINE_VECTOR, x_in->stack_offset, 0, vector_out->stack_offset);
|
|
|
|
compiler.stack_assign(y_in);
|
|
compiler.add_node(NODE_COMBINE_VECTOR, y_in->stack_offset, 1, vector_out->stack_offset);
|
|
|
|
compiler.stack_assign(z_in);
|
|
compiler.add_node(NODE_COMBINE_VECTOR, z_in->stack_offset, 2, vector_out->stack_offset);
|
|
}
|
|
|
|
void CombineXYZNode::compile(OSLCompiler& compiler)
|
|
{
|
|
compiler.add(this, "node_combine_xyz");
|
|
}
|
|
|
|
/* Combine HSV */
|
|
CombineHSVNode::CombineHSVNode()
|
|
: ShaderNode("combine_hsv")
|
|
{
|
|
add_input("H", SHADER_SOCKET_FLOAT);
|
|
add_input("S", SHADER_SOCKET_FLOAT);
|
|
add_input("V", SHADER_SOCKET_FLOAT);
|
|
add_output("Color", SHADER_SOCKET_COLOR);
|
|
}
|
|
|
|
void CombineHSVNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderInput *hue_in = input("H");
|
|
ShaderInput *saturation_in = input("S");
|
|
ShaderInput *value_in = input("V");
|
|
ShaderOutput *color_out = output("Color");
|
|
|
|
compiler.stack_assign(color_out);
|
|
compiler.stack_assign(hue_in);
|
|
compiler.stack_assign(saturation_in);
|
|
compiler.stack_assign(value_in);
|
|
|
|
compiler.add_node(NODE_COMBINE_HSV, hue_in->stack_offset, saturation_in->stack_offset, value_in->stack_offset);
|
|
compiler.add_node(NODE_COMBINE_HSV, color_out->stack_offset);
|
|
}
|
|
|
|
void CombineHSVNode::compile(OSLCompiler& compiler)
|
|
{
|
|
compiler.add(this, "node_combine_hsv");
|
|
}
|
|
|
|
/* Gamma */
|
|
GammaNode::GammaNode()
|
|
: ShaderNode("gamma")
|
|
{
|
|
add_input("Color", SHADER_SOCKET_COLOR);
|
|
add_input("Gamma", SHADER_SOCKET_FLOAT);
|
|
add_output("Color", SHADER_SOCKET_COLOR);
|
|
}
|
|
|
|
bool GammaNode::constant_fold(ShaderOutput *socket, float3 *optimized_value)
|
|
{
|
|
ShaderInput *color_in = input("Color");
|
|
ShaderInput *gamma_in = input("Gamma");
|
|
|
|
if(socket == output("Color")) {
|
|
if(color_in->link == NULL && gamma_in->link == NULL) {
|
|
*optimized_value = svm_math_gamma_color(color_in->value,
|
|
gamma_in->value.x);
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void GammaNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderInput *color_in = input("Color");
|
|
ShaderInput *gamma_in = input("Gamma");
|
|
ShaderOutput *color_out = output("Color");
|
|
|
|
compiler.stack_assign(color_in);
|
|
compiler.stack_assign(gamma_in);
|
|
compiler.stack_assign(color_out);
|
|
|
|
compiler.add_node(NODE_GAMMA, gamma_in->stack_offset, color_in->stack_offset, color_out->stack_offset);
|
|
}
|
|
|
|
void GammaNode::compile(OSLCompiler& compiler)
|
|
{
|
|
compiler.add(this, "node_gamma");
|
|
}
|
|
|
|
/* Bright Contrast */
|
|
BrightContrastNode::BrightContrastNode()
|
|
: ShaderNode("brightness")
|
|
{
|
|
add_input("Color", SHADER_SOCKET_COLOR);
|
|
add_input("Bright", SHADER_SOCKET_FLOAT);
|
|
add_input("Contrast", SHADER_SOCKET_FLOAT);
|
|
add_output("Color", SHADER_SOCKET_COLOR);
|
|
}
|
|
|
|
void BrightContrastNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderInput *color_in = input("Color");
|
|
ShaderInput *bright_in = input("Bright");
|
|
ShaderInput *contrast_in = input("Contrast");
|
|
ShaderOutput *color_out = output("Color");
|
|
|
|
compiler.stack_assign(color_in);
|
|
compiler.stack_assign(bright_in);
|
|
compiler.stack_assign(contrast_in);
|
|
compiler.stack_assign(color_out);
|
|
|
|
compiler.add_node(NODE_BRIGHTCONTRAST,
|
|
color_in->stack_offset, color_out->stack_offset,
|
|
compiler.encode_uchar4(bright_in->stack_offset, contrast_in->stack_offset));
|
|
}
|
|
|
|
void BrightContrastNode::compile(OSLCompiler& compiler)
|
|
{
|
|
compiler.add(this, "node_brightness");
|
|
}
|
|
|
|
/* Separate RGB */
|
|
SeparateRGBNode::SeparateRGBNode()
|
|
: ShaderNode("separate_rgb")
|
|
{
|
|
add_input("Image", SHADER_SOCKET_COLOR);
|
|
add_output("R", SHADER_SOCKET_FLOAT);
|
|
add_output("G", SHADER_SOCKET_FLOAT);
|
|
add_output("B", SHADER_SOCKET_FLOAT);
|
|
}
|
|
|
|
void SeparateRGBNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderInput *color_in = input("Image");
|
|
ShaderOutput *red_out = output("R");
|
|
ShaderOutput *green_out = output("G");
|
|
ShaderOutput *blue_out = output("B");
|
|
|
|
compiler.stack_assign(color_in);
|
|
|
|
compiler.stack_assign(red_out);
|
|
compiler.add_node(NODE_SEPARATE_VECTOR, color_in->stack_offset, 0, red_out->stack_offset);
|
|
|
|
compiler.stack_assign(green_out);
|
|
compiler.add_node(NODE_SEPARATE_VECTOR, color_in->stack_offset, 1, green_out->stack_offset);
|
|
|
|
compiler.stack_assign(blue_out);
|
|
compiler.add_node(NODE_SEPARATE_VECTOR, color_in->stack_offset, 2, blue_out->stack_offset);
|
|
}
|
|
|
|
void SeparateRGBNode::compile(OSLCompiler& compiler)
|
|
{
|
|
compiler.add(this, "node_separate_rgb");
|
|
}
|
|
|
|
/* Separate XYZ */
|
|
SeparateXYZNode::SeparateXYZNode()
|
|
: ShaderNode("separate_xyz")
|
|
{
|
|
add_input("Vector", SHADER_SOCKET_VECTOR);
|
|
add_output("X", SHADER_SOCKET_FLOAT);
|
|
add_output("Y", SHADER_SOCKET_FLOAT);
|
|
add_output("Z", SHADER_SOCKET_FLOAT);
|
|
}
|
|
|
|
void SeparateXYZNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderInput *vector_in = input("Vector");
|
|
ShaderOutput *x_out = output("X");
|
|
ShaderOutput *y_out = output("Y");
|
|
ShaderOutput *z_out = output("Z");
|
|
|
|
compiler.stack_assign(vector_in);
|
|
|
|
compiler.stack_assign(x_out);
|
|
compiler.add_node(NODE_SEPARATE_VECTOR, vector_in->stack_offset, 0, x_out->stack_offset);
|
|
|
|
compiler.stack_assign(y_out);
|
|
compiler.add_node(NODE_SEPARATE_VECTOR, vector_in->stack_offset, 1, y_out->stack_offset);
|
|
|
|
compiler.stack_assign(z_out);
|
|
compiler.add_node(NODE_SEPARATE_VECTOR, vector_in->stack_offset, 2, z_out->stack_offset);
|
|
}
|
|
|
|
void SeparateXYZNode::compile(OSLCompiler& compiler)
|
|
{
|
|
compiler.add(this, "node_separate_xyz");
|
|
}
|
|
|
|
/* Separate HSV */
|
|
SeparateHSVNode::SeparateHSVNode()
|
|
: ShaderNode("separate_hsv")
|
|
{
|
|
add_input("Color", SHADER_SOCKET_COLOR);
|
|
add_output("H", SHADER_SOCKET_FLOAT);
|
|
add_output("S", SHADER_SOCKET_FLOAT);
|
|
add_output("V", SHADER_SOCKET_FLOAT);
|
|
}
|
|
|
|
void SeparateHSVNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderInput *color_in = input("Color");
|
|
ShaderOutput *hue_out = output("H");
|
|
ShaderOutput *saturation_out = output("S");
|
|
ShaderOutput *value_out = output("V");
|
|
|
|
compiler.stack_assign(color_in);
|
|
compiler.stack_assign(hue_out);
|
|
compiler.stack_assign(saturation_out);
|
|
compiler.stack_assign(value_out);
|
|
|
|
compiler.add_node(NODE_SEPARATE_HSV, color_in->stack_offset, hue_out->stack_offset, saturation_out->stack_offset);
|
|
compiler.add_node(NODE_SEPARATE_HSV, value_out->stack_offset);
|
|
|
|
}
|
|
|
|
void SeparateHSVNode::compile(OSLCompiler& compiler)
|
|
{
|
|
compiler.add(this, "node_separate_hsv");
|
|
}
|
|
|
|
/* Hue Saturation Value */
|
|
HSVNode::HSVNode()
|
|
: ShaderNode("hsv")
|
|
{
|
|
add_input("Hue", SHADER_SOCKET_FLOAT);
|
|
add_input("Saturation", SHADER_SOCKET_FLOAT);
|
|
add_input("Value", SHADER_SOCKET_FLOAT);
|
|
add_input("Fac", SHADER_SOCKET_FLOAT);
|
|
add_input("Color", SHADER_SOCKET_COLOR);
|
|
add_output("Color", SHADER_SOCKET_COLOR);
|
|
}
|
|
|
|
void HSVNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderInput *hue_in = input("Hue");
|
|
ShaderInput *saturation_in = input("Saturation");
|
|
ShaderInput *value_in = input("Value");
|
|
ShaderInput *fac_in = input("Fac");
|
|
ShaderInput *color_in = input("Color");
|
|
ShaderOutput *color_out = output("Color");
|
|
|
|
compiler.stack_assign(hue_in);
|
|
compiler.stack_assign(saturation_in);
|
|
compiler.stack_assign(value_in);
|
|
compiler.stack_assign(fac_in);
|
|
compiler.stack_assign(color_in);
|
|
compiler.stack_assign(color_out);
|
|
|
|
compiler.add_node(NODE_HSV, color_in->stack_offset, fac_in->stack_offset, color_out->stack_offset);
|
|
compiler.add_node(NODE_HSV, hue_in->stack_offset, saturation_in->stack_offset, value_in->stack_offset);
|
|
}
|
|
|
|
void HSVNode::compile(OSLCompiler& compiler)
|
|
{
|
|
compiler.add(this, "node_hsv");
|
|
}
|
|
|
|
/* Attribute */
|
|
|
|
AttributeNode::AttributeNode()
|
|
: ShaderNode("attribute")
|
|
{
|
|
attribute = "";
|
|
|
|
add_output("Color", SHADER_SOCKET_COLOR);
|
|
add_output("Vector", SHADER_SOCKET_VECTOR);
|
|
add_output("Fac", SHADER_SOCKET_FLOAT);
|
|
}
|
|
|
|
void AttributeNode::attributes(Shader *shader, AttributeRequestSet *attributes)
|
|
{
|
|
ShaderOutput *color_out = output("Color");
|
|
ShaderOutput *vector_out = output("Vector");
|
|
ShaderOutput *fac_out = output("Fac");
|
|
|
|
if(!color_out->links.empty() || !vector_out->links.empty() || !fac_out->links.empty()) {
|
|
AttributeStandard std = Attribute::name_standard(attribute.c_str());
|
|
|
|
if(std != ATTR_STD_NONE)
|
|
attributes->add(std);
|
|
else
|
|
attributes->add(attribute);
|
|
}
|
|
|
|
if(shader->has_volume)
|
|
attributes->add(ATTR_STD_GENERATED_TRANSFORM);
|
|
|
|
ShaderNode::attributes(shader, attributes);
|
|
}
|
|
|
|
void AttributeNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderOutput *color_out = output("Color");
|
|
ShaderOutput *vector_out = output("Vector");
|
|
ShaderOutput *fac_out = output("Fac");
|
|
NodeType attr_node = NODE_ATTR;
|
|
AttributeStandard std = Attribute::name_standard(attribute.c_str());
|
|
int attr;
|
|
|
|
if(std != ATTR_STD_NONE)
|
|
attr = compiler.attribute(std);
|
|
else
|
|
attr = compiler.attribute(attribute);
|
|
|
|
if(bump == SHADER_BUMP_DX)
|
|
attr_node = NODE_ATTR_BUMP_DX;
|
|
else if(bump == SHADER_BUMP_DY)
|
|
attr_node = NODE_ATTR_BUMP_DY;
|
|
|
|
if(!color_out->links.empty() || !vector_out->links.empty()) {
|
|
if(!color_out->links.empty()) {
|
|
compiler.stack_assign(color_out);
|
|
compiler.add_node(attr_node, attr, color_out->stack_offset, NODE_ATTR_FLOAT3);
|
|
}
|
|
if(!vector_out->links.empty()) {
|
|
compiler.stack_assign(vector_out);
|
|
compiler.add_node(attr_node, attr, vector_out->stack_offset, NODE_ATTR_FLOAT3);
|
|
}
|
|
}
|
|
|
|
if(!fac_out->links.empty()) {
|
|
compiler.stack_assign(fac_out);
|
|
compiler.add_node(attr_node, attr, fac_out->stack_offset, NODE_ATTR_FLOAT);
|
|
}
|
|
}
|
|
|
|
void AttributeNode::compile(OSLCompiler& compiler)
|
|
{
|
|
if(bump == SHADER_BUMP_DX)
|
|
compiler.parameter("bump_offset", "dx");
|
|
else if(bump == SHADER_BUMP_DY)
|
|
compiler.parameter("bump_offset", "dy");
|
|
else
|
|
compiler.parameter("bump_offset", "center");
|
|
|
|
if(Attribute::name_standard(attribute.c_str()) != ATTR_STD_NONE)
|
|
compiler.parameter("name", (string("geom:") + attribute.c_str()).c_str());
|
|
else
|
|
compiler.parameter("name", attribute.c_str());
|
|
|
|
compiler.add(this, "node_attribute");
|
|
}
|
|
|
|
/* Camera */
|
|
|
|
CameraNode::CameraNode()
|
|
: ShaderNode("camera")
|
|
{
|
|
add_output("View Vector", SHADER_SOCKET_VECTOR);
|
|
add_output("View Z Depth", SHADER_SOCKET_FLOAT);
|
|
add_output("View Distance", SHADER_SOCKET_FLOAT);
|
|
}
|
|
|
|
void CameraNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderOutput *vector_out = output("View Vector");
|
|
ShaderOutput *z_depth_out = output("View Z Depth");
|
|
ShaderOutput *distance_out = output("View Distance");
|
|
|
|
compiler.stack_assign(vector_out);
|
|
compiler.stack_assign(z_depth_out);
|
|
compiler.stack_assign(distance_out);
|
|
compiler.add_node(NODE_CAMERA, vector_out->stack_offset, z_depth_out->stack_offset, distance_out->stack_offset);
|
|
}
|
|
|
|
void CameraNode::compile(OSLCompiler& compiler)
|
|
{
|
|
compiler.add(this, "node_camera");
|
|
}
|
|
|
|
/* Fresnel */
|
|
|
|
FresnelNode::FresnelNode()
|
|
: ShaderNode("fresnel")
|
|
{
|
|
add_input("Normal", SHADER_SOCKET_NORMAL, ShaderInput::NORMAL, ShaderInput::USE_OSL);
|
|
add_input("IOR", SHADER_SOCKET_FLOAT, 1.45f);
|
|
add_output("Fac", SHADER_SOCKET_FLOAT);
|
|
}
|
|
|
|
void FresnelNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderInput *normal_in = input("Normal");
|
|
ShaderInput *ior_in = input("IOR");
|
|
ShaderOutput *fac_out = output("Fac");
|
|
|
|
compiler.stack_assign(ior_in);
|
|
compiler.stack_assign(fac_out);
|
|
|
|
if(normal_in->link)
|
|
compiler.stack_assign(normal_in);
|
|
|
|
compiler.add_node(NODE_FRESNEL, ior_in->stack_offset, __float_as_int(ior_in->value.x), compiler.encode_uchar4(normal_in->stack_offset, fac_out->stack_offset));
|
|
}
|
|
|
|
void FresnelNode::compile(OSLCompiler& compiler)
|
|
{
|
|
compiler.add(this, "node_fresnel");
|
|
}
|
|
|
|
/* Layer Weight */
|
|
|
|
LayerWeightNode::LayerWeightNode()
|
|
: ShaderNode("layer_weight")
|
|
{
|
|
add_input("Normal", SHADER_SOCKET_NORMAL, ShaderInput::NORMAL, ShaderInput::USE_OSL);
|
|
add_input("Blend", SHADER_SOCKET_FLOAT, 0.5f);
|
|
|
|
add_output("Fresnel", SHADER_SOCKET_FLOAT);
|
|
add_output("Facing", SHADER_SOCKET_FLOAT);
|
|
}
|
|
|
|
void LayerWeightNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderInput *normal_in = input("Normal");
|
|
ShaderInput *blend_in = input("Blend");
|
|
|
|
if(normal_in->link)
|
|
compiler.stack_assign(normal_in);
|
|
|
|
if(blend_in->link)
|
|
compiler.stack_assign(blend_in);
|
|
|
|
ShaderOutput *fresnel_out = output("Fresnel");
|
|
if(!fresnel_out->links.empty()) {
|
|
compiler.stack_assign(fresnel_out);
|
|
compiler.add_node(NODE_LAYER_WEIGHT, blend_in->stack_offset, __float_as_int(blend_in->value.x),
|
|
compiler.encode_uchar4(NODE_LAYER_WEIGHT_FRESNEL, normal_in->stack_offset, fresnel_out->stack_offset));
|
|
}
|
|
|
|
ShaderOutput *facing_out = output("Facing");
|
|
if(!facing_out->links.empty()) {
|
|
compiler.stack_assign(facing_out);
|
|
compiler.add_node(NODE_LAYER_WEIGHT, blend_in->stack_offset, __float_as_int(blend_in->value.x),
|
|
compiler.encode_uchar4(NODE_LAYER_WEIGHT_FACING, normal_in->stack_offset, facing_out->stack_offset));
|
|
}
|
|
}
|
|
|
|
void LayerWeightNode::compile(OSLCompiler& compiler)
|
|
{
|
|
compiler.add(this, "node_layer_weight");
|
|
}
|
|
|
|
/* Wireframe */
|
|
|
|
WireframeNode::WireframeNode()
|
|
: ShaderNode("wireframe")
|
|
{
|
|
add_input("Size", SHADER_SOCKET_FLOAT, 0.01f);
|
|
add_output("Fac", SHADER_SOCKET_FLOAT);
|
|
|
|
use_pixel_size = false;
|
|
}
|
|
|
|
void WireframeNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderInput *size_in = input("Size");
|
|
ShaderOutput *fac_out = output("Fac");
|
|
NodeBumpOffset bump_offset = NODE_BUMP_OFFSET_CENTER;
|
|
if(bump == SHADER_BUMP_DX) {
|
|
bump_offset = NODE_BUMP_OFFSET_DX;
|
|
}
|
|
else if(bump == SHADER_BUMP_DY) {
|
|
bump_offset = NODE_BUMP_OFFSET_DY;
|
|
}
|
|
compiler.stack_assign(size_in);
|
|
compiler.stack_assign(fac_out);
|
|
compiler.add_node(NODE_WIREFRAME,
|
|
size_in->stack_offset,
|
|
fac_out->stack_offset,
|
|
compiler.encode_uchar4(use_pixel_size,
|
|
bump_offset,
|
|
0, 0));
|
|
}
|
|
|
|
void WireframeNode::compile(OSLCompiler& compiler)
|
|
{
|
|
if(bump == SHADER_BUMP_DX) {
|
|
compiler.parameter("bump_offset", "dx");
|
|
}
|
|
else if(bump == SHADER_BUMP_DY) {
|
|
compiler.parameter("bump_offset", "dy");
|
|
}
|
|
else {
|
|
compiler.parameter("bump_offset", "center");
|
|
}
|
|
compiler.parameter("use_pixel_size", use_pixel_size);
|
|
compiler.add(this, "node_wireframe");
|
|
}
|
|
|
|
/* Wavelength */
|
|
|
|
WavelengthNode::WavelengthNode()
|
|
: ShaderNode("wavelength")
|
|
{
|
|
add_input("Wavelength", SHADER_SOCKET_FLOAT, 500.0f);
|
|
add_output("Color", SHADER_SOCKET_COLOR);
|
|
}
|
|
|
|
void WavelengthNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderInput *wavelength_in = input("Wavelength");
|
|
ShaderOutput *color_out = output("Color");
|
|
|
|
compiler.stack_assign(wavelength_in);
|
|
compiler.stack_assign(color_out);
|
|
compiler.add_node(NODE_WAVELENGTH, wavelength_in->stack_offset, color_out->stack_offset);
|
|
}
|
|
|
|
void WavelengthNode::compile(OSLCompiler& compiler)
|
|
{
|
|
compiler.add(this, "node_wavelength");
|
|
}
|
|
|
|
/* Blackbody */
|
|
|
|
BlackbodyNode::BlackbodyNode()
|
|
: ShaderNode("blackbody")
|
|
{
|
|
add_input("Temperature", SHADER_SOCKET_FLOAT, 1200.0f);
|
|
add_output("Color", SHADER_SOCKET_COLOR);
|
|
}
|
|
|
|
bool BlackbodyNode::constant_fold(ShaderOutput *socket, float3 *optimized_value)
|
|
{
|
|
ShaderInput *temperature_in = input("Temperature");
|
|
|
|
if(socket == output("Color")) {
|
|
if(temperature_in->link == NULL) {
|
|
*optimized_value = svm_math_blackbody_color(temperature_in->value.x);
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void BlackbodyNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderInput *temperature_in = input("Temperature");
|
|
ShaderOutput *color_out = output("Color");
|
|
|
|
compiler.stack_assign(color_out);
|
|
|
|
compiler.stack_assign(temperature_in);
|
|
compiler.add_node(NODE_BLACKBODY, temperature_in->stack_offset, color_out->stack_offset);
|
|
}
|
|
|
|
void BlackbodyNode::compile(OSLCompiler& compiler)
|
|
{
|
|
compiler.add(this, "node_blackbody");
|
|
}
|
|
|
|
/* Output */
|
|
|
|
OutputNode::OutputNode()
|
|
: ShaderNode("output")
|
|
{
|
|
add_input("Surface", SHADER_SOCKET_CLOSURE);
|
|
add_input("Volume", SHADER_SOCKET_CLOSURE);
|
|
add_input("Displacement", SHADER_SOCKET_FLOAT);
|
|
add_input("Normal", SHADER_SOCKET_NORMAL);
|
|
}
|
|
|
|
void OutputNode::compile(SVMCompiler& compiler)
|
|
{
|
|
if(compiler.output_type() == SHADER_TYPE_DISPLACEMENT) {
|
|
ShaderInput *displacement_in = input("Displacement");
|
|
|
|
if(displacement_in->link) {
|
|
compiler.stack_assign(displacement_in);
|
|
compiler.add_node(NODE_SET_DISPLACEMENT, displacement_in->stack_offset);
|
|
}
|
|
}
|
|
}
|
|
|
|
void OutputNode::compile(OSLCompiler& compiler)
|
|
{
|
|
if(compiler.output_type() == SHADER_TYPE_SURFACE)
|
|
compiler.add(this, "node_output_surface");
|
|
else if(compiler.output_type() == SHADER_TYPE_VOLUME)
|
|
compiler.add(this, "node_output_volume");
|
|
else if(compiler.output_type() == SHADER_TYPE_DISPLACEMENT)
|
|
compiler.add(this, "node_output_displacement");
|
|
}
|
|
|
|
/* Math */
|
|
|
|
MathNode::MathNode()
|
|
: ShaderNode("math")
|
|
{
|
|
type = ustring("Add");
|
|
|
|
use_clamp = false;
|
|
|
|
add_input("Value1", SHADER_SOCKET_FLOAT);
|
|
add_input("Value2", SHADER_SOCKET_FLOAT);
|
|
add_output("Value", SHADER_SOCKET_FLOAT);
|
|
}
|
|
|
|
static ShaderEnum math_type_init()
|
|
{
|
|
ShaderEnum enm;
|
|
|
|
enm.insert("Add", NODE_MATH_ADD);
|
|
enm.insert("Subtract", NODE_MATH_SUBTRACT);
|
|
enm.insert("Multiply", NODE_MATH_MULTIPLY);
|
|
enm.insert("Divide", NODE_MATH_DIVIDE);
|
|
enm.insert("Sine", NODE_MATH_SINE);
|
|
enm.insert("Cosine", NODE_MATH_COSINE);
|
|
enm.insert("Tangent", NODE_MATH_TANGENT);
|
|
enm.insert("Arcsine", NODE_MATH_ARCSINE);
|
|
enm.insert("Arccosine", NODE_MATH_ARCCOSINE);
|
|
enm.insert("Arctangent", NODE_MATH_ARCTANGENT);
|
|
enm.insert("Power", NODE_MATH_POWER);
|
|
enm.insert("Logarithm", NODE_MATH_LOGARITHM);
|
|
enm.insert("Minimum", NODE_MATH_MINIMUM);
|
|
enm.insert("Maximum", NODE_MATH_MAXIMUM);
|
|
enm.insert("Round", NODE_MATH_ROUND);
|
|
enm.insert("Less Than", NODE_MATH_LESS_THAN);
|
|
enm.insert("Greater Than", NODE_MATH_GREATER_THAN);
|
|
enm.insert("Modulo", NODE_MATH_MODULO);
|
|
enm.insert("Absolute", NODE_MATH_ABSOLUTE);
|
|
|
|
return enm;
|
|
}
|
|
|
|
ShaderEnum MathNode::type_enum = math_type_init();
|
|
|
|
bool MathNode::constant_fold(ShaderOutput *socket, float3 *optimized_value)
|
|
{
|
|
ShaderInput *value1_in = input("Value1");
|
|
ShaderInput *value2_in = input("Value2");
|
|
|
|
if(socket == output("Value")) {
|
|
if(value1_in->link == NULL && value2_in->link == NULL) {
|
|
optimized_value->x = svm_math((NodeMath)type_enum[type],
|
|
value1_in->value.x,
|
|
value2_in->value.x);
|
|
|
|
if(use_clamp) {
|
|
optimized_value->x = saturate(optimized_value->x);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void MathNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderInput *value1_in = input("Value1");
|
|
ShaderInput *value2_in = input("Value2");
|
|
ShaderOutput *value_out = output("Value");
|
|
|
|
compiler.stack_assign(value_out);
|
|
compiler.stack_assign(value1_in);
|
|
compiler.stack_assign(value2_in);
|
|
|
|
compiler.add_node(NODE_MATH, type_enum[type], value1_in->stack_offset, value2_in->stack_offset);
|
|
compiler.add_node(NODE_MATH, value_out->stack_offset);
|
|
|
|
if(use_clamp) {
|
|
compiler.add_node(NODE_MATH, NODE_MATH_CLAMP, value_out->stack_offset);
|
|
compiler.add_node(NODE_MATH, value_out->stack_offset);
|
|
}
|
|
}
|
|
|
|
void MathNode::compile(OSLCompiler& compiler)
|
|
{
|
|
compiler.parameter("type", type);
|
|
compiler.parameter("Clamp", use_clamp);
|
|
compiler.add(this, "node_math");
|
|
}
|
|
|
|
/* VectorMath */
|
|
|
|
VectorMathNode::VectorMathNode()
|
|
: ShaderNode("vector_math")
|
|
{
|
|
type = ustring("Add");
|
|
|
|
add_input("Vector1", SHADER_SOCKET_VECTOR);
|
|
add_input("Vector2", SHADER_SOCKET_VECTOR);
|
|
add_output("Value", SHADER_SOCKET_FLOAT);
|
|
add_output("Vector", SHADER_SOCKET_VECTOR);
|
|
}
|
|
|
|
static ShaderEnum vector_math_type_init()
|
|
{
|
|
ShaderEnum enm;
|
|
|
|
enm.insert("Add", NODE_VECTOR_MATH_ADD);
|
|
enm.insert("Subtract", NODE_VECTOR_MATH_SUBTRACT);
|
|
enm.insert("Average", NODE_VECTOR_MATH_AVERAGE);
|
|
enm.insert("Dot Product", NODE_VECTOR_MATH_DOT_PRODUCT);
|
|
enm.insert("Cross Product", NODE_VECTOR_MATH_CROSS_PRODUCT);
|
|
enm.insert("Normalize", NODE_VECTOR_MATH_NORMALIZE);
|
|
|
|
return enm;
|
|
}
|
|
|
|
ShaderEnum VectorMathNode::type_enum = vector_math_type_init();
|
|
|
|
bool VectorMathNode::constant_fold(ShaderOutput *socket, float3 *optimized_value)
|
|
{
|
|
ShaderInput *vector1_in = input("Vector1");
|
|
ShaderInput *vector2_in = input("Vector2");
|
|
|
|
float value;
|
|
float3 vector;
|
|
|
|
if(vector1_in->link == NULL && vector2_in->link == NULL) {
|
|
svm_vector_math(&value,
|
|
&vector,
|
|
(NodeVectorMath)type_enum[type],
|
|
vector1_in->value,
|
|
vector2_in->value);
|
|
|
|
if(socket == output("Value")) {
|
|
optimized_value->x = value;
|
|
return true;
|
|
}
|
|
else if(socket == output("Vector")) {
|
|
*optimized_value = vector;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void VectorMathNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderInput *vector1_in = input("Vector1");
|
|
ShaderInput *vector2_in = input("Vector2");
|
|
ShaderOutput *value_out = output("Value");
|
|
ShaderOutput *vector_out = output("Vector");
|
|
|
|
compiler.stack_assign(value_out);
|
|
compiler.stack_assign(vector_out);
|
|
|
|
compiler.stack_assign(vector1_in);
|
|
compiler.stack_assign(vector2_in);
|
|
|
|
compiler.add_node(NODE_VECTOR_MATH, type_enum[type], vector1_in->stack_offset, vector2_in->stack_offset);
|
|
compiler.add_node(NODE_VECTOR_MATH, value_out->stack_offset, vector_out->stack_offset);
|
|
}
|
|
|
|
void VectorMathNode::compile(OSLCompiler& compiler)
|
|
{
|
|
compiler.parameter("type", type);
|
|
compiler.add(this, "node_vector_math");
|
|
}
|
|
|
|
/* VectorTransform */
|
|
|
|
VectorTransformNode::VectorTransformNode()
|
|
: ShaderNode("vector_transform")
|
|
{
|
|
type = ustring("Vector");
|
|
convert_from = ustring("world");
|
|
convert_to = ustring("object");
|
|
|
|
add_input("Vector", SHADER_SOCKET_VECTOR);
|
|
add_output("Vector", SHADER_SOCKET_VECTOR);
|
|
}
|
|
|
|
static ShaderEnum vector_transform_type_init()
|
|
{
|
|
ShaderEnum enm;
|
|
|
|
enm.insert("Vector", NODE_VECTOR_TRANSFORM_TYPE_VECTOR);
|
|
enm.insert("Point", NODE_VECTOR_TRANSFORM_TYPE_POINT);
|
|
enm.insert("Normal", NODE_VECTOR_TRANSFORM_TYPE_NORMAL);
|
|
|
|
return enm;
|
|
}
|
|
|
|
static ShaderEnum vector_transform_convert_space_init()
|
|
{
|
|
ShaderEnum enm;
|
|
|
|
enm.insert("world", NODE_VECTOR_TRANSFORM_CONVERT_SPACE_WORLD);
|
|
enm.insert("object", NODE_VECTOR_TRANSFORM_CONVERT_SPACE_OBJECT);
|
|
enm.insert("camera", NODE_VECTOR_TRANSFORM_CONVERT_SPACE_CAMERA);
|
|
|
|
return enm;
|
|
}
|
|
|
|
ShaderEnum VectorTransformNode::type_enum = vector_transform_type_init();
|
|
ShaderEnum VectorTransformNode::convert_space_enum = vector_transform_convert_space_init();
|
|
|
|
void VectorTransformNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderInput *vector_in = input("Vector");
|
|
ShaderOutput *vector_out = output("Vector");
|
|
|
|
compiler.stack_assign(vector_in);
|
|
compiler.stack_assign(vector_out);
|
|
|
|
compiler.add_node(NODE_VECTOR_TRANSFORM,
|
|
compiler.encode_uchar4(type_enum[type], convert_space_enum[convert_from], convert_space_enum[convert_to]),
|
|
compiler.encode_uchar4(vector_in->stack_offset, vector_out->stack_offset));
|
|
}
|
|
|
|
void VectorTransformNode::compile(OSLCompiler& compiler)
|
|
{
|
|
compiler.parameter("type", type);
|
|
compiler.parameter("convert_from", convert_from);
|
|
compiler.parameter("convert_to", convert_to);
|
|
compiler.add(this, "node_vector_transform");
|
|
}
|
|
|
|
/* BumpNode */
|
|
|
|
BumpNode::BumpNode()
|
|
: ShaderNode("bump")
|
|
{
|
|
invert = false;
|
|
|
|
special_type = SHADER_SPECIAL_TYPE_BUMP;
|
|
|
|
/* this input is used by the user, but after graph transform it is no longer
|
|
* used and moved to sampler center/x/y instead */
|
|
add_input("Height", SHADER_SOCKET_FLOAT);
|
|
|
|
add_input("SampleCenter", SHADER_SOCKET_FLOAT);
|
|
add_input("SampleX", SHADER_SOCKET_FLOAT);
|
|
add_input("SampleY", SHADER_SOCKET_FLOAT);
|
|
add_input("Normal", SHADER_SOCKET_NORMAL, ShaderInput::NORMAL);
|
|
add_input("Strength", SHADER_SOCKET_FLOAT, 1.0f);
|
|
add_input("Distance", SHADER_SOCKET_FLOAT, 0.1f);
|
|
|
|
add_output("Normal", SHADER_SOCKET_NORMAL);
|
|
}
|
|
|
|
void BumpNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderInput *center_in = input("SampleCenter");
|
|
ShaderInput *dx_in = input("SampleX");
|
|
ShaderInput *dy_in = input("SampleY");
|
|
ShaderInput *normal_in = input("Normal");
|
|
ShaderInput *strength_in = input("Strength");
|
|
ShaderInput *distance_in = input("Distance");
|
|
ShaderOutput *normal_out = output("Normal");
|
|
|
|
compiler.stack_assign(center_in);
|
|
compiler.stack_assign(dx_in);
|
|
compiler.stack_assign(dy_in);
|
|
compiler.stack_assign(strength_in);
|
|
compiler.stack_assign(distance_in);
|
|
compiler.stack_assign(normal_out);
|
|
|
|
if(normal_in->link)
|
|
compiler.stack_assign(normal_in);
|
|
|
|
/* pack all parameters in the node */
|
|
compiler.add_node(NODE_SET_BUMP,
|
|
compiler.encode_uchar4(normal_in->stack_offset, distance_in->stack_offset, invert),
|
|
compiler.encode_uchar4(center_in->stack_offset, dx_in->stack_offset,
|
|
dy_in->stack_offset, strength_in->stack_offset),
|
|
normal_out->stack_offset);
|
|
}
|
|
|
|
void BumpNode::compile(OSLCompiler& compiler)
|
|
{
|
|
compiler.parameter("invert", invert);
|
|
compiler.add(this, "node_bump");
|
|
}
|
|
|
|
/* RGBCurvesNode */
|
|
|
|
RGBCurvesNode::RGBCurvesNode()
|
|
: ShaderNode("rgb_curves")
|
|
{
|
|
add_input("Fac", SHADER_SOCKET_FLOAT);
|
|
add_input("Color", SHADER_SOCKET_COLOR);
|
|
add_output("Color", SHADER_SOCKET_COLOR);
|
|
|
|
min_x = 0.0f;
|
|
max_x = 1.0f;
|
|
}
|
|
|
|
void RGBCurvesNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderInput *fac_in = input("Fac");
|
|
ShaderInput *color_in = input("Color");
|
|
ShaderOutput *color_out = output("Color");
|
|
|
|
compiler.stack_assign(fac_in);
|
|
compiler.stack_assign(color_in);
|
|
compiler.stack_assign(color_out);
|
|
|
|
compiler.add_node(NODE_RGB_CURVES,
|
|
compiler.encode_uchar4(fac_in->stack_offset,
|
|
color_in->stack_offset,
|
|
color_out->stack_offset),
|
|
__float_as_int(min_x),
|
|
__float_as_int(max_x));
|
|
compiler.add_array(curves, RAMP_TABLE_SIZE);
|
|
}
|
|
|
|
void RGBCurvesNode::compile(OSLCompiler& compiler)
|
|
{
|
|
float ramp[RAMP_TABLE_SIZE][3];
|
|
|
|
for(int i = 0; i < RAMP_TABLE_SIZE; ++i) {
|
|
ramp[i][0] = curves[i].x;
|
|
ramp[i][1] = curves[i].y;
|
|
ramp[i][2] = curves[i].z;
|
|
}
|
|
|
|
compiler.parameter_color_array("ramp", ramp, RAMP_TABLE_SIZE);
|
|
compiler.parameter("min_x", min_x);
|
|
compiler.parameter("max_x", max_x);
|
|
compiler.add(this, "node_rgb_curves");
|
|
}
|
|
|
|
/* VectorCurvesNode */
|
|
|
|
VectorCurvesNode::VectorCurvesNode()
|
|
: ShaderNode("vector_curves")
|
|
{
|
|
add_input("Fac", SHADER_SOCKET_FLOAT);
|
|
add_input("Vector", SHADER_SOCKET_VECTOR);
|
|
add_output("Vector", SHADER_SOCKET_VECTOR);
|
|
|
|
min_x = 0.0f;
|
|
max_x = 1.0f;
|
|
}
|
|
|
|
void VectorCurvesNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderInput *fac_in = input("Fac");
|
|
ShaderInput *vector_in = input("Vector");
|
|
ShaderOutput *vector_out = output("Vector");
|
|
|
|
compiler.stack_assign(fac_in);
|
|
compiler.stack_assign(vector_in);
|
|
compiler.stack_assign(vector_out);
|
|
|
|
compiler.add_node(NODE_VECTOR_CURVES,
|
|
compiler.encode_uchar4(fac_in->stack_offset,
|
|
vector_in->stack_offset,
|
|
vector_out->stack_offset),
|
|
__float_as_int(min_x),
|
|
__float_as_int(max_x));
|
|
compiler.add_array(curves, RAMP_TABLE_SIZE);
|
|
}
|
|
|
|
void VectorCurvesNode::compile(OSLCompiler& compiler)
|
|
{
|
|
float ramp[RAMP_TABLE_SIZE][3];
|
|
|
|
for(int i = 0; i < RAMP_TABLE_SIZE; ++i) {
|
|
ramp[i][0] = curves[i].x;
|
|
ramp[i][1] = curves[i].y;
|
|
ramp[i][2] = curves[i].z;
|
|
}
|
|
|
|
compiler.parameter_color_array("ramp", ramp, RAMP_TABLE_SIZE);
|
|
compiler.parameter("min_x", min_x);
|
|
compiler.parameter("max_x", max_x);
|
|
compiler.add(this, "node_vector_curves");
|
|
}
|
|
|
|
/* RGBRampNode */
|
|
|
|
RGBRampNode::RGBRampNode()
|
|
: ShaderNode("rgb_ramp")
|
|
{
|
|
add_input("Fac", SHADER_SOCKET_FLOAT);
|
|
add_output("Color", SHADER_SOCKET_COLOR);
|
|
add_output("Alpha", SHADER_SOCKET_FLOAT);
|
|
|
|
interpolate = true;
|
|
}
|
|
|
|
void RGBRampNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderInput *fac_in = input("Fac");
|
|
ShaderOutput *color_out = output("Color");
|
|
ShaderOutput *alpha_out = output("Alpha");
|
|
|
|
compiler.stack_assign(fac_in);
|
|
if(!color_out->links.empty())
|
|
compiler.stack_assign(color_out);
|
|
if(!alpha_out->links.empty())
|
|
compiler.stack_assign(alpha_out);
|
|
|
|
compiler.add_node(NODE_RGB_RAMP,
|
|
compiler.encode_uchar4(
|
|
fac_in->stack_offset,
|
|
color_out->stack_offset,
|
|
alpha_out->stack_offset),
|
|
interpolate);
|
|
compiler.add_array(ramp, RAMP_TABLE_SIZE);
|
|
}
|
|
|
|
void RGBRampNode::compile(OSLCompiler& compiler)
|
|
{
|
|
/* OSL shader only takes separate RGB and A array, split the RGBA base array */
|
|
/* NB: cycles float3 type is actually 4 floats! need to use an explicit array */
|
|
float ramp_color[RAMP_TABLE_SIZE][3];
|
|
float ramp_alpha[RAMP_TABLE_SIZE];
|
|
|
|
for(int i = 0; i < RAMP_TABLE_SIZE; ++i) {
|
|
ramp_color[i][0] = ramp[i].x;
|
|
ramp_color[i][1] = ramp[i].y;
|
|
ramp_color[i][2] = ramp[i].z;
|
|
ramp_alpha[i] = ramp[i].w;
|
|
}
|
|
|
|
compiler.parameter_color_array("ramp_color", ramp_color, RAMP_TABLE_SIZE);
|
|
compiler.parameter_array("ramp_alpha", ramp_alpha, RAMP_TABLE_SIZE);
|
|
compiler.parameter("ramp_interpolate", interpolate);
|
|
|
|
compiler.add(this, "node_rgb_ramp");
|
|
}
|
|
|
|
/* Set Normal Node */
|
|
|
|
SetNormalNode::SetNormalNode()
|
|
: ShaderNode("set_normal")
|
|
{
|
|
add_input("Direction", SHADER_SOCKET_VECTOR);
|
|
add_output("Normal", SHADER_SOCKET_NORMAL);
|
|
}
|
|
|
|
void SetNormalNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderInput *direction_in = input("Direction");
|
|
ShaderOutput *normal_out = output("Normal");
|
|
|
|
compiler.stack_assign(direction_in);
|
|
compiler.stack_assign(normal_out);
|
|
|
|
compiler.add_node(NODE_CLOSURE_SET_NORMAL, direction_in->stack_offset, normal_out->stack_offset);
|
|
}
|
|
|
|
void SetNormalNode::compile(OSLCompiler& compiler)
|
|
{
|
|
compiler.add(this, "node_set_normal");
|
|
}
|
|
|
|
/* OSLScriptNode */
|
|
|
|
OSLScriptNode::OSLScriptNode()
|
|
: ShaderNode("osl_script")
|
|
{
|
|
special_type = SHADER_SPECIAL_TYPE_SCRIPT;
|
|
}
|
|
|
|
void OSLScriptNode::compile(SVMCompiler& /*compiler*/)
|
|
{
|
|
/* doesn't work for SVM, obviously ... */
|
|
}
|
|
|
|
void OSLScriptNode::compile(OSLCompiler& compiler)
|
|
{
|
|
#if defined(WITH_OSL) && (OSL_LIBRARY_VERSION_CODE < 10701)
|
|
/* XXX fix for #36790:
|
|
* point and normal parameters are reflected as generic SOCK_VECTOR sockets
|
|
* on the node. Socket fixed input values need to be copied explicitly here for
|
|
* vector sockets, otherwise OSL will reject the value due to mismatching type.
|
|
*/
|
|
foreach(ShaderInput *input, this->inputs) {
|
|
if(!input->link) {
|
|
/* no need for compatible_name here, OSL parameter names are always unique */
|
|
string param_name(input->name);
|
|
switch(input->type) {
|
|
case SHADER_SOCKET_VECTOR:
|
|
compiler.parameter_point(param_name.c_str(), input->value);
|
|
compiler.parameter_normal(param_name.c_str(), input->value);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if(!filepath.empty())
|
|
compiler.add(this, filepath.c_str(), true);
|
|
else
|
|
compiler.add(this, bytecode_hash.c_str(), false);
|
|
}
|
|
|
|
/* Normal Map */
|
|
|
|
static ShaderEnum normal_map_space_init()
|
|
{
|
|
ShaderEnum enm;
|
|
|
|
enm.insert("Tangent", NODE_NORMAL_MAP_TANGENT);
|
|
enm.insert("Object", NODE_NORMAL_MAP_OBJECT);
|
|
enm.insert("World", NODE_NORMAL_MAP_WORLD);
|
|
enm.insert("Blender Object", NODE_NORMAL_MAP_BLENDER_OBJECT);
|
|
enm.insert("Blender World", NODE_NORMAL_MAP_BLENDER_WORLD);
|
|
|
|
return enm;
|
|
}
|
|
|
|
ShaderEnum NormalMapNode::space_enum = normal_map_space_init();
|
|
|
|
NormalMapNode::NormalMapNode()
|
|
: ShaderNode("normal_map")
|
|
{
|
|
space = ustring("Tangent");
|
|
attribute = ustring("");
|
|
|
|
add_input("NormalIn", SHADER_SOCKET_NORMAL, ShaderInput::NORMAL, ShaderInput::USE_OSL);
|
|
add_input("Strength", SHADER_SOCKET_FLOAT, 1.0f);
|
|
add_input("Color", SHADER_SOCKET_COLOR);
|
|
|
|
add_output("Normal", SHADER_SOCKET_NORMAL);
|
|
}
|
|
|
|
void NormalMapNode::attributes(Shader *shader, AttributeRequestSet *attributes)
|
|
{
|
|
if(shader->has_surface && space == ustring("Tangent")) {
|
|
if(attribute == ustring("")) {
|
|
attributes->add(ATTR_STD_UV_TANGENT);
|
|
attributes->add(ATTR_STD_UV_TANGENT_SIGN);
|
|
}
|
|
else {
|
|
attributes->add(ustring((string(attribute.c_str()) + ".tangent").c_str()));
|
|
attributes->add(ustring((string(attribute.c_str()) + ".tangent_sign").c_str()));
|
|
}
|
|
|
|
attributes->add(ATTR_STD_VERTEX_NORMAL);
|
|
}
|
|
|
|
ShaderNode::attributes(shader, attributes);
|
|
}
|
|
|
|
void NormalMapNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderInput *color_in = input("Color");
|
|
ShaderInput *strength_in = input("Strength");
|
|
ShaderOutput *normal_out = output("Normal");
|
|
int attr = 0, attr_sign = 0;
|
|
|
|
if(space == ustring("Tangent")) {
|
|
if(attribute == ustring("")) {
|
|
attr = compiler.attribute(ATTR_STD_UV_TANGENT);
|
|
attr_sign = compiler.attribute(ATTR_STD_UV_TANGENT_SIGN);
|
|
}
|
|
else {
|
|
attr = compiler.attribute(ustring((string(attribute.c_str()) + ".tangent").c_str()));
|
|
attr_sign = compiler.attribute(ustring((string(attribute.c_str()) + ".tangent_sign").c_str()));
|
|
}
|
|
}
|
|
|
|
compiler.stack_assign(color_in);
|
|
compiler.stack_assign(strength_in);
|
|
compiler.stack_assign(normal_out);
|
|
|
|
compiler.add_node(NODE_NORMAL_MAP,
|
|
compiler.encode_uchar4(
|
|
color_in->stack_offset,
|
|
strength_in->stack_offset,
|
|
normal_out->stack_offset,
|
|
space_enum[space]),
|
|
attr, attr_sign);
|
|
}
|
|
|
|
void NormalMapNode::compile(OSLCompiler& compiler)
|
|
{
|
|
if(space == ustring("Tangent")) {
|
|
if(attribute == ustring("")) {
|
|
compiler.parameter("attr_name", ustring("geom:tangent"));
|
|
compiler.parameter("attr_sign_name", ustring("geom:tangent_sign"));
|
|
}
|
|
else {
|
|
compiler.parameter("attr_name", ustring((string(attribute.c_str()) + ".tangent").c_str()));
|
|
compiler.parameter("attr_sign_name", ustring((string(attribute.c_str()) + ".tangent_sign").c_str()));
|
|
}
|
|
}
|
|
|
|
compiler.parameter("space", space);
|
|
|
|
compiler.add(this, "node_normal_map");
|
|
}
|
|
|
|
/* Tangent */
|
|
|
|
static ShaderEnum tangent_direction_type_init()
|
|
{
|
|
ShaderEnum enm;
|
|
|
|
enm.insert("Radial", NODE_TANGENT_RADIAL);
|
|
enm.insert("UV Map", NODE_TANGENT_UVMAP);
|
|
|
|
return enm;
|
|
}
|
|
|
|
static ShaderEnum tangent_axis_init()
|
|
{
|
|
ShaderEnum enm;
|
|
|
|
enm.insert("X", NODE_TANGENT_AXIS_X);
|
|
enm.insert("Y", NODE_TANGENT_AXIS_Y);
|
|
enm.insert("Z", NODE_TANGENT_AXIS_Z);
|
|
|
|
return enm;
|
|
}
|
|
|
|
ShaderEnum TangentNode::direction_type_enum = tangent_direction_type_init();
|
|
ShaderEnum TangentNode::axis_enum = tangent_axis_init();
|
|
|
|
TangentNode::TangentNode()
|
|
: ShaderNode("tangent")
|
|
{
|
|
direction_type = ustring("Radial");
|
|
axis = ustring("X");
|
|
attribute = ustring("");
|
|
|
|
add_input("NormalIn", SHADER_SOCKET_NORMAL, ShaderInput::NORMAL, ShaderInput::USE_OSL);
|
|
add_output("Tangent", SHADER_SOCKET_NORMAL);
|
|
}
|
|
|
|
void TangentNode::attributes(Shader *shader, AttributeRequestSet *attributes)
|
|
{
|
|
if(shader->has_surface) {
|
|
if(direction_type == ustring("UV Map")) {
|
|
if(attribute == ustring(""))
|
|
attributes->add(ATTR_STD_UV_TANGENT);
|
|
else
|
|
attributes->add(ustring((string(attribute.c_str()) + ".tangent").c_str()));
|
|
}
|
|
else
|
|
attributes->add(ATTR_STD_GENERATED);
|
|
}
|
|
|
|
ShaderNode::attributes(shader, attributes);
|
|
}
|
|
|
|
void TangentNode::compile(SVMCompiler& compiler)
|
|
{
|
|
ShaderOutput *tangent_out = output("Tangent");
|
|
int attr;
|
|
|
|
if(direction_type == ustring("UV Map")) {
|
|
if(attribute == ustring(""))
|
|
attr = compiler.attribute(ATTR_STD_UV_TANGENT);
|
|
else
|
|
attr = compiler.attribute(ustring((string(attribute.c_str()) + ".tangent").c_str()));
|
|
}
|
|
else
|
|
attr = compiler.attribute(ATTR_STD_GENERATED);
|
|
|
|
compiler.stack_assign(tangent_out);
|
|
|
|
compiler.add_node(NODE_TANGENT,
|
|
compiler.encode_uchar4(
|
|
tangent_out->stack_offset,
|
|
direction_type_enum[direction_type],
|
|
axis_enum[axis]), attr);
|
|
}
|
|
|
|
void TangentNode::compile(OSLCompiler& compiler)
|
|
{
|
|
if(direction_type == ustring("UV Map")) {
|
|
if(attribute == ustring(""))
|
|
compiler.parameter("attr_name", ustring("geom:tangent"));
|
|
else
|
|
compiler.parameter("attr_name", ustring((string(attribute.c_str()) + ".tangent").c_str()));
|
|
}
|
|
|
|
compiler.parameter("direction_type", direction_type);
|
|
compiler.parameter("axis", axis);
|
|
compiler.add(this, "node_tangent");
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|