blender/source/gameengine/BlenderRoutines/KX_BlenderRenderTools.cpp
2007-10-22 20:24:26 +00:00

489 lines
14 KiB
C++

/**
* $Id$
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#include "KX_BlenderRenderTools.h"
#ifdef WIN32
// OpenGL gl.h needs 'windows.h' on windows platforms
#include <windows.h>
#endif //WIN32
#ifdef __APPLE__
#define GL_GLEXT_LEGACY 1
#include <OpenGL/gl.h>
#else
#include <GL/gl.h>
#endif
#include "RAS_IRenderTools.h"
#include "RAS_IRasterizer.h"
#include "RAS_LightObject.h"
#include "RAS_ICanvas.h"
#include "RAS_GLExtensionManager.h"
// next two includes/dependencies come from the shadow feature
// it needs the gameobject and the sumo physics scene for a raycast
#include "KX_GameObject.h"
#include "KX_BlenderPolyMaterial.h"
#include "KX_PolygonMaterial.h"
#include "KX_BlenderMaterial.h"
#include "Value.h"
#include "KX_BlenderGL.h" // for text printing
#include "STR_String.h"
#include "RAS_BucketManager.h" // for polymaterial (needed for textprinting)
#include "KX_RayCast.h"
#include "KX_IPhysicsController.h"
#include "PHY_IPhysicsEnvironment.h"
#include "KX_Scene.h"
KX_BlenderRenderTools::KX_BlenderRenderTools()
{
glGetIntegerv(GL_MAX_LIGHTS, (GLint*) &m_numgllights);
if (m_numgllights < 8)
m_numgllights = 8;
}
/**
ProcessLighting performs lighting on objects. the layer is a bitfield that contains layer information.
There are 20 'official' layers in blender.
A light is applied on an object only when they are in the same layer.
OpenGL has a maximum of 8 lights (simultaneous), so 20 * 8 lights are possible in a scene.
*/
int KX_BlenderRenderTools::ProcessLighting(int layer)
{
int result = false;
if (layer < 0)
{
DisableOpenGLLights();
result = false;
} else
{
if (m_clientobject)
{
if (applyLights(layer))
{
EnableOpenGLLights();
result = true;
} else
{
DisableOpenGLLights();
result = false;
}
}
}
return result;
}
void KX_BlenderRenderTools::BeginFrame(RAS_IRasterizer* rasty)
{
m_clientobject = NULL;
m_lastblenderobject = NULL;
m_lastblenderlights = false;
m_lastlayer = -1;
m_lastlighting = false;
m_modified = true;
DisableOpenGLLights();
}
bool KX_BlenderRenderTools::RayHit(KX_ClientObjectInfo* client, MT_Point3& hit_point, MT_Vector3& hit_normal, void * const data)
{
double* const oglmatrix = (double* const) data;
MT_Point3 resultpoint(hit_point);
MT_Vector3 resultnormal(hit_normal);
MT_Vector3 left(oglmatrix[0],oglmatrix[1],oglmatrix[2]);
MT_Vector3 dir = -(left.cross(resultnormal)).safe_normalized();
left = (dir.cross(resultnormal)).safe_normalized();
// for the up vector, we take the 'resultnormal' returned by the physics
double maat[16]={
left[0], left[1], left[2], 0,
dir[0], dir[1], dir[2], 0,
resultnormal[0],resultnormal[1],resultnormal[2], 0,
0, 0, 0, 1};
glTranslated(resultpoint[0],resultpoint[1],resultpoint[2]);
//glMultMatrixd(oglmatrix);
glMultMatrixd(maat);
return true;
}
void KX_BlenderRenderTools::applyTransform(RAS_IRasterizer* rasty,double* oglmatrix,int objectdrawmode )
{
/* FIXME:
blender: intern/moto/include/MT_Vector3.inl:42: MT_Vector3 operator/(const
MT_Vector3&, double): Assertion `!MT_fuzzyZero(s)' failed.
Program received signal SIGABRT, Aborted.
[Switching to Thread 16384 (LWP 1519)]
0x40477571 in kill () from /lib/libc.so.6
(gdb) bt
#7 0x08334368 in MT_Vector3::normalized() const ()
#8 0x0833e6ec in KX_BlenderRenderTools::applyTransform(RAS_IRasterizer*, double*, int) ()
*/
if (objectdrawmode & RAS_IPolyMaterial::BILLBOARD_SCREENALIGNED ||
objectdrawmode & RAS_IPolyMaterial::BILLBOARD_AXISALIGNED)
{
// rotate the billboard/halo
//page 360/361 3D Game Engine Design, David Eberly for a discussion
// on screen aligned and axis aligned billboards
// assumed is that the preprocessor transformed all billboard polygons
// so that their normal points into the positive x direction (1.0 , 0.0 , 0.0)
// when new parenting for objects is done, this rotation
// will be moved into the object
MT_Point3 objpos (oglmatrix[12],oglmatrix[13],oglmatrix[14]);
MT_Point3 campos = rasty->GetCameraPosition();
MT_Vector3 dir = (campos - objpos).safe_normalized();
MT_Vector3 up(0,0,1.0);
KX_GameObject* gameobj = (KX_GameObject*) this->m_clientobject;
// get scaling of halo object
MT_Vector3 size = gameobj->GetSGNode()->GetLocalScale();
bool screenaligned = (objectdrawmode & RAS_IPolyMaterial::BILLBOARD_SCREENALIGNED)!=0;//false; //either screen or axisaligned
if (screenaligned)
{
up = (up - up.dot(dir) * dir).safe_normalized();
} else
{
dir = (dir - up.dot(dir)*up).safe_normalized();
}
MT_Vector3 left = dir.normalized();
dir = (left.cross(up)).normalized();
// we have calculated the row vectors, now we keep
// local scaling into account:
left *= size[0];
dir *= size[1];
up *= size[2];
double maat[16]={
left[0], left[1],left[2], 0,
dir[0], dir[1],dir[2],0,
up[0],up[1],up[2],0,
0,0,0,1};
glTranslated(objpos[0],objpos[1],objpos[2]);
glMultMatrixd(maat);
} else
{
if (objectdrawmode & RAS_IPolyMaterial::SHADOW)
{
// shadow must be cast to the ground, physics system needed here!
MT_Point3 frompoint(oglmatrix[12],oglmatrix[13],oglmatrix[14]);
KX_GameObject *gameobj = (KX_GameObject*) this->m_clientobject;
MT_Vector3 direction = MT_Vector3(0,0,-1);
direction.normalize();
direction *= 100000;
MT_Point3 topoint = frompoint + direction;
KX_Scene* kxscene = (KX_Scene*) m_auxilaryClientInfo;
PHY_IPhysicsEnvironment* physics_environment = kxscene->GetPhysicsEnvironment();
KX_IPhysicsController* physics_controller = gameobj->GetPhysicsController();
KX_GameObject *parent = gameobj->GetParent();
if (!physics_controller && parent)
physics_controller = parent->GetPhysicsController();
if (parent)
parent->Release();
MT_Point3 resultpoint;
MT_Vector3 resultnormal;
if (!KX_RayCast::RayTest(physics_controller, physics_environment, frompoint, topoint, resultpoint, resultnormal, KX_RayCast::Callback<KX_BlenderRenderTools>(this, oglmatrix)))
{
// couldn't find something to cast the shadow on...
glMultMatrixd(oglmatrix);
}
} else
{
// 'normal' object
glMultMatrixd(oglmatrix);
}
}
}
/**
Render Text renders text into a (series of) polygon, using a texture font,
Each character consists of one polygon (one quad or two triangles)
*/
void KX_BlenderRenderTools::RenderText(int mode,RAS_IPolyMaterial* polymat,float v1[3],float v2[3],float v3[3],float v4[3])
{
STR_String mytext = ((CValue*)m_clientobject)->GetPropertyText("Text");
const unsigned int flag = polymat->GetFlag();
struct MTFace* tface = 0;
unsigned int *col = 0;
if(flag & RAS_BLENDERMAT) {
KX_BlenderMaterial *bl_mat = static_cast<KX_BlenderMaterial*>(polymat);
tface = bl_mat->GetMTFace();
col = bl_mat->GetMCol();
} else {
KX_PolygonMaterial* blenderpoly = static_cast<KX_PolygonMaterial*>(polymat);
tface = blenderpoly->GetMTFace();
col = blenderpoly->GetMCol();
}
BL_RenderText( mode,mytext,mytext.Length(),tface,col,v1,v2,v3,v4);
}
KX_BlenderRenderTools::~KX_BlenderRenderTools()
{
};
void KX_BlenderRenderTools::EndFrame(RAS_IRasterizer* rasty)
{
}
void KX_BlenderRenderTools::DisableOpenGLLights()
{
glDisable(GL_LIGHTING);
glDisable(GL_COLOR_MATERIAL);
}
void KX_BlenderRenderTools::EnableOpenGLLights()
{
glEnable(GL_LIGHTING);
glEnable(GL_COLOR_MATERIAL);
glColorMaterial(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE);
glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, true);
if (bgl::QueryExtension(bgl::_GL_EXT_separate_specular_color) || bgl::QueryVersion(1, 2))
glLightModeli(GL_LIGHT_MODEL_COLOR_CONTROL, GL_SEPARATE_SPECULAR_COLOR);
}
/**
* Rendering text using 2D bitmap functionality.
*/
void KX_BlenderRenderTools::RenderText2D(RAS_TEXT_RENDER_MODE mode,
const char* text,
int xco,
int yco,
int width,
int height)
{
switch (mode) {
case RAS_IRenderTools::RAS_TEXT_PADDED: {
STR_String tmpstr(text);
BL_print_gamedebug_line_padded(tmpstr.Ptr(),xco,yco,width,height);
break;
}
default: {
STR_String tmpstr(text);
BL_print_gamedebug_line(tmpstr.Ptr(),xco,yco,width,height);
}
}
}
void KX_BlenderRenderTools::PushMatrix()
{
glPushMatrix();
}
void KX_BlenderRenderTools::PopMatrix()
{
glPopMatrix();
}
int KX_BlenderRenderTools::applyLights(int objectlayer)
{
// taken from blender source, incompatibility between Blender Object / GameObject
unsigned int count;
float vec[4];
vec[3]= 1.0;
for(count=0; count<m_numgllights; count++)
glDisable((GLenum)(GL_LIGHT0+count));
//std::vector<struct RAS_LightObject*> m_lights;
std::vector<struct RAS_LightObject*>::iterator lit = m_lights.begin();
glPushMatrix();
glLoadMatrixf(m_viewmat);
for (lit = m_lights.begin(), count = 0; !(lit==m_lights.end()) && count < m_numgllights; ++lit)
{
RAS_LightObject* lightdata = (*lit);
if (lightdata->m_layer & objectlayer)
{
vec[0] = (*(lightdata->m_worldmatrix))(0,3);
vec[1] = (*(lightdata->m_worldmatrix))(1,3);
vec[2] = (*(lightdata->m_worldmatrix))(2,3);
vec[3] = 1;
if(lightdata->m_type==RAS_LightObject::LIGHT_SUN) {
vec[0] = (*(lightdata->m_worldmatrix))(0,2);
vec[1] = (*(lightdata->m_worldmatrix))(1,2);
vec[2] = (*(lightdata->m_worldmatrix))(2,2);
//vec[0]= base->object->obmat[2][0];
//vec[1]= base->object->obmat[2][1];
//vec[2]= base->object->obmat[2][2];
vec[3]= 0.0;
glLightfv((GLenum)(GL_LIGHT0+count), GL_POSITION, vec);
}
else {
//vec[3]= 1.0;
glLightfv((GLenum)(GL_LIGHT0+count), GL_POSITION, vec);
glLightf((GLenum)(GL_LIGHT0+count), GL_CONSTANT_ATTENUATION, 1.0);
glLightf((GLenum)(GL_LIGHT0+count), GL_LINEAR_ATTENUATION, lightdata->m_att1/lightdata->m_distance);
// without this next line it looks backward compatible.
//attennuation still is acceptable
glLightf((GLenum)(GL_LIGHT0+count), GL_QUADRATIC_ATTENUATION, lightdata->m_att2/(lightdata->m_distance*lightdata->m_distance));
if(lightdata->m_type==RAS_LightObject::LIGHT_SPOT) {
vec[0] = -(*(lightdata->m_worldmatrix))(0,2);
vec[1] = -(*(lightdata->m_worldmatrix))(1,2);
vec[2] = -(*(lightdata->m_worldmatrix))(2,2);
//vec[0]= -base->object->obmat[2][0];
//vec[1]= -base->object->obmat[2][1];
//vec[2]= -base->object->obmat[2][2];
glLightfv((GLenum)(GL_LIGHT0+count), GL_SPOT_DIRECTION, vec);
glLightf((GLenum)(GL_LIGHT0+count), GL_SPOT_CUTOFF, lightdata->m_spotsize/2.0);
glLightf((GLenum)(GL_LIGHT0+count), GL_SPOT_EXPONENT, 128.0*lightdata->m_spotblend);
}
else glLightf((GLenum)(GL_LIGHT0+count), GL_SPOT_CUTOFF, 180.0);
}
if (lightdata->m_nodiffuse)
{
vec[0] = vec[1] = vec[2] = vec[3] = 0.0;
} else {
vec[0]= lightdata->m_energy*lightdata->m_red;
vec[1]= lightdata->m_energy*lightdata->m_green;
vec[2]= lightdata->m_energy*lightdata->m_blue;
vec[3]= 1.0;
}
glLightfv((GLenum)(GL_LIGHT0+count), GL_DIFFUSE, vec);
if (lightdata->m_nospecular)
{
vec[0] = vec[1] = vec[2] = vec[3] = 0.0;
} else if (lightdata->m_nodiffuse) {
vec[0]= lightdata->m_energy*lightdata->m_red;
vec[1]= lightdata->m_energy*lightdata->m_green;
vec[2]= lightdata->m_energy*lightdata->m_blue;
vec[3]= 1.0;
}
glLightfv((GLenum)(GL_LIGHT0+count), GL_SPECULAR, vec);
glEnable((GLenum)(GL_LIGHT0+count));
count++;
}
}
glPopMatrix();
return count;
}
RAS_IPolyMaterial* KX_BlenderRenderTools::CreateBlenderPolyMaterial(
const STR_String &texname,
bool ba,const STR_String& matname,int tile,int tilexrep,int tileyrep,int mode,bool transparant,bool zsort, int lightlayer
,bool bIsTriangle,void* clientobject,void* tface)
{
assert(!"Deprecated");
/* return new KX_BlenderPolyMaterial(
texname,
ba,matname,tile,tilexrep,tileyrep,mode,transparant,zsort, lightlayer
,bIsTriangle,clientobject,(struct MTFace*)tface);*/
return NULL;
}
void KX_BlenderRenderTools::MotionBlur(RAS_IRasterizer* rasterizer)
{
int state = rasterizer->GetMotionBlurState();
float motionblurvalue;
if(state)
{
motionblurvalue = rasterizer->GetMotionBlurValue();
if(state==1)
{
//bugfix:load color buffer into accum buffer for the first time(state=1)
glAccum(GL_LOAD, 1.0);
rasterizer->SetMotionBlurState(2);
}
else if(motionblurvalue>=0.0 && motionblurvalue<=1.0)
{
glAccum(GL_MULT, motionblurvalue);
glAccum(GL_ACCUM, 1-motionblurvalue);
glAccum(GL_RETURN, 1.0);
glFlush();
}
}
}
void KX_BlenderRenderTools::Update2DFilter(RAS_2DFilterManager::RAS_2DFILTER_MODE filtermode, int pass)
{
m_filtermanager.EnableFilter(filtermode, pass);
}
void KX_BlenderRenderTools::Render2DFilters(RAS_ICanvas* canvas)
{
m_filtermanager.RenderFilters(canvas);
}
unsigned int KX_BlenderRenderTools::m_numgllights;