blender/extern/carve/lib/intersect_classify_common_impl.hpp
Sergey Sharybin e81f2853c8 Carve booleans library integration
==================================

Merging Carve library integration project into the trunk.

This commit switches Boolean modifier to another library which handles
mesh boolean operations in much stable and faster way, resolving old
well-known limitations of intern boolop library.

Carve is integrating as alternative interface for boolop library and
which makes it totally transparent for blender sources to switch between
old-fashioned boolop and new Carve backends.

Detailed changes in this commit:

- Integrated needed subset of Carve library sources into extern/
  Added script for re-bundling it (currently works only if repo
  was cloned by git-svn).
- Added BOP_CarveInterface for boolop library which can be used by
  Boolean modifier.
- Carve backend is enabled by default, can be disabled by WITH_BF_CARVE
  SCons option and WITH_CARVE CMake option.
- If Boost library is found in build environment it'll be used for
  unordered collections. If Boost isn't found, it'll fallback to TR1
  implementation for GCC compilers. Boost is obligatory if MSVC is used.

Tested on Linux 64bit and Windows 7 64bit.

NOTE: behavior of flat objects was changed. E.g. Plane-Sphere now gives
      plane with circle hole, not plane with semisphere. Don't think
      it's really issue because it's not actually defined behavior in
      such situations and both of ways might be useful. Since it's
      only known "regression" think it's OK to deal with it.

Details are there http://wiki.blender.org/index.php/User:Nazg-gul/CarveBooleans

Special thanks to:

- Ken Hughes: author of original carve integration patch.
- Campbell Barton: help in project development, review tests.
- Tobias Sargeant: author of Carve library, help in resolving some
                   merge stoppers, bug fixing.
2012-01-16 16:46:00 +00:00

363 lines
14 KiB
C++

// Begin License:
// Copyright (C) 2006-2011 Tobias Sargeant (tobias.sargeant@gmail.com).
// All rights reserved.
//
// This file is part of the Carve CSG Library (http://carve-csg.com/)
//
// This file may be used under the terms of the GNU General Public
// License version 2.0 as published by the Free Software Foundation
// and appearing in the file LICENSE.GPL2 included in the packaging of
// this file.
//
// This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
// INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE.
// End:
#pragma once
namespace carve {
namespace csg {
typedef std::unordered_map<
carve::mesh::MeshSet<3>::vertex_t *,
std::list<FLGroupList::iterator> > GroupLookup;
inline bool isSameFwd(const V2Set &a, const V2Set &b) {
if (a.size() != b.size()) return false;
for (V2Set::const_iterator i = a.begin(), e = a.end(); i != e; ++i) {
if (b.find((*i)) == b.end()) return false;
}
return true;
}
inline bool isSameRev(const V2Set &a, const V2Set &b) {
if (a.size() != b.size()) return false;
for (V2Set::const_iterator i = a.begin(), e = a.end(); i != e; ++i) {
if (b.find(std::make_pair((*i).second, (*i).first)) == b.end()) return false;
}
return true;
}
static void performClassifySimpleOnFaceGroups(FLGroupList &a_groups,
FLGroupList &b_groups,
carve::mesh::MeshSet<3> *poly_a,
carve::mesh::MeshSet<3> *poly_b,
CSG::Collector &collector,
CSG::Hooks &hooks) {
// Simple ON faces groups are face groups that consist of a single
// face, and which have copy in both inputs. These are trivially ON.
// This has the side effect of short circuiting the case where the
// two inputs share geometry.
GroupLookup a_map, b_map;
// First, hash FaceLoopGroups with one FaceLoop based upon their
// minimum vertex pointer - this pointer must be shared between
// FaceLoops that this test catches.
for (FLGroupList::iterator i = a_groups.begin(); i != a_groups.end(); ++i) {
if ((*i).face_loops.size() != 1) continue;
FaceLoop *f = (*i).face_loops.head;
carve::mesh::MeshSet<3>::vertex_t *v = *std::min_element(f->vertices.begin(), f->vertices.end());
a_map[v].push_back(i);
}
for (FLGroupList::iterator i = b_groups.begin(); i != b_groups.end(); ++i) {
if ((*i).face_loops.size() != 1) continue;
FaceLoop *f = (*i).face_loops.head;
carve::mesh::MeshSet<3>::vertex_t *v = *std::min_element(f->vertices.begin(), f->vertices.end());
if (a_map.find(v) != a_map.end()) {
b_map[v].push_back(i);
}
}
// Then, iterate through the FaceLoops hashed in the first map, and
// find candidate matches in the second map.
for (GroupLookup::iterator j = b_map.begin(), je = b_map.end(); j != je; ++j) {
carve::mesh::MeshSet<3>::vertex_t *v = (*j).first;
GroupLookup::iterator i = a_map.find(v);
for (std::list<FLGroupList::iterator>::iterator bi = (*j).second.begin(), be = (*j).second.end(); bi != be;) {
FLGroupList::iterator b(*bi);
FaceLoop *f_b = (*b).face_loops.head;
// For each candidate match pair, see if their vertex pointers
// are the same, allowing for rotation and inversion.
for (std::list<FLGroupList::iterator>::iterator ai = (*i).second.begin(), ae = (*i).second.end(); ai != ae; ++ai) {
FLGroupList::iterator a(*ai);
FaceLoop *f_a = (*a).face_loops.head;
int s = is_same(f_a->vertices, f_b->vertices);
if (!s) continue;
// if they are ordered in the same direction, then they are
// oriented out, otherwise oriented in.
FaceClass fc = s == +1 ? FACE_ON_ORIENT_OUT : FACE_ON_ORIENT_IN;
(*a).classification.push_back(ClassificationInfo(NULL, fc));
(*b).classification.push_back(ClassificationInfo(NULL, fc));
collector.collect(&*a, hooks);
collector.collect(&*b, hooks);
a_groups.erase(a);
b_groups.erase(b);
(*i).second.erase(ai);
bi = (*j).second.erase(bi);
goto done;
}
++bi;
done:;
}
}
}
template <typename CLASSIFIER>
static void performClassifyEasyFaceGroups(FLGroupList &group,
carve::mesh::MeshSet<3> *poly_a,
const carve::geom::RTreeNode<3, carve::mesh::Face<3> *> *poly_a_rtree,
VertexClassification &vclass,
const CLASSIFIER &classifier,
CSG::Collector &collector,
CSG::Hooks &hooks) {
for (FLGroupList::iterator i = group.begin(); i != group.end();) {
#if defined(CARVE_DEBUG)
std::cerr << "............group " << &(*i) << std::endl;
#endif
FaceLoopGroup &grp = (*i);
FaceLoopList &curr = (grp.face_loops);
FaceClass fc;
for (FaceLoop *f = curr.head; f; f = f->next) {
for (size_t j = 0; j < f->vertices.size(); ++j) {
if (!classifier.pointOn(vclass, f, j)) {
PointClass pc = carve::mesh::classifyPoint(poly_a, poly_a_rtree, f->vertices[j]->v);
if (pc == POINT_IN || pc == POINT_OUT) {
classifier.explain(f, j, pc);
}
if (pc == POINT_IN) { fc = FACE_IN; goto accept; }
if (pc == POINT_OUT) { fc = FACE_OUT; goto accept; }
}
}
}
++i;
continue;
accept: {
grp.classification.push_back(ClassificationInfo(NULL, fc));
collector.collect(&grp, hooks);
i = group.erase(i);
}
}
}
template <typename CLASSIFIER>
static void performClassifyHardFaceGroups(FLGroupList &group,
carve::mesh::MeshSet<3> *poly_a,
const carve::geom::RTreeNode<3, carve::mesh::Face<3> *> *poly_a_rtree,
const CLASSIFIER & /* classifier */,
CSG::Collector &collector,
CSG::Hooks &hooks) {
for (FLGroupList::iterator
i = group.begin(); i != group.end();) {
int n_in = 0, n_out = 0, n_on = 0;
FaceLoopGroup &grp = (*i);
FaceLoopList &curr = (grp.face_loops);
V2Set &perim = ((*i).perimeter);
FaceClass fc =FACE_UNCLASSIFIED;
for (FaceLoop *f = curr.head; f; f = f->next) {
carve::mesh::MeshSet<3>::vertex_t *v1, *v2;
v1 = f->vertices.back();
for (size_t j = 0; j < f->vertices.size(); ++j) {
v2 = f->vertices[j];
if (v1 < v2 && perim.find(std::make_pair(v1, v2)) == perim.end()) {
carve::geom3d::Vector c = (v1->v + v2->v) / 2.0;
PointClass pc = carve::mesh::classifyPoint(poly_a, poly_a_rtree, c);
switch (pc) {
case POINT_IN: n_in++; break;
case POINT_OUT: n_out++; break;
case POINT_ON: n_on++; break;
default: break; // does not happen.
}
}
v1 = v2;
}
}
#if defined(CARVE_DEBUG)
std::cerr << ">>> n_in: " << n_in << " n_on: " << n_on << " n_out: " << n_out << std::endl;
#endif
if (!n_in && !n_out) {
++i;
continue;
}
if (n_in) fc = FACE_IN;
if (n_out) fc = FACE_OUT;
grp.classification.push_back(ClassificationInfo(NULL, fc));
collector.collect(&grp, hooks);
i = group.erase(i);
}
}
template <typename CLASSIFIER>
void performFaceLoopWork(carve::mesh::MeshSet<3> *poly_a,
const carve::geom::RTreeNode<3, carve::mesh::Face<3> *> *poly_a_rtree,
FLGroupList &b_loops_grouped,
const CLASSIFIER &classifier,
CSG::Collector &collector,
CSG::Hooks &hooks) {
for (FLGroupList::iterator i = b_loops_grouped.begin(), e = b_loops_grouped.end(); i != e;) {
FaceClass fc;
if (classifier.faceLoopSanityChecker(*i)) {
std::cerr << "UNEXPECTED face loop with size != 1." << std::endl;
++i;
continue;
}
CARVE_ASSERT((*i).face_loops.size() == 1);
FaceLoop *fla = (*i).face_loops.head;
const carve::mesh::MeshSet<3>::face_t *f = (fla->orig_face);
std::vector<carve::mesh::MeshSet<3>::vertex_t *> &loop = (fla->vertices);
std::vector<carve::geom2d::P2> proj;
proj.reserve(loop.size());
for (unsigned j = 0; j < loop.size(); ++j) {
proj.push_back(f->project(loop[j]->v));
}
carve::geom2d::P2 pv;
if (!carve::geom2d::pickContainedPoint(proj, pv)) {
CARVE_FAIL("Failed");
}
carve::geom3d::Vector v = f->unproject(pv, f->plane);
const carve::mesh::MeshSet<3>::face_t *hit_face;
PointClass pc = carve::mesh::classifyPoint(poly_a, poly_a_rtree, v, false, NULL, &hit_face);
switch (pc) {
case POINT_IN: fc = FACE_IN; break;
case POINT_OUT: fc = FACE_OUT; break;
case POINT_ON: {
double d = carve::geom::distance(hit_face->plane, v);
#if defined(CARVE_DEBUG)
std::cerr << "d = " << d << std::endl;
#endif
fc = d < 0 ? FACE_IN : FACE_OUT;
break;
}
default:
CARVE_FAIL("unhandled switch case -- should not happen");
}
#if defined(CARVE_DEBUG)
std::cerr << "CLASS: " << (fc == FACE_IN ? "FACE_IN" : "FACE_OUT" ) << std::endl;
#endif
(*i).classification.push_back(ClassificationInfo(NULL, fc));
collector.collect(&*i, hooks);
i = b_loops_grouped.erase(i);
}
}
template <typename CLASSIFIER>
void performClassifyFaceGroups(FLGroupList &a_loops_grouped,
FLGroupList &b_loops_grouped,
VertexClassification &vclass,
carve::mesh::MeshSet<3> *poly_a,
const carve::geom::RTreeNode<3, carve::mesh::Face<3> *> *poly_a_rtree,
carve::mesh::MeshSet<3> *poly_b,
const carve::geom::RTreeNode<3, carve::mesh::Face<3> *> *poly_b_rtree,
const CLASSIFIER &classifier,
CSG::Collector &collector,
CSG::Hooks &hooks) {
classifier.classifySimple(a_loops_grouped, b_loops_grouped, vclass, poly_a, poly_b);
classifier.classifyEasy(a_loops_grouped, b_loops_grouped, vclass, poly_a, poly_a_rtree, poly_b, poly_b_rtree);
classifier.classifyHard(a_loops_grouped, b_loops_grouped, vclass, poly_a, poly_a_rtree, poly_b, poly_b_rtree);
{
GroupLookup a_map;
FLGroupList::iterator i, j;
FaceClass fc;
for (i = a_loops_grouped.begin(); i != a_loops_grouped.end(); ++i) {
V2Set::iterator it_end = (*i).perimeter.end();
V2Set::iterator it_begin = (*i).perimeter.begin();
if(it_begin != it_end) {
a_map[std::min_element(it_begin, it_end)->first].push_back(i);
}
}
for (i = b_loops_grouped.begin(); i != b_loops_grouped.end();) {
GroupLookup::iterator a = a_map.end();
V2Set::iterator it_end = (*i).perimeter.end();
V2Set::iterator it_begin = (*i).perimeter.begin();
if(it_begin != it_end) {
a = a_map.find(std::min_element(it_begin, it_end)->first);
}
if (a == a_map.end()) { ++i; continue; }
for (std::list<FLGroupList::iterator>::iterator ji = (*a).second.begin(), je = (*a).second.end(); ji != je; ++ji) {
j = (*ji);
if (isSameFwd((*i).perimeter, (*j).perimeter)) {
#if defined(CARVE_DEBUG)
std::cerr << "SAME FWD PAIR" << std::endl;
#endif
fc = FACE_ON_ORIENT_OUT;
goto face_pair;
} else if (isSameRev((*i).perimeter, (*j).perimeter)) {
#if defined(CARVE_DEBUG)
std::cerr << "SAME REV PAIR" << std::endl;
#endif
fc = FACE_ON_ORIENT_IN;
goto face_pair;
}
}
++i;
continue;
face_pair: {
V2Set::iterator it_end = (*j).perimeter.end();
V2Set::iterator it_begin = (*j).perimeter.begin();
if(it_begin != it_end) {
a_map[std::min_element(it_begin, it_end)->first].remove(j);
}
(*i).classification.push_back(ClassificationInfo(NULL, fc));
(*j).classification.push_back(ClassificationInfo(NULL, fc));
collector.collect(&*i, hooks);
collector.collect(&*j, hooks);
j = a_loops_grouped.erase(j);
i = b_loops_grouped.erase(i);
}
}
}
// XXX: this may leave some face groups that are IN or OUT, and
// consist of a single face loop.
classifier.postRemovalCheck(a_loops_grouped, b_loops_grouped);
classifier.faceLoopWork(a_loops_grouped, b_loops_grouped, vclass, poly_a, poly_a_rtree, poly_b, poly_b_rtree);
classifier.finish(a_loops_grouped, b_loops_grouped);
}
}
}