blender/source/gameengine/Ketsji/KX_ConstraintActuator.cpp
Kent Mein 209a2ede2c Last of the config.h mods...
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

added to these files.

Kent
--
mein@cs.umn.edu
2002-11-25 15:29:57 +00:00

375 lines
11 KiB
C++

/**
* Apply a constraint to a position or rotation value
*
* $Id$
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#include "SCA_IActuator.h"
#include "KX_ConstraintActuator.h"
#include "SCA_IObject.h"
#include "MT_Point3.h"
#include "MT_Matrix3x3.h"
#include "KX_GameObject.h"
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
/* ------------------------------------------------------------------------- */
/* Native functions */
/* ------------------------------------------------------------------------- */
KX_ConstraintActuator::KX_ConstraintActuator(SCA_IObject *gameobj,
int dampTime,
float minBound,
float maxBound,
int locrotxyz,
PyTypeObject* T)
: SCA_IActuator(gameobj, T)
{
m_dampTime = dampTime;
m_locrot = locrotxyz;
/* The units of bounds are determined by the type of constraint. To */
/* make the constraint application easier and more transparent later on, */
/* I think converting the bounds to the applicable domain makes more */
/* sense. */
switch (m_locrot) {
case KX_ACT_CONSTRAINT_LOCX:
case KX_ACT_CONSTRAINT_LOCY:
case KX_ACT_CONSTRAINT_LOCZ:
m_minimumBound = minBound;
m_maximumBound = maxBound;
break;
case KX_ACT_CONSTRAINT_ROTX:
case KX_ACT_CONSTRAINT_ROTY:
case KX_ACT_CONSTRAINT_ROTZ:
/* The user interface asks for degrees, we are radian. */
m_minimumBound = MT_radians(minBound);
m_maximumBound = MT_radians(maxBound);
break;
default:
; /* error */
}
} /* End of constructor */
KX_ConstraintActuator::~KX_ConstraintActuator()
{
// there's nothing to be done here, really....
} /* end of destructor */
bool KX_ConstraintActuator::Update(double curtime,double deltatime)
{
bool result = false;
bool bNegativeEvent = IsNegativeEvent();
RemoveAllEvents();
if (bNegativeEvent)
return false; // do nothing on negative events
/* Constraint clamps the values to the specified range, with a sort of */
/* low-pass filtered time response, if the damp time is unequal to 0. */
/* Having to retrieve location/rotation and setting it afterwards may not */
/* be efficient enough... Somthing to look at later. */
KX_GameObject *parent = (KX_GameObject*) GetParent();
MT_Point3 position = parent->NodeGetWorldPosition();
MT_Matrix3x3 rotation = parent->NodeGetWorldOrientation();
// MT_Vector3 eulerrot = rotation.getEuler();
switch (m_locrot) {
case KX_ACT_CONSTRAINT_LOCX:
Clamp(position[0], m_minimumBound, m_maximumBound);
break;
case KX_ACT_CONSTRAINT_LOCY:
Clamp(position[1], m_minimumBound, m_maximumBound);
break;
case KX_ACT_CONSTRAINT_LOCZ:
Clamp(position[2], m_minimumBound, m_maximumBound);
break;
// case KX_ACT_CONSTRAINT_ROTX:
// /* The angles are Euler angles (I think that's what they are called) */
// /* but we need to convert from/to the MT_Matrix3x3. */
// Clamp(eulerrot[0], m_minimumBound, m_maximumBound);
// break;
// case KX_ACT_CONSTRAINT_ROTY:
// Clamp(eulerrot[1], m_minimumBound, m_maximumBound);
// break;
// case KX_ACT_CONSTRAINT_ROTZ:
// Clamp(eulerrot[2], m_minimumBound, m_maximumBound);
// break;
// default:
// ; /* error */
}
/* Will be replaced by a filtered clamp. */
switch (m_locrot) {
case KX_ACT_CONSTRAINT_LOCX:
case KX_ACT_CONSTRAINT_LOCY:
case KX_ACT_CONSTRAINT_LOCZ:
parent->NodeSetLocalPosition(position);
break;
// case KX_ACT_CONSTRAINT_ROTX:
// case KX_ACT_CONSTRAINT_ROTY:
// case KX_ACT_CONSTRAINT_ROTZ:
// rotation.setEuler(eulerrot);
// parent->NodeSetLocalOrientation(rotation);
break;
default:
; /* error */
}
return false;
} /* end of KX_ConstraintActuator::Update(double curtime,double deltatime) */
void KX_ConstraintActuator::Clamp(MT_Scalar &var,
float min,
float max) {
if (var < min) {
var = min;
} else if (var > max) {
var = max;
}
}
bool KX_ConstraintActuator::IsValidMode(KX_ConstraintActuator::KX_CONSTRAINTTYPE m)
{
bool res = false;
if ( (m > KX_ACT_CONSTRAINT_NODEF) && (m < KX_ACT_CONSTRAINT_MAX)) {
res = true;
}
return res;
}
/* ------------------------------------------------------------------------- */
/* Python functions */
/* ------------------------------------------------------------------------- */
/* Integration hooks ------------------------------------------------------- */
PyTypeObject KX_ConstraintActuator::Type = {
PyObject_HEAD_INIT(&PyType_Type)
0,
"KX_ConstraintActuator",
sizeof(KX_ConstraintActuator),
0,
PyDestructor,
0,
__getattr,
__setattr,
0, //&MyPyCompare,
__repr,
0, //&cvalue_as_number,
0,
0,
0,
0
};
PyParentObject KX_ConstraintActuator::Parents[] = {
&KX_ConstraintActuator::Type,
&SCA_IActuator::Type,
&SCA_ILogicBrick::Type,
&CValue::Type,
NULL
};
PyMethodDef KX_ConstraintActuator::Methods[] = {
{"setDamp", (PyCFunction) KX_ConstraintActuator::sPySetDamp, METH_VARARGS, SetDamp_doc},
{"getDamp", (PyCFunction) KX_ConstraintActuator::sPyGetDamp, METH_VARARGS, GetDamp_doc},
{"setMin", (PyCFunction) KX_ConstraintActuator::sPySetMin, METH_VARARGS, SetMin_doc},
{"getMin", (PyCFunction) KX_ConstraintActuator::sPyGetMin, METH_VARARGS, GetMin_doc},
{"setMax", (PyCFunction) KX_ConstraintActuator::sPySetMax, METH_VARARGS, SetMax_doc},
{"getMax", (PyCFunction) KX_ConstraintActuator::sPyGetMax, METH_VARARGS, GetMax_doc},
{"setLimit", (PyCFunction) KX_ConstraintActuator::sPySetLimit, METH_VARARGS, SetLimit_doc},
{"getLimit", (PyCFunction) KX_ConstraintActuator::sPyGetLimit, METH_VARARGS, GetLimit_doc},
{NULL,NULL} //Sentinel
};
PyObject* KX_ConstraintActuator::_getattr(char* attr) {
_getattr_up(SCA_IActuator);
}
/* 2. setDamp */
char KX_ConstraintActuator::SetDamp_doc[] =
"setDamp(duration)\n"
"\t- duration: integer\n"
"\tSets the time with which the constraint application is delayed.\n"
"\tIf the duration is negative, it is set to 0.\n";
PyObject* KX_ConstraintActuator::PySetDamp(PyObject* self,
PyObject* args,
PyObject* kwds) {
int dampArg;
if(!PyArg_ParseTuple(args, "i", &dampArg)) {
return NULL;
}
m_dampTime = dampArg;
if (m_dampTime < 0) m_dampTime = 0;
Py_Return;
}
/* 3. getDamp */
char KX_ConstraintActuator::GetDamp_doc[] =
"GetDamp()\n"
"\tReturns the damping time for application of the constraint.\n";
PyObject* KX_ConstraintActuator::PyGetDamp(PyObject* self,
PyObject* args,
PyObject* kwds){
return PyInt_FromLong(m_dampTime);
}
/* 4. setMin */
char KX_ConstraintActuator::SetMin_doc[] =
"setMin(lower_bound)\n"
"\t- lower_bound: float\n"
"\tSets the lower value of the interval to which the value\n"
"\tis clipped.\n";
PyObject* KX_ConstraintActuator::PySetMin(PyObject* self,
PyObject* args,
PyObject* kwds) {
float minArg;
if(!PyArg_ParseTuple(args, "f", &minArg)) {
return NULL;
}
switch (m_locrot) {
case KX_ACT_CONSTRAINT_LOCX:
case KX_ACT_CONSTRAINT_LOCY:
case KX_ACT_CONSTRAINT_LOCZ:
m_minimumBound = minArg;
break;
case KX_ACT_CONSTRAINT_ROTX:
case KX_ACT_CONSTRAINT_ROTY:
case KX_ACT_CONSTRAINT_ROTZ:
m_minimumBound = MT_radians(minArg);
break;
default:
; /* error */
}
Py_Return;
}
/* 5. getMin */
char KX_ConstraintActuator::GetMin_doc[] =
"getMin()\n"
"\tReturns the lower value of the interval to which the value\n"
"\tis clipped.\n";
PyObject* KX_ConstraintActuator::PyGetMin(PyObject* self,
PyObject* args,
PyObject* kwds) {
return PyFloat_FromDouble(m_minimumBound);
}
/* 6. setMax */
char KX_ConstraintActuator::SetMax_doc[] =
"setMax(upper_bound)\n"
"\t- upper_bound: float\n"
"\tSets the upper value of the interval to which the value\n"
"\tis clipped.\n";
PyObject* KX_ConstraintActuator::PySetMax(PyObject* self,
PyObject* args,
PyObject* kwds){
float maxArg;
if(!PyArg_ParseTuple(args, "f", &maxArg)) {
return NULL;
}
switch (m_locrot) {
case KX_ACT_CONSTRAINT_LOCX:
case KX_ACT_CONSTRAINT_LOCY:
case KX_ACT_CONSTRAINT_LOCZ:
m_maximumBound = maxArg;
break;
case KX_ACT_CONSTRAINT_ROTX:
case KX_ACT_CONSTRAINT_ROTY:
case KX_ACT_CONSTRAINT_ROTZ:
m_maximumBound = MT_radians(maxArg);
break;
default:
; /* error */
}
Py_Return;
}
/* 7. getMax */
char KX_ConstraintActuator::GetMax_doc[] =
"getMax()\n"
"\tReturns the upper value of the interval to which the value\n"
"\tis clipped.\n";
PyObject* KX_ConstraintActuator::PyGetMax(PyObject* self,
PyObject* args,
PyObject* kwds) {
return PyFloat_FromDouble(m_maximumBound);
}
/* This setter/getter probably for the constraint type */
/* 8. setLimit */
char KX_ConstraintActuator::SetLimit_doc[] =
"setLimit(type)\n"
"\t- type: KX_CONSTRAINTACT_LOCX, KX_CONSTRAINTACT_LOCY,\n"
"\t KX_CONSTRAINTACT_LOCZ, KX_CONSTRAINTACT_ROTX,\n"
"\t KX_CONSTRAINTACT_ROTY, or KX_CONSTRAINTACT_ROTZ.\n"
"\tSets the type of constraint.\n";
PyObject* KX_ConstraintActuator::PySetLimit(PyObject* self,
PyObject* args,
PyObject* kwds) {
int locrotArg;
if(!PyArg_ParseTuple(args, "i", &locrotArg)) {
return NULL;
}
if (IsValidMode((KX_CONSTRAINTTYPE)locrotArg)) m_locrot = locrotArg;
Py_Return;
}
/* 9. getLimit */
char KX_ConstraintActuator::GetLimit_doc[] =
"getLimit(type)\n"
"\tReturns the type of constraint.\n";
PyObject* KX_ConstraintActuator::PyGetLimit(PyObject* self,
PyObject* args,
PyObject* kwds) {
return PyInt_FromLong(m_locrot);
}
/* eof */